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THE COMPLETENESS OF AN INTENSIONAL LOGIC:
DEFINITE TOPOLOGICAL LOGIC

JAMES W. GARSON

1. Introduction In Rescher and Garson [3] a number of so-called topologi-
cal logics, or logics of "position" were developed. The systems presented
were in many ways similar to Reseller's chronological logics presented in
[2]. These systems govern the behavior of an indexed operator T such that
TxA is read 'It is the case as of x that A'. The index x may be given a wide
range of interpretations compatible with these systems. It may represent a
date, a spatial position, an n-tuple of coordinates (perhaps in the physi-
cist 's four-dimensional continuum), a spatial interval, a possible world, a
set of postulates, an individual, and the like. It represents, in short, an
unspecified context or "point of reference."

2. Syntax for Topological Logic The formation rules for topological logics
may be defined as follows. Let P be a set {p1? p 2, . . . , pw, . . .} of proposi-
tional variables, and let X be the set {xx, x2, . . . , xw, . . .} of context vari-
ables,1 or indices associated with the Γ-operator. Here and in the rest of
this paper, we use italicized lower case letters p and x as metavariables
ranging over the corresponding sets P and X. We will also use y as a
metavariable over X.

The set F of formulas of topological logic is the smallest set such that:

(i) P Q F.
(ii) If A and B are members of F, then so are TxA, ~A, (A D B),

(A & B), (A s/B), (A = B), VxA, 3xA.

In this article we use italicized capital letters A, B, C, D as metavariables
over formulas.

Notice that although we have introduced quantifiers, we have no predi-
cate letters. The quantifiers range only over variables, or indices

1. We might also wish to introduce into the language a set of constants ranging over
contexts. We omit them to simplify our discussion, but clearly their inclusion
would not affect anything that follows in a fundamental way.
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introduced by the Γ-operator. The introduction of predicate letters and
individual variables results in a much more complicated system which will
not be discussed here.

3. Semantics for Topological Logic It is natural to ask whether it is
possible to discover acceptable semantics for systems of topological logic,
and whether the systems presented in the literature are consistent and
complete. This project was tackled in [1]. The investigation has borne
fruit, since it has been found that the systems so far developed require
strengthening in order to be complete.

We will report here only a portion of those results. The semantics to
be defined here concerns itself primarily with the case where the indices
associated with the Γ-operator are definite. We may define definite index
on analogy with the notion of a definite sentence. A sentence is definite just
in case its truth value does not vary as a function of the context in which
the sentence is used, otherwise it is indefinite. The sentence 'It is snowing
at 12:00, July 26, 1943 in Pittsburgh' is a definite sentence; however the
sentence it contains 'It is snowing' is indefinite, for its truth value depends
on the time and place of its utterance. Similarly an index is definite if and
only if its denotation is not a function of the context of its use. Dates, for
instance, are definite indices. 'July 26, 1943' denotes the same time,
regardless of the context of its use. Temporal expressions like 'now' and
'forty years ago' are indefinite indices,2 for the time denoted by these
expressions depends on the time of their use.

If there is to be any point in introducing the Γ-operator into a system
of logic, then at least some of our formulas must represent indefinite
sentences. An example may help show this. Consider the sentences:

A Two plus two is equal to four.
B It is the case as of x that two plus two is equal to four.

B may be symbolized as TxA. But clearly B is true just in case A is true,
for any value of x. Since A is definite, its truth value cannot vary as a
function of the context. Since A is true, it must be true in all contexts
equally. So in general, TxA and A are equivalent if A is definite. If all
formulas of a logic represent definite sentences, then we ought to have
TxA M as a theorem. But this would render the Γ-operator useless, for
given a rule of replacement of equivalents, Γ-operators may be deleted
from any formula at will. So the Γ-operator is otiose unless some of the
formulas represent indefinite sentences. This becomes more clear when
we reflect that the function of the Γ-operator is to make distinctions
between saying that A is the case as of x, and that A is the case as of y.
The truth value of some of the formulas of our system ought to vary as we
go from one context to another, otherwise we need no Γ-operator.

This brings out a feature of topological logics which would be an
embarrassment to the "hard-headed" logician who insists that the truth of

2. Rescher refers to such expressions as pseudo-dates in [2].
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a full-blooded sentence referred to by a logical formula must be context
independent. The introduction of the T-operator only makes sense when at
least some of our sentences are not full-blooded in this sense. This does
not embarrass us however, for it is exactly the logical behavior of such
indefinite sentences which we hope to clarify by introducing the T-operator.

Since the truth value of an indefinite sentence cannot be assessed apart
from its context, the fundamental notion of our semantics 3 must be that of
the value of a formula on an interpretation and valuation in a context, as
opposed to the usual notion of the value of a formula on an interpretation
and valuation alone.

A TDQ-interpretation 3 is defined as an ordered pair (D,I) consisting
of a domain D of contexts, and an interpretation function / defined from
D x P into the set of truth values {T, l}. I(d, p) is the truth value of the
propositional variable p in context d on the interpretation 3 . If we allow
both definite and indefinite indices in a topological logic, then a valuation
(on the variables) should be a function from ΰ x l into D. Hence v(d, x)
would be the denotation of the variable x in the context d. We are assuming
however that our indices are definite, so it follows that v(d, x) = v(d', x) for
all d and d1. Hence we may suppress the reference to the context in the
valuation function and simply define a valuation v to be a function from X
into D.

We may now define the value of a formula A in a context d, on the
interpretation 3 and valuation v, which we write Vαl(3, v, d) A

(i) Vαl(3, υ,d)p = I(d,p)

(ii) Vαl(3, v, d) TxA = Vαi(3, v, v{x)) A
(iii) Vαl(3, v, d) ~A = T iff Vαl(3, v, d) A = 1
(iv) Vαl(3, v, d) ( A D B) = T iff Vαl(3, v, d) A = 1 or Vαl(3, v, d) B = T

and similarly for the other connectives
(v) Vαl(3, v, d) VΛA = T iff Vαl(3, iv, d) A = T for all valuations iv such

that w =x v, and similarly for the existential quantifier, (iv =x y
just in case ιv(y) = v(y) for all y such that y Φ x.)

Clauses other than (ii) are fairly standard, and should be self-
explanatory. In the general case where we have indefinite indices, clause
(ii) should read Vαl(3, v, d) TxA = Vαl(3, v, v{d, x)) A. For TxA is true in a
context d just in case A is true in the context denoted by .v in d. For
example, Ί t is raining as of forty years ago' is true in 1970 just in case
'It is raining' is true in the context which 'forty years ago5 denotes in 1970
(i.e., in 1930). But since we assume our indices to be definite, our valua-
tions need not take account of the context, and we arrive at the truth
condition expressed in clause (ii).

A formula A is true in a context d on an interpretation 3 just in case

3. More correctly, we might employ Montaque's term pragmatics' here, to refer to
what concerns itself with the notion of truth in a context, and leave 'semantics' to
refer to the study of notions of truth which are not context relative.
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Vαl(3, v, d) A = T on all valuations v. A formula A is valid (NA) if and only

if it is true on all interpretations and in all contexts.

4. The System TDQ We will now present a system TDQ which is consistent

and complete with respect to the semantics just defined. TDQ consists of

the axioms and rules of quantificational logic (hereafter referred to as

Q.L.) plus the rule

(R) \-A yields v-TxA

and the axioms

(A~) - TxA ^ Tx~A

(~A) Tx~A 13 ~ TxA

(A3) Tx(A z> B) D (TxA ^ TxB)

(AT) TxA ^ TyTxA

(AQ) VxTyA D TyVxA, for y Φ x

(A3) 3x(TxA Ξ A ) .

Axioms (A~) and (~A) guarantee the equivalence of 'It is not the case as of

x that A* and 'It is the case as of x that not A9. (Â >) asserts that 'It is the

case as of x that if A then B9 entails 'If it is the case as of x that A, then it

is the case as of x that B9. We may justify (AT) by appeal to clause (ii) of

our semantics. TyTxA is true in a context d just when TxA is true in the

context denoted by y, and TxA is true in the context denoted by y if and only

if A is true in the context denoted by x. But this is exactly the truth condi-

tion for TxA in the context d, hence if TxA is true in a context, then so is

TyTxA.

The rule (R) and axioms (A~), (~A), (Â >) and (AT) just discussed,

together with the principles of propositional logic, form an unquantified

definite topological logic which we may call TD. The converses of (A^) and

(AT) are provable in TD, (and so also in TDQ); hence TD may be formu-

lated alternatively with (R) and the equivalences

(E~) -TxA = Tx~A

(E=>) Tx(A -D β) = (TxA 3 TxB)

(ET) TxA = TyTxA.

These equivalences together with the replacement of provable equivalents

within the scope of the T -operator which is guaranteed by (R) (see Theorem

1 of section 5), yield a system where the T -operator distributes through all

the connectives, and where iterated Γ-operators are superfluous. It is not

difficult to show that TD is consistent and complete with respect to a

semantics like that presented in section 3 when clause (v) is deleted.

When we introduce the quantifiers, we need the axiom (AQ) to

guarantee that the T-operator distributes through the quantifiers, as long

as free variables are not bound, and bound variables not freed in the

process. The converse of (AQ) is derivable in TDQ, hence we may

postulate equivalently

(EQ) VxTyA = TyVxA, where y Φ x.
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We require that y Φ x because otherwise we would have formulas of the
form VxTxA D TXVXA as theorems. Here the variable x, bound in the
antecedent, has "escaped" in the consequent. This does not force us to
reject the formula in itself; however, some of its instances are clearly
unwanted. For example consider the formula VxTx(p z> Txp) z> TxVx(p z>
Txp). Given the principles discussed so far, the antecedent is equivalent to
the theorem Vx{Txp 3 Txp), hence the whole formula is equivalent to its
consequent. But the consequent is equivalent to Txp D VxTxp which reads
Ίf p is the case as of x, then p is the case in any context'. Clearly this is
not a logical truth. We may avoid this restriction on (AQ) by insisting in
our formation rules that no single variable letter appear both bound and
free in the same formula.

(A3) is the most interesting of all the axioms of TDQ, for the others
merely guarantee the distribution of the Γ-operators through the logical
constants, and the vacuousness of iterated Γ-operators. (A3) is the only
axiom that connects formulas (like p) which contain no 7-operators with
those that do. It has the effect of asserting that for every formula A we
may find an index x such that in a context the truth conditions for TxA are
identical to those for A. An example may help motivate this. Consider 'It
is snowing', used in the context January 1, 1970. Then there is another
sentence of the form TxA, namely 'It is snowing as of January 1, 1970?

which is true in the context January 1, 1970 if and only if 'It is snowing' is
true in this context. Alternatively, we may justify this axiom by referring
to clause (ii) of our semantics. TxA is true in the context d just when A is
true in the context denoted by x. If x denotes d, then A and TxA are true
under exactly the same conditions; hence there is a context x such that
TxA = A.

5. Replacement, Normal Form and the Decision Problem for TDQ Let us
discuss some formal properties of TDQ which will be of help in the
completeness proof to follow. First of all, we will prove that the rule (R)
has the effect of allowing the replacement of provable equivalents of TDQ,
included within the scope of the Γ-operator. (Their replacement elsewhere
is guaranteed by principles of Q.L.)

Theorem 1. The following rule of replacement (RR) is derivable in TDQ:
y-A =Ar yields KB = Br, where Br is like B save that an instance of A in B
is replaced with an instance of A1 in Bf.

The proof of Theorem 1 is by induction on the structure of B. Suppose
A =AT is provable in TDQ. When B has one of the forms p, ~C, (C =>£>),
(C & D), (CvD), (C = D), 3xC, VxC the proof is trivial. If B has the form
TxC, then C = Cf is provable if A = Ar is, by the hypothesis of the induction.
Hence both C ^ Cr and C D C are provable in TDQ. From the first of these
we may derive TxC D TxC1 by (R) and (AD), and from the second we obtain
TxCr 3 TxC. Hence TxC = TxC1 is provable in TDQ, and this is B =Br.

We know that every formula of Q.L. is equivalent to a formula written
with ~, 3 , and V as its only logical constants, such that no single variable
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letter appears in the formula both bound and free. Since (RR) is derivable

in TDQ, it follows that every formula A of TDQ is equivalent to a formula

C{A) written with ~, ^ , V, and T in which no single variable letter appears

bound and free. Furthermore, we may show that every formula C{A) of

TDQ is equivalent to a formula N(A) in normal form such that no connec-

tive, quantifier, or Γ-operator appears in the scope of any Γ-operator.

Let us introduce the metavariable t to range over strings Tx{Γx2 . . .

Txn of T-operators and associated variables, including the null string.

Then N(A) may be defined for formulas of the form C(A) as follows:

(i) N(p) = p

(ii) N(tTxp) = Txp

(iii) N(t ~A) = ~N(tA)

(iv) N(l(A D B)) = (N(tA) Ώ N(tB))

(v) N(tVxA) = VxN(tA).

N(A) is essentially a formula of the monadic predicate calculus with atoms

of the form p and Txp.

We must now prove that C(A) and N(A) are equivalent in TDQ.

Theorem 2. hTDQC(A) =N(A).

The proof is by induction on the structure of C(A). Every formula C(A) of

TDQ has one of the following forms: tp, ί ~ B} t(B z> C), tVxB.

Case 1. C(A) has the form tp. If t is null, then N(p) =p, and the

equivalence is trivial. If £ is not null, we may write C(A) as t'Txp, where

t'Tx is t. t'Txp is equivalent to Txp by as many applications of the

equivalence (ET) and the rule of replacement (RR) as there are Γ-opera-

tors in t'. But Txp = N(t'Txp), hence t'Txp = N(t'Txp) is provable in TDQ.

Case 2. C(A) has the form t ~ B. t~B = ~tB is provable in TDQ by

applications of (E~) and (RR). By the hypothesis of the induction tB = N(tB)

is provable in TDQ; hence, so is ~ tB = ~N(tB). But we have shown t ~ B =

- tB and ~N(tB) = N(l ~ B), so t - B = N(t - B) is provable.

Case 3. C(A) has the form t(B 3 c). Similar to case 2.

Case 4. C(A) has the form tVxB. C(A) contains no variable both bound

and free, therefore x does not appear in t. Using (EQ) and (RR) we may

derive WxB = VxtB. By the hypothesis of the induction tB = N(tB) is

provable in TDQ; hence so is VxtB = VxN(tB). But VxN(tB) = N(tVxB), and

so tVxB = N(tVxB) is provable in TDQ.

Theorem 2 entails the following theorem which will be of use in

proving the completeness of TDQ:

Theorem 3. If A is not provable in TDQ, then N(A) is not provable in Q.L.

on the hypothesis 3y(N(TyA) =N(A)), where y is a variable not appearing

inN(A).

Notice that the hypothesis mentioned is in normal form, and so it is, in

essence, a formula of the monadic predicate calculus. We may prove

Theorem 3 as follows. If A is not provable in TDQ then neither is C(A)9

since A and C(A) are equivalent. By Theorem 2, if C(A) is not provable in
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TDQ, then neither is N(A). But if N(A) is not provable in TDQ, then it could
not be provable in Q.L. on the hypothesis 3y(N(TyA) = N(A)) because the
principles of Q.L. and the hypothesis mentioned are present in TDQ.

The converse of Theorem 3 holds as well. (The proof is by induction
of the proof of A, and is straightforward.) It follows that we may check for
provability of a formula A of TDQ by asking whether N(A) follows from
3y(N(TyA) = N(A)) in the monadic predicate calculus. So TDQ has a
decision procedure.

6. The Consistency and Completeness of TDQ We will now prove that TDQ
is consistent and complete with respect to the semantics of section 3. To
show consistency we prove

Theorem 4. If \-A in TDQ then f=A.

The proof is by induction on the proof of A in TDQ.
Case 1. A is derived by a principle of Q.L. That the axioms of Q.L.

are valid, and that the rules of Q.L. preserve validity is a consequence of
the standard nature of clauses (iii)-(v) of the definition of Vαl(3, υ, d) A and
may be easily checked by the reader.

Case 2. A is derived using (R). We show that if A is valid, then so is
TxA. By hypothesis Vαl(3, v, d) A = T for arbitrary v, 3 , and d. It follows
that Vσl(3, υ, v(x)) A = T for all υ and 3 . But Vαl(3, v, v(x)) A = Vαl(3, v, d)
TxA for arbitrary d; hence Vαl(3, v, d) TxA =T for all 3 , υ and d.

Case 3. A is an instance of (A~), (~A), (AD), (AT). These cases are
easily verified. We will present the proof for (AT) and leave the proof of
the others to the reader.

Vαl(3, v, d) (TyTxB z> TxB) = T
iff Vαl(3, υ, d) TyTxB = 1 or Vαl(3, v, d) TxB = T
iff Vαl(3, v, v(y)) TxB = 1 O r Vαl(3, v, v(x)) B = T
iff Vαl(3, υ, v(x)) B = 1 or Vαl(3, v, v(x)) B = T.

But the value of B must either be T or 1; hence Vαl(3, v, d) {TyTxB z>
TxB) = T.

Case 4. A is an instance of (AQ).

Vαl(3, v, d) (VxTyB Ό TyVxB) = T
iff Vαl(3, v, d) VxTyB = i or Vαl(3, v, d) Ty\fxB = T
iff Vαl(3, w, d) TyB = 1 on some valuation w such that w =x υ or Vαl(3, v,
v(y)) VxB = T
iff Vαl(3, w, w(y)) B = 1 on some valuation w such that w =x v or Vαl(3, u\
υ(y)) B = T on all w such that w =x υ.

Now the restriction on (AQ) is that y Φx. Since w =xv, it follows that
v(y) = w(y), hence the last statement in the above derivation is necessarily
the case, and it follows that Vαl(3, v, d) (VxTyB D TyVxB) = T. The latter
part of this proof illustrates the necessity of the restriction on (AQ).

Case 5. A is an instance of (AΞΊ).

Vσl(3, v, d) 3x(TxA =A) = Ί
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iff Vαl(3, w, d) {TxA = A) = 1 for some w such that w =* v
iff Vαl(3, wf d) TxA = Vαl(3, ιv, d) A for some w such that w =* v
iff Vαl(3, w, w(x)) A = Vαl(3, u>, d) A for some w such that w =* ι;.

Let w be a valuation identical to ι> save that w{x)=d. Then on w
Vαl(3, w, w(#)) A = Vαl(3, w, d) A, and so Vαl(3, v, d) 3x{TxA = A) = T.

To prove TDQ complete we must demonstrate

Theorem 5. // t=A, then HA m TDQ.

This is proved by demonstrating the contrapositive: If not HA in TDQ
then there is a TDQ-interpretation 3, a valuation v, and a context if such
that Vαl(3, v, d)A = I. From Theorem 3 we know that if A is not provable in
TDQ, then N(A) is not provable in Q.L. on the hypothesis 3y(N(TyA) =N(A)),
where y is not in N(A). From this it follows that there is a monadic
predicate logic interpretation 2W and a valuation a on which N(A) is false
and on which 3y(N(TyA) =N(A) is true. We may define the notion of a
predicate logic interpretation for formulas in normal form in a fairly
standard way as follows: an interpretation 3ΰfl = (D, Ml9 M2) where Mx(p)e
{T, l} and M2{Tp) c D. Here we treat atoms of the form Txp as composed
of a variable x and a predicate T p (or Tp). The interpretation function M2

ranges over the set of entities that satisfy the predicate T p9 that is, over
the contexts at which p is true. As before, a valuation a is a function from
the set X into D. The value of a formula A in normal form on an interpre-
tation 9W and a valuation α (which we write vαl(9K, α)A) may be defined as
follows:

(i) vσl(9K,α)p = Mx{p)
(ii) vαl(SW, a) Txp = T iff a(x) e M2(Tp)

(iii) vαl(SR, a) -A = T iff vαl(SW, «) A - 1, and similarly for the other
connectives

(iv) vαl(S», a) V.rA - T iff vαl(9», b) A = T for all b such that b =x a, and
similarly for the existential quantifier.

We know that there is an interpretation 9W and a valuation a on which
vαl(3», a)N(A) = 1 and va\(m,a) 3y(N(TyA) =N(A)) = T. From the latter it
follows that there is a valuation b such that b =y a and such that vαl(9W, b)
N(TyA) = vα!(9K, b) N(A). Now vαl(2JΪ; 6) N(A) = vαl(SW, α) iV(A), because
6 = y « and no y appears in^(A). Therefore vαl(SW, a) N(A) = vαl(SW, b) N(A) =
vαl(3R, b) N(TyA) = 1. Now we may make use of the interpretation 2tt to
define a TDQ-interpretation 3 which has the property

P I . vαl(a», b) N(TyA) = Vαl(3, δ, &Cv)) AΓ(A).

If we are successful, then vαl(9», α) N(A) = vαl(3, 6) iV(Γ3;A) = Vαl(3, 6, 6(3;))
iV(A) = i, hence we know that there is an interpretation, valuation and
context on which N(A) is false, hence N(A) is invalid. Since N(A) = A is
provable in TDQ (Theorem 2), and since TDQ is consistent (Theorem 4), it
follows that A is false on exactly the interpretation, valuation and context
on which N(A) was false, and so A is not valid.
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All that remains for the proof of Theorem 5 is to show that it is
possible to define a TDQ-interpretation 3 from 9W so that PI is the case.
3 may be defined in terms of 9W as follows: 3 = {D, /), where I{d, p) = T iff
de M2{Tp). Now we must prove that 3 satisfies P I .

Lemma 1. vαl(3W, a) N(TyA) = Vαl(3, a, a{y)) N(A) for all valuations a.

P i follows as a special case of Lemma 1. The proof of this lemma is by

induction on the s t r u c t u r e oϊN(A).

Case 1. N(A) has the form p. Then N{TyA) = N(Typ) = Typ.

vαl(3», a) Typ = T iff a(y) e M2(Tp) iff I(a(y), p) = T iff Vαl(3, α, a(y)) p=l.

Since we have made no assumptions about α, it follows that vαl(SΛ, α)
JV(7>4) = Vαl(3, α, α(y)) N{A) for arbitrary α in this case.

Case 2. #(A) has the form Txp. Then N{TyA) = N(TyTxp) = Γ*/>.
vαl(S», α) Γ*/> = T iff a(x) e M2(Tp) iff I(a(x), p) = T iff Vαl(3, α, «W) /> = T iff
Vαl(3, a, a(y)) p = T.
We have made no assumptions about α so vαl(3W, a) N{TyA) = Vαl(3, a, a(y))
N(A) for all a in this case.

Case 3. N(A) has the form N(~B). By the hypothesis of the induction
vαl(S», a) N(TyB) = Vαl(3, a, a{y)) N(B); hence vαl(2», a) ~N(TyB) = Vαl(3, a,
α(3θ) ~iV(5). But ~N(TyB) = N(Ty ~ B), and -iV(.β) = N(~B) (for / null), so
it follows that vαl(9», a) N(Ty ~ B) = Vαl(3, a, a(y)) N{~B) for arbitrary a in
this case.

Case. 4. N(A) has the form N((B =) C)). Similar to case 3.
Case 5. N(A) has the form N(VxB). By the hypothesis of the induction

we are given that vαl(SW, a) N(TyB) = Vαl(3, a, a(y)) N(B) for all a. So
vαl(SW, c) N(TyB) = T on all valuations c such that c =χ a iff Vαl(3, c, c{y))
N(B) = T on all c such that c =x a. Since y is not in N(A), y Φ x; hence r(y) =
a{y). So vαl(SW, «) VxN(TyB) = Vαl(3, «, c(j )) V*iV(£) = Vαl(3, «, Λ(^)) VXN{B).
But VxN(TyB) = N(TyVxB), and VxN(B) = N(VxB). So vαl(9H, α) N(TyVxB) =
Vαl(3, α, fl(^)) N(VxB); hence vαl(SW, α) iV(Γ^A) = Vαl(3, α, α(3̂ )) iV(A) for all
α in this case.

7. Relationships between TDQ and Systems Presented in "Topological
Logic" Both quantified axioms (AQ) and (A3) of TDQ are significantly
stronger than their counterparts in [3]. It follows that the systems pre-
sented there are not complete with respect to the semantics of this paper,
and it seem doubtful whether they are complete with respect to any
reasonable semantics for topological logic.

The axiom of "Topological Logic" which corresponds to (AQ) is the
weaker

(P3) VxTyTxA D TyVxTxA ([3], p. 538)

The axiom (AQ) allows the exchange of quantifiers and T -operators in
contexts where this seems desirable, but where it is impossible given (P3)
alone. For instance, we cannot prove VxTy(p ^ Txp) ^ TyVx(p z> Txp) with
(P3) because it demands that there be another Γ-operator immediately to
the right of the point at which the quantifier and Γ-operator are exchanged.
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For this reason Theorem 2 does not hold in a system which replaces (AQ)
with (P3), and such a logic will not be complete.

The counterpart of (A3) in "Topological Logic" is

(P4) VxTxp => p.

(P4) entails both 3x(Txp => p) and 3x{p D Txp). But these together do not
entail 3x(Txp = p)* for we have no reason to suppose that the context y
such that Typ ^ p is identical to the context z such that p ^> Tzp. For this
reason a system containing (P4) instead of (A3) is incomplete. Even if we
were to postulate 3x(Txp = p) for propositional variables />, we would still
not gain the full effect of (A3). An instance of (A3) is 3x(Tx(p Όq) = (pΏ q))
which is equivalent to 3x({Txp ^ Txq) = {p ^ q)). True, we may derive
Ξx(Txp = p) and 3x{Txq = q)9 but again we have no reason to suppose that
the y such that Typ = p and the z such that Tzq Ξ q are identical, which we
must know if we are to prove 3x((Txp ^ Txq) = (p ^ q)).
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4. It is not difficult to produce an interpretation on which (P4) is true and (A3) is
false.




