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RADO'S THEOREM AND SOLVABILITY OF

SYSTEMS OF EQUATIONS

ALEXANDER ABIAN

In this paper we consider finite or infinite systems of equations each in

finitely many unknowns where each unknown ranges over a finite domain.

We prove that such a system has a solution if and only if every finite

subsystem has a solution. Moreover, we introduce the notion of an expand-

ing system of equations and its partial solution and we give a necessary

and sufficient condition for the existence of a partial solution of such a

system of equations. Furthermore, we prove that Rado's theorem [l] is

equivalent to the statement that if each equation of an expanding system of

equations has a solution then the system has a partial solution.

In what follows we consider infinitely many (not necessarily denumer-

ably many) unknowns (variables) xλ, x2, . . . , Xj, . . . ranging respectively

over nonempty finite domains Dl9 D2, . . . , Dj , . . . . Moreover, by a func-

tion we mean a function of finitely many unknowns (variables). Hence, a

function in the unknowns Λ'Z , . . . , Xk is a mapping from ΰ/X . . . XD^. We

do not impose any restriction (except for being nonempty) on the range of a

function since that is not needed for our purpose.

From a given function we construct equations in the usual way. Thus, if

(1) FA. . ,xh . .)

is a function then the configuration

(2) Fi(. . ,Xj, . .) = a

is an equation, where c, is an element of the range of the function given in

(1). The notion of a solution of an equation as well as that of a system of

equations is self-explanatory.

In the sequel, we let V denote a nonempty index set for the unknowns

and we consider equations indexed by a nonempty set E. Although we make

no restrictions (except for being nonzero) on the cardinalities of sets V and

E, we would like to emphasize that each equation has finitely many

unknowns and each unknown ranges over a nonempty finite domain.

Motivated by notation (2), we prove the following theorem.
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Theorem 1. Consider a {finite or infinite) system of equations

(3) Fi(. . , Xj, . .) = a with ieE

where each equation has finitely many unknowns and each unknown ranges
over a nonempty finite domain. Let every finite subsystem of system (3)
have a solution. Then system (3) has a solution.

Proof. Let us call a nonempty family (XJ = Sj)μA with Sj e Dj an assignment
of system (3) if and only if upon replacing Xj by Sj (for every jeA) in (3),
the resulting system is such that every finite subsystem of it has a
solution.

We first show that the set S of all the assignments of system (3) is
nonempty. Let us consider an unknown xu where without loss of generality
we may take Du-{p,q, r}. Assume on the contrary that the set S of all the
assignments of system (3) is empty. Thus, upon replacing #« by p or by q
or by r , there correspond resulting finite subsystems (Fi = Ci)up and
(Fi = Ci)uQ and (Fj = Ci)i€R such that each has no solution. But then the
finite subsystem of (3) given by

(Fi(. . , Xj , . .) = Ci)i€(puQuR)

has no solution which contradicts the hypothesis of the theorem. Thus, our
assumption is false and S is nonempty. Next, we observe that if we partial
order S in an obvious manner we see that (in view of the fact that each
equation has finitely many unknowns) every simply ordered subset of S has
a least upper bound and therefore by Zorn's lemma, system (3) has a
maximal assignment (*/ = Sj)μM . Clearly, to complete the proof of the
theorem, i.e., to show that system (3) has a solution, it is sufficient to
prove that M = V where, as mentioned above, V is the index set for the
unknowns appearing in system (3). Assume on the contrary that V Φ M.
Thus there exists an index u such that ueV and ujίM. But then since
(XJ = Sj)j€fΛ is an assignment of system (3) we see that upon replacing :v; by
Sj (for every j e M) in (3), the resulting system is such that every finite
subsystem of it has a solution. Consequently (as in the earlier part of the
proof) it follows that the resulting system under consideration has an
assignment. However, since xu is an unknown which does not appear in the
resulting system under consideration, we see that xu = su for some su e Du is
an assignment of the resulting system under consideration. But then
(Xj = S/);e(Mu{a|) is an assignment of system (3) which contradicts the maxi-
mality of (XJ = SJ)J€M . Hence our assumption is false and system (3) has a
solution, as desired.

Corollary 1. Consider a (finite or infinite) system of equations

Fi (. . , Xj, . .) = Ci with ieE

where each equation has finitely many unknowns and each unknown ranges
over a nonempty finite domain. Then the system has a solution if and only
if every finite subsystem has a solution.
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Proof. Clearly, if the system has a solution then every finite subsystem

has a solution. The converse follows from Theorem 1.

Let us observe that Theorem 1 does not imply the solvability of system

(3) in cases where each individual equation of system (3) has a solution. In

fact, it is easy to show that, in general, the solvability of each individual

equation of a system of equations does not necessarily imply the solvability

of the entire system. However, we show below that the solvability of each

individual equation of an expanding system of equations implies the

existence of a partial solution of the system.

As before, let V be the index set for the unknowns. A nonempty

system of equations

(4) G, (. . , Xj, . .) = Ci with ie H

is called expanding if and only if for every nonempty finite subset F of V

there exists an equation of system (4) such that F is a subset of the set of

all the indices of the unknowns which appear in that equation. In other

words, given any finite number of unknowns χiy . . . , x^, there exists an

equation of system (4) in the unknowns * , - , . . . , Xk and possibly in some

additional unknowns.

We call a family

(5) (x = dj)jev with djβDj

a partial solution of system (4) if and only if for every nonempty finite

subfamily (XJ = dj)μp there exists an equation (with L a finite subset of V)

(6) G/(. . , Xj, . .) = d with je (F u L)

of system (4) such that

(7) (XJ = dj)μF and (XJ = hήμL

is a solution of equation (6) with dje Dj and h1e Dj. In other words, (5) is a

partial solution of system (4) if and only if for every finite family of

equalities Xi = di, . . . , Xk = dk there exists an equation (6) of system (4)

such that (6) is in the unknowns Xi, . . . , Xk and possibly in some additional

unknowns xv, . . . , xw and such that Xj = di, . . . , Xk = dk is a part of a

complete solution of (6). We call (x/ = dj)jeF a partial solution of equation

(6).

Motivated by the above, we prove the following theorem.

Theorem 2. Consider a (finite or infinite) expanding system of equations

(4) Gi(. . , Xj, . .) = Ci with ie H

where each equation has finitely many unknowns and each unknown ranges

over a nonempty finite domain. For every equation of system (4) let there

be an equation of system (4), possibly in more unknowns, which has a

solution. Then system (4) has a partial solution.

Proof. Let us call a nonempty family (XJ = dj)μp with djeDj a partial

assignment of system (4) if and only if for every nonempty finite subset P1
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of P and every finite subset V of V there exists an equation (with V a

finite subset of V)

(8) G7 (. . , ΛΓ7 , . .) = a with je (P* U V' U I ' )

of system (4) such that

(9) {Xj = dj)jCp> and (ΛΓ, = ej)μw and (XJ = hήjeu

is a solution of equation (8) with e ; e-D/ and &/ e £>/.

We first show that the set D of all the partial assignments of system

(4) is nonempty. Let us consider an unknown xu where again, without loss

of generality, we may take D,• = {p, q, r}. Assume on the contrary that the

set D of all the partial assignments of system (4) is empty. Thus, in view

of (8) and (9) and corresponding to

(10) (XJ = ρ)je\u\ and (xf = q)μM and (xf = r)μ\u\

and finite subsets vj, and v\ and v\ of V there does not exist an equation

(with L" a finite subset of V)

(11) Gi(. . , Xj, . .) = a with j e ({u} U Vp U v\ U v\ U L")

such that none of the equalities listed in (10) is a partial solution of

equation (11). But this contradicts the hypothesis of the theorem stating

that system (4) is expanding and that for every equation of system (4) there

exists an equation of system (4) possibly in more unknowns which has a

solution. Thus, our assumption is false and D is nonempty. Again, if we

partial order D in an obvious manner, we see that (since each equation has

finitely many unknowns) every simply ordered subset of D has a least upper

bound and therefore by Zorn's lemma, system (4) has a maximal set

(XJ = dj)jeM of partial assignments. However, by a reasoning analogous to

the above which showed that D is nonempty, it is easily seen that M = V.

But then (XJ = dj)μM is a partial solution of system (4), as desired.

Corollary 2. Consider a (finite or infinite) expanding system of equations

( 4 ) d ( . . , # / , . . ) = Ci w i t h i e H

where each equation has finitely many unknowns and each unknown ranges

over a nonempty finite domain. Then system (4) has a partial solution if

and only if for every equation of systein (4) there is an equation of system

(4) possibly in more unknowns which has a solution.

Proof. Let system (4) have a partial solution given by (5). Let G,(. . ,

Xj, . .) = C{ with j eF be an equation of system (4). But then there exists an

equation of system (4) possibly in more unknowns, say, such as the one

given by (6) which has a solution as indicated by (7). The converse follows

from Theorem 2.

Recalling that by an equation we mean an equation in finitely many

unknowns each of which ranges over a nonempty finite domain, we prove the

following corollary.
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Corollary 3. If every equation of an expanding system of equations has a
solution then the system has a partial solution.

Proof. Clearly, if every equation of the system has a solution then for
every equation of the system there is an equation of the system (namely the
equation under consideration) possibly in more unknowns which has a
solution. But then the conclusion of Corollary 3 follows from Theorem 2.

A much weaker version of Corollary 2 is given by the following
corollary.

Corollary 4. Let every two distinct equations of an expanding system of
equations have at least one noncommon unknown. Moreover let every equa-
tion of the system have an unique solution. Then the system has a partial
solution.

We prove below that the following theorem of Rado [1] is a direct
consequence of Corollary 4.

Theorem 3 (Rado). Let (Dj)jCy be a nonempty family of nonempty finite sets
Djs Lei for every nonempty finite subset F of V a choice function (dj{F))jίF

of (Dj)jeF be given where dj(F)β Dj. Then there exists a choice function
(dήjev of (Dj)J€y where djeDj such that for every nonempty finite subset P
of V there exists a finite subset F of V with

(12) PCZF and (dj)μP = ( 4 ( F));VF

Proof. With every nonempty finite subset F of V we associate an unique
equation GF(. . , x n . .) = cF with jeF whose unique solution is given by
(XJ = dj{p))jtp . As mentioned earlier, we do not specify the range of the
function GF(. . , Xj, . .) since it is not needed for our purpose. Clearly, the
system of equations (where F is a nonempty finite subset of V)

(13) GF(. . , xh . .) = cF with F c V

is an expanding system every two distinct equations of which have at least
, one noncommon unknown. Moreover, every equation of the system has an

unique solution. But then by Corollary 4, system (13) has a partial solution
(dj)jev , which in view of (5), (6) and (7) satisfies (12), as desired.

Corollary 5. Theorem 3 is equivalent to Corollary 4.

Proof. The proof of Theorem 3 shows that Corollary 4 implies Theorem 3.
Thus, it suffices to show that Theorem 3 implies Corollary 4. Let V be the
set of all the indices of the unknowns appearing in the expanding system of
equations mentioned in Corollary 4. Consider the set of all finite subsets
of V. Corresponding to a nonempty finite subset F of V if there is no
equation of the system in the unknowns x\ with j e F, we adjoin to the system
an equation in the unknowns Xj with j e F and we assign an unique solution to
it. But then clearly, with respect to the resulting system of equations, the
hypothesis of Theorem 3 is satisfied and the choice function {dj)jev men-
tioned in Theorem 3 is the required partial solution mentioned in Corollary
4.

We observe that Theorem 2 is proved based on the axiom of choice
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(specifically, in its Zorn's lemma form). We observe also that from
Corollary 5 it follows that Theorem 2 implies Theorem 3.

Finally, without the use of the axiom of choice (however, with the use of
the axiom of choice for finite sets [2] which states that there exists a
choice-function for every family of nonempty finite sets) we prove the
following theorem.

Theorem 4. Rado's theorem is equivalent to Theorem 2.

Proof. As mentioned above, Theorem 2 implies Rado's theorem (i.e.,
Theorem 3). Next, based on the axiom of choice for finite sets, we prove
that Theorem 3 implies Theorem 2. Consider expanding system (4)
mentioned in Theorem 2 and assume the hypothesis of Theorem 2. Let V
be the set of all the indices of the unknowns appearing in system (4). Let
F be a nonempty finite subset of V. If there exists an equation of system (4)
in the unknowns XJ with j e F then clearly the set of all the solutions of all
such equations is a finite set. From this finite set (by virtue of the axiom
of choice for finite sets) we choose a solution (XJ = dj(F))jeF. If there is no
equation of system (4) in the unknowns Xj with j eF, then, again (by virtue of
the axiom of choice for finite sets) we consider (XJ = dj(F))jeF with dj(F)β Dj.
Thus, for every nonempty finite s u b s e t s of V there corresponds a unique
family (xΊ = d^F))μF with dj(F)eDj. But then by Theorem 2 there exists a
family (XJ = dj)μF with dj e Dj such that for every nonempty finite subset P
of V there exists a finite subset F of V such that P a F and (df)jeP = (dj(F))μF.
Clearly, this implies that (dj)}(V is a partial solution of system (4), as
desired.
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