Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

CONCERNING THE PROPER AXIOM FOR S4.04 AND SOME RELATED SYSTEMS

R. I. GOLDBLATT

This paper examines the group of modal axioms covered by the general schema $\ensuremath{\mathsf{schema}}$

$$Xp \to (p \to Lp)$$

where X is an affirmative modality of S4. Familiarity is assumed with the properties of maximal-consistent sets of wff, and with the post-Henkin method of completeness proofs. Soundness proofs are left to the reader throughout.

(X) yields seven cases:

Case 1. Zeman's S4.04 axiom

L1
$$LMLp \rightarrow (p \rightarrow Lp)$$
 $cf. [5], p. 250$

In the field of S4, L1 is equivalent to

L2
$$p \rightarrow L(MLp \rightarrow p)$$

That L1 is a consequence of L2 is easy to see. For the converse we have

(1)	$MLp \rightarrow ML(MLp \rightarrow p)$	C2
(2)	$\sim MLp \rightarrow (MLp \rightarrow p)$	PC
(3)	$\sim LMMLp \rightarrow ML(MLp \rightarrow p)$	(2), C2
(4)	$\sim MLp \rightarrow ML(MLp \rightarrow p)$	(3), S4, PC
(5)	$ML(MLp \rightarrow p)$	(1), (4), PC
(6)	$LML(MLp \rightarrow p)$	$(5), T^{0}$
(7)	$LML(MLp \rightarrow p) \rightarrow ((MLp \rightarrow p) \rightarrow L(MLp \rightarrow p))$	L1, $p/MLp \rightarrow p$
(8)	$(MLp \to p) \to L(MLp \to p)$	(6), (7), PC
(9)	$p \to L(MLp \to p)$	(8), PC

We now present a semantic analysis that distinguishes L1 and L2 in

^{1.} This proof is due to Professor G. E. Hughes.

systems weaker than S4. Let K be the modal logic whose rule of inference is

Necessitation:
$$\frac{A}{LA}$$

and whose sole axiom is $L(p \rightarrow q) \rightarrow (Lp \rightarrow Lq)$.

For the definition of a (normal) K-model, cf. [1] pp. 56-60 (the system is called T(C) in that paper). If S is any normal extension of K we define $\mathcal{P}_S = (W_S, R, V)$ to be the *canonical model* for S, where

$$W_S = \{x \mid x \text{ is an } S\text{-maximal set of } wff\}$$

 $\forall x, y \in W_S, xRy \text{ iff } \{A \mid LA \in x\} \subseteq y$
 $V(p, x) = 1 \text{ iff } p \in x, \text{ for all propositional variables } p.$

 \mathcal{P}_S falsifies every non-theorem of S, so to show that S is complete with respect to a class of models satisfying a certain condition, it suffices to show that \mathcal{P}_S satisfies that condition. It is well known that S4 is characterized by the class of K-models for which R is reflexive and transitive.

Proposition 1: If S is a normal extension of KL2, then P_S satisfies

$$(xRy \cdot x \neq y) \rightarrow \forall w(yRw \rightarrow wRy)$$
 (a)

Proof. Suppose x, $y \in W_S$, xRy and $x \neq y$. Then there is some wff A such that $A \in x$ and $A \notin y$. Let w be such that yRw. If $LB \in w$ then $L(A \vee B) \in w$, by the K-theorem $LB \to L(A \vee B)$. Now yRw, so $ML(A \vee B) \in y$. But $A \vee B \in x$ so by L2, $L(ML(A \vee B) \to A \vee B) \in x$ and hence $ML(A \vee B) \to A \vee B \in y$. Thus $A \vee B \in y$ and since $A \notin y$, $B \in y$. We have therefore shown that $\{B \mid LB \in w\} \subseteq y$, i.e., wRy.

Proposition 2: If S is a normal extension of $K \sqcup 1$, then P_S satisfies

$$(xRy . x \neq y) \rightarrow \exists z (xRz . \forall w (zRw \rightarrow wRy))$$
 (b)

Proof. Suppose xRy and $x \neq y$. Let

$$z_0 = \{A \mid LA \in x\} \cup \{LMB \mid B \in y\}$$

If z_0 is not S-consistent then there are wff A_i such that $LA_i \in x$ $(1 \le i \le n)$ and LMB_i such that $B_i \in y$ $(1 \le i \le m)$ for which

$$\vdash_{S} \sim (A_1 \ldots A_n . LMB_1 \ldots LMB_m)$$

and hence

$$\vdash_{S} A \rightarrow \sim (LMB_1 \dots LMB_m)$$
 where $A = A_1 \dots A_m$

By the K-theorem $\sim (LMp \cdot LMq) \rightarrow \sim LM(p \cdot q)$ we then deduce

$$\vdash_{S} A \rightarrow \sim LMB$$
 where $B = B_1 \dots B_m$

Since $x \neq y$ there is some wff C such that $C \in x$ and $\sim C \in y$. Using the K-theorem $\sim LMp \rightarrow \sim LM(p \cdot q)$ we now deduce

$$\vdash A \rightarrow \sim LM(B \cdot \sim C)$$

and so

$$\vdash_{S} LA \rightarrow L \sim LM(B.\sim C)$$

i.e.,

$$\vdash_{S} LA \rightarrow LML \sim (B.\sim C)$$

But

$$\vdash_{K} LA \longleftrightarrow (LA_{1} \ldots LA_{n})$$

so
$$LA \in \mathcal{X}$$
, which gives $LML \sim (B \cdot \sim C) \in \mathcal{X}$ (1)

Now
$$\sim C \not\in x$$
, so $(B \cdot \sim C) \not\in x$, hence $\sim (B \cdot \sim C) \in y$. (2)

In the presence of L1, (1) and (2) together yield $L \sim (B \sim C) \epsilon x$ and so $\sim (B \sim C) \epsilon y$ (since xRy).

But $B \in y$ and $\sim C \in y$, so $(B \cdot \sim C) \in y$, which contradicts the PC-consistency of y. The upshot of all this is that z_0 must be S-consistent and so, by Lindenbaum's Lemma, may be extended to an S-maximal set z. Since $\{A \mid LA \in x\} \subseteq z_0 \subseteq z$, we have xRz. Finally, suppose zRw. We want to show wRy. But if $B \notin y$ then $\sim B \in y$ and so $LM \sim B \in z$. But zRw so $M \sim B \in w$, hence $\sim M \sim B \notin w$, i.e., $LB \notin w$. This shows that wRy, and the proof is complete.

Proposition 3: If P is an S4-model, then P satisfies condition (a) iff P satisfies condition (b).

Proof. If P satisfies (a) then putting y = z it is immediate that (b) is satisfied. Conversely, suppose xRy and $x \neq y$. We want to show that if yRt then tRy. From (b) we deduce

$$\exists z(xRz . \forall w(zRw \to wRy)) \tag{1}$$

Since R is reflexive, zRz, and so by (1) zRy. Then if yRt, we have zRt by the transitivity of R. Using (1) again we deduce tRy.

From Proposition 1 it follows that S4.04 is complete with respect to the class of S4-models that satisfy condition (a). The axiom corresponding to (a) is L2. L1 corresponds (Proposition 2) to a rather more complex condition that reduces (Proposition 3) to (a) in S4-models. Our discussion would seem to indicate then that from a model-theoretic stand-point L2 is the "right" axiom for S4.04.

Case 2. Sobociński's K4 axiom

P1
$$MLMp \rightarrow (p \rightarrow Lp)$$
 $cf. [4], p. 349$

Proposition 4: If S is a normal extension of K_{P1} then P_S satisfies

$$(xRv \cdot x \neq y) \rightarrow \forall z(xRz \rightarrow \exists w(zRw \cdot \forall t(wRt \rightarrow t = y)))$$
 (c)

Proof. If xRy and $x \neq y$ then there is some wff C such that $C \in x$ and $C \in y$. Let xRz and put

$$w_0 = \{A \mid LA \in z\} \cup \{LB \mid B \in y\}$$

If w_0 is not S-consistent then reasoning as in Proposition 2 we find there are wff A, B such that $LA \in \mathbb{Z}$, $B \in \mathbb{Y}$ and

$$\vdash_{S} A \rightarrow \sim L(B \cdot \sim C).$$

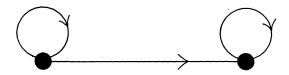
Thus

$$\vdash_{S} LA \rightarrow L \sim L(B \cdot \sim C)$$

and so $LM \sim (B \cdot \sim C) \in \mathbb{Z}$. But xRz and so $MLM \sim (B \cdot \sim C) \in \mathbb{X}$.

Using the axiom P1, a contradiction then follows exactly as in Proposition 2. Thus w_0 is S-consistent and may be extended to an S-maximal w such that zRw. Now let wRt. Then if $B \in y$, $LB \in w$, and since wRt, $B \in t$. Hence $y \subseteq t$ and so by the maximality of y, y = t.

K4 is known to be characterized by Lewis and Langford's Group II matrix (cf. [6] p. 349) and so it has two-element models that may be represented graphically as follows: (cf. [1] p. 63).



If P is a reflexive model that satisfies (c) then it may be seen by elementary reasoning that if y and z are distinct from x, then $(xRz.xRy) \rightarrow (x = y)$. If P is also transitive and connected in the sense of [1] p. 193, then it has the form indicated above.

Case 3. When X is the improper modality, the resulting axiom is (equivalent to) $p \to Lp$ corresponding to the model condition $\forall x \forall y (xRy \to x = y)$, cf. [1] p. 214.

Case 4. X = L gives a substitution-instance of a PC-tautology.

Case 5. X = M gives

X1
$$Mp \rightarrow (p \rightarrow Lp)$$

Proposition 5: If S is a normal extension of KX1 then P_S satisfies

$$(xRy \cdot x \neq y) \rightarrow \forall z (xRz \rightarrow z = y)$$
 (d)

Proof. There is some wff A such that $A \in x$ and $A \notin y$. If $B \in z$, $A \vee B \in z$ and so $M(A \vee B) \in x$. But $A \vee B \in x$ so by X1, $L(A \vee B) \in x$. Thus $A \vee B \in y$, and since $A \notin y$, $B \in y$. This shows $z \subseteq y$, which is enough to prove z = y.

Given R reflexive, corresponding to $Lp \rightarrow p$, then condition (d) above reduces to

$$\forall x \forall y (xRy \rightarrow x = y)$$

which is Case 3 above. A syntactic proof is straightforward.

Case 6. X = ML gives the S4.4 axiom

R1
$$MLp \rightarrow (p \rightarrow Lp)$$

whose corresponding model condition is

$$(xRy \cdot x \neq y) \rightarrow \forall z(xRz \rightarrow zRy).$$

A proof is given in [3].

Case 7. X = LM yields

H2
$$LMp \rightarrow (p \rightarrow Lp)$$

Proposition 6: If S is a normal extension of KH2 then \vec{P}_S satisfies

$$(xRy \cdot x \neq y) \to \exists z (xRz \cdot \forall w (zRw \to w = y))$$
 (e)

Proof. By a similar method to Proposition 4 we may show

$$z_0 = \{A \mid LA \in x\} \cup \{LB \mid B \in y\}$$

is S-consistent and may be extended to an S-maximal z with the required properties. When R is reflexive, condition (e) reduces to

$$(xRy \cdot x \neq y) \rightarrow \forall z(yRz \rightarrow y = z)$$

which was shown in [3] to be the characteristic model condition for the K1.2 axiom

H1
$$p \rightarrow L(Mp \rightarrow p)$$

In [4] a proof is given that H1 and H2 are equivalent in the field of S4. The following proof shows that the equivalence holds in the field of S2:

- (1) $LM(Mp \rightarrow p) \rightarrow ((Mp \rightarrow p) \rightarrow L(Mp \rightarrow p))$ H2 $p/Mp \rightarrow p$
- (2) $LM(Mp \rightarrow p)$ S2, cf. [2], p. 140, 22.8
- $(3) \quad (Mp \rightarrow p) \rightarrow L(Mp \rightarrow p) \tag{1), (2), PC}$
- $(4) \quad p \to L(Mp \to p) \tag{3}, \, \mathsf{PC}$

REFERENCES

- [1] Lemmon, E. J., "Algebraic semantics for modal logics," The Journal of Symbolic Logic, vol. 31 (1966), pp. 46-65, 191-218.
- [2] Parry, W. T., "Modalities in the 'Survey' system of strict implication," The Journal of Symbolic Logic, vol. 4 (1939), pp. 137-154.
- [3] Segerberg, Krister, An Essay in Classical Modal Logic, Ph.D. thesis, Stanford University (1971).
- [4] Sobociński, B., "Certain extensions of modal system S4," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 347-368.
- [5] Zeman, J. J., "Modal systems in which necessity is factorable," Notre Dame Journal of Formal Logic, vol. X (1969), pp. 247-256.
- [6] Zeman, J. J., "A study of some systems in the neighborhood of S4.4," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 341-357.

Victoria University of Wellington Wellington, New Zealand