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CONCERNING THE PROPER AXIOM FOR S4.04

AND SOME RELATED SYSTEMS

R. I. GOLDBLATT

This paper examines the group of modal axioms covered by the general

schema

(X) Xp-*(p->Lp)

where X is an affirmative modality of S4. Familiarity is assumed with the
properties of maximal-consistent sets of wff, and with the post-Henkin
method of completeness proofs. Soundness proofs are left to the reader
throughout.

(X) yields seven cases:

Case 1. Zeman's S4.04 axiom

L1 LMLp— (/>-> Lp) cf. [5], p. 250

In the field of S4, L1 is equivalent to

L2 p-L(MLp-p)

That L1 is a consequence of L2 is easy to see. For the converse we have1

(1) MLp — ML(MLp — p) C 2

(2) - MLp — (MLp -> p) PC
(3) - LMMLp — ML(MLp -> p) (2), C 2
(4) - MLp — ML(MLp -> p) (3), S4, PC
(5) ML (MLp - p) (1), (4), PC
(6) LML(MLp- p) (5), T°
(7) LML(MLp —/>)-* ((MLp — p) — L(MLp -> p)) L1, p/MLp -> p
(8) (MLp - » / > ) - L(MLp - p) (6), (7), PC
(9) / > - L(MLp-+ p) (8), PC

We now present a semantic analysis ίhat distinguishes L1 and L2 in

1. This proof is due to Professor G. E. Hughes.
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systems weaker than S4. Let K be the modal logic whose rule of in-
ference is

Necessitation: _A_
LA

and whose sole axiom is L(p -* q) —> (Lp —» L#).

For the definition of a (normal) /f-model, c/. [1] pp. 56-60 (the system is
called T(C) in that paper). If S is any normal extension of K we define
ps = (ws, R, V) to be the canonical model for S, where

Ws = {x\ x is an S-maximal set of wff}
V#, y e Ws, xRy iff {A \LA e x] c y

V(p, x) = 1 iff pex, for all propositional variables p.

Ps falsifies every non-theorem of S, so to show that S is complete with
respect to a class of models satisfying a certain condition, it suffices to
show that Ps satisfies that condition. It is well known that S4 is charac-
terized by the class of /("-models for which # i s reflexive and transitive.

Proposition 1: If S is a normal extension of KL2, then Ps satisfies

(xRy .x Φ y) —» Vw(yRw —> wRy) (a)

Proof. Suppose x, ye Ws, xRy and x Φy. Then there is some wff A such
that Aex and A £ y. Let w be such that yRw. If LB e w then L(Av B) ew, by
the K-theorem LB -* L(A vB). Now yRw, so ML(A vB) e y. But A vBex so
by L2, L(ML(AvB)->AvB)ex and hence ML(A vB) -> A vBe y. Thus
Av Bey and since A$y, Bey. We have therefore shown that {BI LB ew} c y,
i.e., wRy.

Proposition 2: If S is a normal extension of /CLΊ, ί/̂ rc ^ satisfies

(xRy .x Φy) -> 3>ε(ΛτÊ  . Vw(zRw — wity)) (b)

Proof. Suppose Λ ity and ΛΓ ̂  3;. Let

z0 = {A I LA € #} U {LMJ5|^e ^}

If ^0 is not 5-consistent then there are wff Aι such that LA{ ex (1 ^i ^ n)
and LMB{ such that Bi e y (1 ^ i ^ m) for which

^ ~(Aχ . . .An.LMBx . . .LMBJ

and hence

ĥ  A — ~(LMBλ . . . LΛΓBJ where A = Λx . . . An

By the /("-theorem ~ (Lilφ .LMq) —» ~LM(p. )̂ we then deduce

1̂  A -> ~LMB where B = Bx . . . Bm

Since # ^ 3; t h e r e is s o m e wff C such that Cex and ^ C e y . Using the

/("-theorem ~LMp -» ~LM(p .q) we now deduce

hj A — ~LM(B .~C)
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and so

\-s LA- L~LM(B.~C)

i.e.,

hs LA - LML~(B . ~C)

But

k LA^->(LA! . . . LA,)

so LA e AT, which gives LML ~ (B . ~ C) e x (1)

Now -Cfίx, so (B.~C)fίx, hence ~(£.~C)e;y. (2)

In the presence of LI, (1) and (2) together yield L~(B.~C)ex and so
~ (B. ~ C) e y (since xRy).

But Bey and ~ C e y, so (B ,~C) e y, which contradicts the PC-
consistency of y. The upshot of all this is that z0 must be S-consistent and
so, by Lindenbaum's Lemma, may be extended to an S-maximal set z.
Since {A|LAe x} c z0 c z, we have xRz. Finally, suppose zRw. We want to
show wRy. But if Bf[y then ~i?e y and so LM~Be z. But £ita; so M~Be w,
hence ~M~Bj[w, i.e., LB^w. This shows that mR y, and the proof is
complete.

Proposition 3: If P is an S4-model, then P satisfies condition (a) iff P
satisfies condition (b).

Proof. If P satisfies (a) then putting y - z it is immediate that (b) is
satisfied. Conversely, suppose xRy and x Φ y. We want to show that if yRt
then tRy. From (b) we deduce

3z(xRz . Vw{zRw — wRy)) (1)

Since R is reflexive, zRz, and so by (1) zRy. Then if yRt, we have zRt by
the transitivity of R. Using (1) again we deduce tRy.

From Proposition 1 it follows that S4.04 is complete with respect to
the class of S4-models that satisfy condition (a). The axiom corresponding
to (a) is L2. LΊ corresponds (Proposition 2) to a rather more complex
condition that reduces (Proposition 3) to (a) in S4-models. Our discussion
would seem to indicate then that from a model-theoretic stand-point L2 is
the "right" axiom for S4.04.

Case 2. Sobociήski's K4 axiom

PΊ MLMp — (p— Lp) cf. [4], p. 349

Proposition 4: If S is a normal extension of Kpi then Ps satisfies

(xRy ,χφ y) -* Vz(xRz — 3w(zRw . Vt(wRt — t = y))) (c)

Proof If xRy and x Φ y then there is some wff C such that Ce x and ~ Ce y.
Let xRz and put

w0 = {A\LAe Z}Ό{LB \B ey}
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If w0 is not S-consistent then reasoning as in Proposition 2 we find there
are wff A, B such that LA ez, Bey and

I-; A -* ~L(£.~C).

Thus

hs LA -> L~L(B ,~C)

and so LM~(£.~C)e£. But xRz and so MLM ~(B ,~C) ex.

Using the axiom P1, a contradiction then follows exactly as in Proposition
2. Thus w0 is S-consistent and may be extended to an S-maximal w such
that zRw. Now let wRt. Then if Bey, LB e w, and since wRt, Bet. Hence
yet and so by the maximality of y, y = t.

K4 is known to be characterized by Lewis and Langford's Group Π
matrix (cf. [6] p. 349) and so it has two-element models that may be
represented graphically as follows: (cf. [l] p. 63).

Q Q
If P is a reflexive model that satisfies (c) then it may be seen by

elementary reasoning that if y and z are distinct from Λ:, then (xRz .xRy) —>
(x- y). If P is also transitive and connected in the sense of [l] p. 193, then
it has the form indicated above.

Case 3. When X is the improper modality, the resulting axiom is
(equivalent to) p —* Lp corresponding to the model condition V#V;y (xRy —»
x=y),cf. [ l ]p. 214.

Case 4. X = L gives a substitution-instance of a PC-tautology.

Case 5. X = M gives

X1 Mp->(p->Lp)

Proposition 5: If S is a normal extension o//C"X1 then P$ satisfies

(xRy .χΦy)->Vz (xRz -> z = y) (d)

Proof. There is some wff A such that Ae x and Af[y. If B e z, A vB e z and
so M(AvB) ex. But A v B ex so by X1, L(A vB)ex. Thus As/Bey, and since
A jty, Bey. This shows z c y, which is enough to prove z = y.

Given R reflexive, corresponding to Lp —»p, then condition (d) above
reduces to

VxVy(xRy —> x = y)

which is Case 3 above. A syntactic proof is straightforward.

Case 6. X = ML gives the S4.4 axiom

R1 MLp — (p-> Lp)
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whose corresponding model condition is

(xRy .x Φy) -* Vz(xRz -* zRy).

A proof is given in [3].

Case 7. X= LM yields

H2 LMp ->(/> — Lp)

Proposition 6: If S is a normal extension of /CH2 then Ps satisfies

(xRy . x Φ y) -* 3z(xRz . Vw(zRw -» w = y)) (e)

Proof. By a similar method to Proposition 4 we may show

z0 = {A\LAex}u{LB\Bey}

is S-consistent and may be extended to an S-maximal z with the required

properties. When R is reflexive, condition (e) reduces to

(xRy .x Φ y) —> Vz(yRz —* y = z)

which was shown in [3] to be the characteristic model condition for the K1.2

axiom

HI />-» L(Mp->p)

In [4] a proof is given that HI and H2 are equivalent in the field of S4. The

following proof shows that the equivalence holds in the field of S2:

(1) LM(Mp -> p) - ((Mp -> p) - L(Mp - p)) WZp/Mp-p

(2) LM(Mp - p) S2, cf. [2], p. 140, 22.8

(3) (Mp - p) -> L(Mp - p) (1),(2),PC

(4) p-*L{Mp-*p) (3), PC
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