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NDJFAM
THE COSUBSTITUTION CONDITION
J. C. MUZIO
1. Imtrvoduction. Let n be a natural number, n=2,and N={1, 2, .., n}

Martin [3] showed in 1954 that necessary conditions for a two-place functor
to be a Sheffer function are that it should possess none of the properties of
proper closure, {-closure, proper substitution or cosubstitution. He proved
these conditions sufficient in the 3-valued case. Foxley [1] demonstrated
that, in the 3-valued case, any function which possessed the cosubstitution
property must also possess at least one of the properties of proper
closure, proper substitution or ¢-closure. We shall establish the cor-
responding result for n-valued logic. Initially we establish a necessary and
sufficient condition for a function to be f-closing. By investigating the
conditions implied by the cosubstitution property it will follow that if F
possesses the cosubstitution property for a decomposition of the n truth
values into less than 7z classes then it will also possess the proper sub-
stitution property for the same decomposition. In the remaining case of a
decomposition of the » truth values into exactly » classes it will be shown
that F will possess at least one of the properties of proper closure, proper
substitution or i{-closure if it possesses the cosubstitution property for
such a decomposition.

Before proceeding any further we will introduce definitions of these
terms as given by Martin [3]. Suppose we have a decomposition of the x
marks into two or more disjoint, non-empty classes. If a, be N we write
a ~ b to indicate that ¢ and b are elements of the same class. Let a', b’,
c', d', e', f' be logical constants taking the truth values a, b, ¢, d, e, f
respectively (a, b, ¢, d, e, fe N). A binary functor F satisfies the substitu~
tion law if, for any a, b, ¢, d, whenever a ~ ¢ and b ~ d then e ~ f where
Fa'b' =re' and Fc'd' =rf'. If F is a binary functor such that whenever
e ~f and Fa'b' =1 e', Fc'd' =rf' then either a ~ c or b ~ d then F satisfies
the cosubstitution law. We say F has the proper substitution property if
there is a decomposition of the » truth values into less than » classes for
which F satisfies the substitution law. Similarly F has the cosubstitution
property if there is a decomposition of the n truth values for which F
satisfies the cosubstitution law.
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A one-place functor T is a t-functor if the following hold.

(I) T"”a'=ra'forallaeN .
(I1) for everyi (1 =i =wun-1)anda(@eN) T’ a' #7a'

F is said to be t-closing if.the.re is some {-functor F such that for every
i, j there is a k such that FT*pT'p =r T*p. Finally F has the proper closure
property if some non-empty proper subset of the » marks is closed under F.

2. Notation and Definitions. We use the notation

{Al}: {Aa}, LR {Ag}g {Bl}: {BZ}? o0y {Bh}

where A;, B; (1 = i=g;1 =j =h) represent sequences of symbols denoting
truth values, and for any sequence C, {C} is the class of truth values
denoted by the elements of C, to mean that there exists an integer j (= j())
such that {4;} ¢ {B;} for eachi =1,2, ..., g If the values j(1), (), . . .,
j(g) are all necessarily distinct we shall write

{A;; A; .. .3 A} C{B; B . . .5 Bl

If we have g sequences A;; (1 <i,, i, =g) then

iyip

{AntAn: i A An i At 1 Aggs 3 Agi i Aget L 1 Aggt C{Bi; By ... B}

is used to mean that there exists an integer j (=j(Z,)) such that, for all
iy (1 =i, =g), {Aii,} C {B;} with j(1), (2), . . . j(g) necessarily all distinct.

Consider a decomposition D of the n truth values 1,2, ... ,n intom
non-empty classes (1 = m = n) where the 7th class contains s; truth values
(i=1,2,...,m). Ifa', 0", c' d, e, f" are logical constants assuming the
truth values a, b, c, d, e, frespectively (a, b, c, d, e, fe{1,2, . . . ,n}) such
that Fa'p! =r e’ and Fc¢'d' =r f' and the corresponding truth values e, f are
such that e ~f in the decomposition D then we write Fa'd' ~ Fc'd'.

The m classes of truth values will be denoted by

{all, M2y + o o alsl}a {021,022, oo ya252}; ey {amh Amzy + + - ;amsm}

where dji, @ypy -+« 5+« - 5 Ams, 1S Some rearrangement of 1, 2, ... ,n.
{A;} is used to denote {ai1, @z, . . . ,@is; } (1 =4 =m). We shall write {B;; }
(1 =i, =m) to denote

{Fb;1 by, Fb;y bjny « oo, Fbiy bjsj, Fbig b1, Fbin biny o o vy o v o, Fis; bjsi}

where by, by, ..., bus, are logical constants taking truth values ay,,
oy v v -y Amsy respectwely

If Fb,k bj =1 c;j where 1 <4,j =m; 1=k <g;;1=1=<s; and ¢,7€ {b1,
b1z, - « + 5 bus,) then we use {C,,}to denote
{Cll’ ch» LR 011;9 Ca1s Ca2y « + v 5 o+ ¢ Cslzl'si'

and {D;;} to denote the class of truth values corresponding to the elements
of {C;i}.

We write {D;;} ~ {Duji} to mean that there exists an integer k (k=
k(@,7), 1 =k =m) such that {D;}, {D;;} € {4,}. A number of truth values
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are described as ‘‘similar’’ if they belong to the same class of the

decomposition. For ¢=1,2,..., m the ith ‘““block row’’ is defined to be
m m
U {D;j}. Similarly for j = 1,2, ..., m the jth <“block column’ is U {D;}.
j=1 i=1

3. Conditions for t-closuve. If Tp is a t-function we define T°b = p and
TF p=TT*% (k=0,1,2,...).

The following theorem is stated in two forms, the proof of the second
following from that of the first by interchanging rows and columns in the
argument.

Theorem 3.1. (A) A functor F is t-closing if and only if theve exist
integers i, 1, . « . ,in-y Such that, for eachj=0,1,...,n-1, FpTip=r
T'ip where 0 <14 <mn- 1.

(B) A functor F is t-closing if and only if theve exist integers i,,
i1y .. in-1 Such that, for each j=0,1,...,n-1, FT'pp =1 T'ip where
0=i =n-1.

We prove the result in form A. Necessity of the condition follows from
the definition of £-closure. For sufficiency we must show, for all values of
k(0 =k =mn- 1) and for all values of I(0 = [ = n - 1), that for some value of
j= ik, 1) FT*T'p =1 T'p.

(a) We have FT*T*p = T°T% =1 T'o"*p for each value of #, 0 <k =<n - 1.
(b) Consider FT*pT'p, with k#land 0<%k, [=n-1; define j=n+1-k
(modulon), 0 =j=un - 1. Theneither (I) j+2=1lor (I)j + k= n+ L
If (I) then FT*»T'p =r FT*pT**p

=r TTkp

=r Tt] +kp.
If (1) then FT*T!p =1 FT*T"Tp

=r FTIePTi-!-kp

=r T *t*p as above.
(c) For any general value of # we note that T% =r T*'p where k' = % (mod n),
0=k =n-1.

Consequently we have that for all ¢, b there exists an integer ¢ such
that FT“T% =1 T p, and the result follows.

4. The Cosubstitution Property.

Lemma 4.1. If F possesses the cosubstitution property then {Dy,; Dy; . . . ;
D} C{A1; Az -+ . 5 Ank

Proof. If for some %,j (1 =4, j =m) Fb;b;, ~ Fbjy bjx for any u, v, w, x
such that 1 =%, v =s; and 1 =w, x =s; then the cosubstitution property
implies that either a;, ~ajw or a;, ~ajx and, in both cases, this implies
i = j. Consequently, since there are exactly m classes in the decomposition,
the lemma follows.

Theorem 4.2. If F possesses the cosubstitution property then either all the
entries in each block vow ave similay orv all the entries in each block
column ave similayr.
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To establish this result it will be shown that either one or the other of
the following hold.

I {Dy:Dys:..:Dyp;DayiDasie Doy 3DmyiiDma vt Dy C {413 An; . . A}
I {Dy;:Dsy:..:D,3D12: D55 i i Dyay e - 5Dy i Doyt ot D} C AL AL . L 3AR

In the truth table of F consider the aj,-th row (for some u;, 1 = u; =
si, 1 =i =m). Consider the entry in the aj,;-th column (j# 7, some u;,
1=u; =sj,1=j=m). We have Fby,bj,; = Cujuy; and let the truth value
corresponding to c,/,; be denoted by a.

Then, in view of the above lemma, there exist 6, 2 such that @ ~ 6 and
0 € {Dpe}, (1 <k =m). Hence, we have Fbj,bjy; ~ Fby,,byy, for all u, v, such
that 1 =u,, vy =s,. Then the cosubstitution property implies that either
@iuj ~ Alup, OT Qjuj ~ gy giving either 7 =% or j=%. Consequently if ae {D,»j}
then there exists 6 such that a ~ 6 and

0 e {D;;} or 0 € {D;;}. (1)

We now show that if a, Be{D;;} (i #j) then it is not possible for a ~ y
and 8 ~ 6 where y, 6 are the truth values corresponding to the values of
Fbiw;bixi; Fbju;bjx; respectively for any w;, x;, w;, %; (1=w;,x; =s;31=wj,
xj =sj).

Suppose for some u;, u;, v;, v; (1 = u;, v; =s;; 1 Su;,v; =)

that Fbiuibju; ~ Fbiw;bix; (2)
and Fbiyibju; ~ Fbju;bjx- 3)

Consider Fbj,;b;,;: by (1) either (@) Fbju;biy; ~ Fbiybiz; for some y;,
z; (1 =y;, 2; =s;) or (b) Fbjujbiy; ~ Fbiy].biz. for some y;, z; (1 =y;, z; =sj).
In case (a), since Fb;y;biz; ~ Fbiy;bix; (by lemma 4.1), we have, by (2),
that Fbju;b;; ~ Fbiu;bju; and the cosubstitution property implies that either
@juj ™~ Giuj O Gjy; ~ Gju; both of which lead to i =j. Case (b) follows similarly
to (a), by interchanging rows and columns and using (3) instead of (2).
Consequently we must have either

{D;;} ~{D;i} or {D;;} ~ {Djj}. (4)
In particular either {D,,} ~ {D,;} or {D;,} ~ {D,,}. We assume {D;,} ~
{Du} and deduce alternative I of the result. Alternative II follows similarly

using the other assumption. The proof will be completed in three stages,
namely by showing:

(@) {Dy;} ~ {D..} for eachj, 3 =j =m.
(b) {D;;} ~ {D;} for each i, 2 <i = m.
(C) {D'I} ~ {Dii} for i, j such that 2 = ji= m; 2 =7 =m.

(a) Consider {D,;}, 3 =j =m. By (4) either {D,;} ~{D,,} or {D;} ~
{Dji}. 1 {Dy;} ~ {Djj} then either {D;;} ~ {D;;} ~ {D,}}, i.e., {Dji} ~{Dy;} which
contradicts the cosubstitution property for j # 1; or {D;,} ~ {D1,} ~ {D,}, i.e.,
{D;.} ~ {D;;} which contradicts the cosubstitution property for j# 1. Hence
{Dlj} ~ {Du}-

(b) By (4) either {D;1} ~ {Di} or {Din} ~ Du} @ =i =m). ¥ Dy} ~ i}
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then, since {Di;} ~ {D,,} we have {D;,} ~ {D,,} which contradicts the cosub-
stitution property for i # 1. Hence {D;,} ~ {D;;} and consequently {D,; Dy,;
.3 Dml}g {AﬁAz; <. ;Am}'
(c) Suppose there exist i, j (2 =4,j < m, i #j) such that {D;} ~{Dj;}.
By (b) {D;i} ~ {D;;}. Hence {D;} ~ {D;;} which contradicts the cosubstitution
property if j # 1, j # 2. This completes the proof of the theorem.

It is now necessary to distinguish between a decomposition of the =
truth values into less than » classes and one into n classes. The former
case is easily disposed of and this is done in theorem 4.3. In the latter
case, however, it will be seen that a considerably more detailed examina-
tion is required.

Theorem 4.3. If F possesses the cosubstitution property for any decom -
position of the n truth values into less than n classes then F also possesses
the propev substitution property.

The conditions which must be satisfied if F is to possess the proper
substitution property with respect to the same decomposition as that for
which it possesses the cosubstitution property are that for each value of i, j
there exists some k (% = k(i, j), 1 =k = m) such that {D;;} c{A,}. However
these conditions are immediately satisfied: following by the results proved
in the previous theorem. Hence F possesses the proper substitution
property.

In the following work we shall be considering a decomposition of the »
truth values into » classes. Consequently we can omit the second subscript
when writing both truth values and logical constants, since it is always 1.
This is done throughout the following theorem.

Initially from Theorem 4.2 the truth table of Fpq will either contain »
identical entries in each row and = different entries in each column or vice
versa. We assume the former, i.e., for 1 =j =n

Fb,bk =1 b"l where j' = j'(j), 1 Sj' =n and b,‘/ #1 by unless ] =1. (5)

The result will then be proved, making use of Theorem 3.1(A). It will
follow for the other case by interchanging rows and columns and using
Theorem 3.1(B).

We define the one-place functor G by Gb, =7 b for j=1,2,...,nand
we note that, forallk=1,2,...,zand 1 =j=n
Fb,'bk =T Gbl'- (6)

Theorem 4.4. If F possesses the cosubstitution property for any decom-
position of the n truth values into n classes then F possesses at least one of
the properties of propevr closure, propevr substitution ov t-closure.

The result will be established in three parts:

1. If Gbj=rb; for some j, 1 =j=mn, then F has the proper closure
property.

II. If 1 is not satisfied and pr, =r bj. for some j, 1 = j =n, and some p,
1 = p = n, then F has the proper substitution property.
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III. If 1and 11 ave not satisfied then we show that F possesses the t-closure
property.

1. If Gb; =1 bj for some j,1 =j =n, then by (6) Fb;b; =r b; and consequently
possesses the proper closure property.

II. If G’b; =1 b; for some j, 1 =j =n and some p,1< p< n Let k be the
least such p, 1 <k =p<n so that G*; =r b; 1 < & < n, but G'b; #1 b; for
any I, 1 = 1< k. Initially we have, for 1 =i =k - 1,

G*G'b; =1 G'bj, but G'G'b; #r G'bj for 1 = 1< P. 1)

This follows since G*G’b; =r G'G*b; =r G'bj, but if G'G’b; =r G'b; for some
I, 1 <1<k, then G*G'G’b; =1 G*'G'; =r G*b; =r b; and G*G'G'D; =1
Gleb]' =7 Glbj so that Glbi =r b;, 1 = 1<k, which contradicts our assump-
tion of % being the least such value. ,

We shall denote by al.’ the truth value corresponding to G’b; (1 <i <n,
j=0,1,2,...). 1If

@l a, ..., a7 ®)

for some 7, 1 =i =n (at least one such aj must exist since % < n) then we
prove, by induction on 7, that for any ¢, 0 =g =% -1

G'b; 27 Gb;. (9)

For 7 =0 the result follows immediately from (8). Assume the result
for some nonnegative integral 7.

Consider G™*'b; =1 G, for some q,0 =g <k - 1, then GG'b; =y GGI™'b;
(if ¢ = 0 then GG'b; =1 GGk-lb]’). If G'b; =1 by (say) and G?™'b; =1 by (say)
then by the induction hypothesis b, #r b,. However Gb, =1 Gby, which by (6)
implies that b,, =7 b/, which, by (5), is only true if x = y, which contradicts
the induction hypothesis. Consequently G'd; #7 G;¢=0,1, ...,k - 1;7 =
0,1,2,... We now show that, for any ¢, 1 =¢ =u, b, =7 Garbi for some k;,
1 =k; =n, and if &; is the least possible such value, then

a,al, ..., a" " are all distinct. (10)

Consider {a}, a}, . . . , d;}. Since there are only » different truth values
we must have, for some p, ¢, 0 = p < q =n, G’b; =r G';. Suppose p is the
least possible such value and assume p # 0. Then we have G?~'b; #r G77'b;.
If G?7'b; =1 by (say) and G?7'b; =y b, (say) then Gb, =r Gb,, but b, #rb, which
contradicts (5). Hence the least possible value for p is p = 0,i.e.,b; =7 G*b;
for some %k;, 1 =k; =#n. Further if 2; is the least possible such value then
al, a},...,a" " are all distinct, since otherwise G%; =r G%;, for some
p,q,0=p<q<k; and this implies either b; = GT?; with 0 < ¢ - p <k;
which contradicts k; being the least such value, or G*b; =1 G’b; for some
%,y such that p-x=¢g -y and 0<x < p; 0<y<gq, and G 'b; #; GO 7'b;,
which, as above, contradicts (5). We are now able to start defining a
decomposition of the truth values with respect to which it will be shown that
F possesses the proper substitution property.

Define E, =1a% al, ..., a® '}, where %, is the least positive value
such that G*, =1 b,.
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We have either b, =; G%, for some ¢, 0 =g <k, in which case #, = &
by (7), or by #7 G'b; for any ¢, 0 = ¢ <k, in which case since a{, aj, . . .,
a¥~! are all distinct (by (10)) and there are a maximum of n - # truth
values which can be taken by G%, (for any ¢, 0 =g < k) (by (9)) we have
ky, =n - k. Consequently in both cases &, < n.

Define 7; = 1, R, = 1, and for each valueof j =2,3, ..., n:
R]'__l
(1) if aj¢ le Es then7; =R;.; + 1 and E, = {aj, a, . .. ,a,]-ej-l} where &; is
s= R:_1
i
the least positive integer for which Gkib]‘ =r bj; otherwise, i.e., if aje U E;,
s=1

then there exists a unique integer s, 1 =s =R;_; such that a}’eES and we
define 7; = s, (s is unique by note (a) below).
(IDRj =max (r;) (1 =i=j).

We note that

(a) By (9) we cannot have aje Es and afe E,, s #u, for any i, 1 =i <n.
(b) For any i, 1 =i =, there exists an s such that ale E, viz. s = 7;.

Consequently we have a decomposition of the % truth values a?, a3, . . . , ar

into m disjoint classes where m = R,. It remains to prove that F possesses
the proper substitution property with respect to this decomposition.

Suppose a; ~a;, j #1, 1 =j,1 =n. Then for some 75, 1 =7, <R, a;,
aj € E,;. Consequently for some p, 1 =p =k

b; =1 G'bs (11)
and for some g, 1 = q =k,

b= G (12)
and suppose p < q. Also, from the definition of &5 ((i) above),

bs =1 G*bs. (13)

Hence, by (11), (12), b; =1 G%; =1 GT?G’b, =1 G*b; and 1 =g - p <k, and
by (11), (12), (13) b; =1 G?b, =1 GPGFsb, =1 G*IGP G, =1 G*™*%p, and 1 <k, -
q +p =ks. Hence b; =1 G'b; and b; =1 G"b; for some u, v, 1 =u, v < k;.

We now show that if a; ~ a; and a. ~ ay then Fb;b, ~ Fb;by. Suppose a;,
a; e E,; and ay, aye E,, (1 =7, 7, =R,).

We have that there exist p, ¢ (1 =p =ky; 1 =q = k,;) such that Fb;b, =r
FG;G%, =1 G'*'b; by (6) and a!™ ¢ Er;.

But Fb;by =r Gb; by (6) and ajeE,,. Hence Fb;by ~Fb;b, and F
possesses the proper substitution property for this decomposition. This
concludes II.

. 1f

G’; #1 b; (14)

for any j, 1 =j =un, and any p, 1 =p =n - 1, then we show initially that
G"; =1 b; for each j, 1 =j =n. Consider {af, a], . . ., a}}. Since there are
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only « different truth values we must have either G"; =1 b; or G%; =r G?b;
for some p, ¢, 1 = p < ¢ < n,in which case G (G?,) =r G’b;,0< q - p<n
which contradicts (14). Consequently G"b]- =rb;j, 1=j =n, and so G is a
t-function.

Similarly af, @, . .., a;”" must all be distinct to avoid contradicting
(14). Hence aj, a}, ..., d} ! is just a rearrangement of af, a3, . . . , Gn.
Now, by (6), Fb;G?j =r Gb; for eachj=1,2,... ,nandallp,0 <p =pn- 1,

Hence, by Theorem 3.1(A), F possesses t-closure. This concludes III and
consequently completes the theorem.
Combining the last two theorems we have established the following

result.

Theorem. If F possesses the cosubstitution property then it also possesses
at least ome of the properties of proper substitution, proper closure or
t-closure.
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