Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

NOTE ABOUT THE BOOLEAN PARTS OF THE EXTENDED BOOLEAN ALGEBRAS

BOLESŁAW SOBOCIŃSKI

Throughout this note¹ the Boolean algebras extended by the additional extra-Boolean operations and postulates and containing the so-called Boolean part, in short **BA**, i.e., a postulate

Co the structure $\langle A, +, \times, -, 0, 1 \rangle$ is a Boolean algebra

will be called the extended Boolean algebras. In [3] and [2] it has been proved that in several systems of the extended Boolean algebras the postulate CO can be substituted for the postulates weaker than CO, namely either by

C0* the structure $\langle A, +, \times, -, 0, 1 \rangle$ is a non-associative Newman algebra

or by

C0** the structure $\langle A, +, \times, -, 0, 1 \rangle$ is a dual non-associative Newman algebra.

1 An inspection of the deductions presented in [3] and [2] suggests the following elementary, but general lemma:

Lemma I. Let \mathfrak{M} be an arbitrary extended Boolean algebra, M be the carrier set of \mathfrak{M} , \mathcal{A} be the set of all primitive extra-Boolean operations occurring in the definition of \mathfrak{M} , and \mathcal{B} be the set of all extra-Boolean postulates accepted in \mathfrak{M} . Let Z be a unary extra-Boolean operation which either belongs to \mathcal{A} or is definable in the field of the postulates of \mathfrak{M} . Then:

(i) if Z either belongs to \mathcal{A} or is syntactically definable in the field of C0*, extended by the postulates belonging to \mathcal{B} , and in that field a formula

A1 $[a]: a \in M . \supset . a + Za = Za$

^{1.} An acquaintance with [3] and [2] is presupposed.

is provable, then in the postulate-system of \mathfrak{M} , the axiom C0 can be replaced by C0*;

and

(ii) if Z either belongs to \mathcal{A} or is syntactically definable in the field of $C0^{**}$, extended by the postulates belonging to \mathcal{B} , and in that field the formulas

B1 $[a]: a \in A : \supset .a \times Za = a$ B2 0 = Z0

are provable, then in the postulate-system of \mathfrak{M} , the axiom C0 can be replaced by C0**.

Proof: Let us assume that Z is an operation which satisfies the assumptions of Lemma I and the antecedent of its point (i). Hence, we have formula AI and, due to $C0^*$, the Theorems M1, M4, D1, M7 and M25 presented in [3], pp. 532-533. Then:

$$R1 \quad [a]: a \in M . \supset . a = a + a$$

 $\begin{array}{ll} \mathsf{PR} & [a]: \mathrm{Hp}(1) . \supset. \\ & a = a \times (\mathbb{Z}1 + - \mathbb{Z}1) = a \times ((1 + \mathbb{Z}1) + - \mathbb{Z}1) \\ & = a \times (1 + (\mathbb{Z}1 + - \mathbb{Z}1)) = a \times (1 + 1) = a + a \end{array} \qquad \begin{bmatrix} 1; \ M4; \ A1 \end{bmatrix} \\ & \begin{bmatrix} M25; \ D1; \ M1; \ M7 \end{bmatrix}$

On the other hand, if Z is an operation which satisfies the assumptions of Lemma I and the antecedent of its point (ii), then we have the formulas BI and B2 and, due to $C0^{**}$, the Theorems NI and N7 presented in [3], pp. 536-537. Then:

T1
$$[a] a \in M . \supset . a = a \times a$$

PR $[a] : Hp(1) . \supset .$
 $a = a + 0 = a + (0 \times Z0) = a + (0 \times 0) = a \times a$ [1; N7; B1; B2; N1; N7]

Since the additions of R1 to $C0^*$ and of T1 to $C0^{**}$ yield Boolean algebras in both cases, *cf.* [5], pp. 533-534, section 1.2, and pp. 538-539, section 2.2, the proof is complete.

2 As an example, we shall discuss here an application of Lemma I to the monadic algebras of Halmos, cf. [1]. In the style which is used for the definitions of the algebraic systems in [3] and [2], these algebras are presented here as follows:

Any algebraic structure

$$\mathfrak{A} = \langle A, +, \times, -, 0, 1, \mathbf{J} \rangle$$

where + and \times are two binary operations, and - and \exists are two unary operations defined on the carrier set A, and 0 and 1 are two constant elements belonging to A, is a monadic algebra, if it satisfies the following postulates: C0 and

 $V1 \quad [a]:a \in A : \supset a \leq \exists a$

 $\begin{array}{ll} V2 & \exists 0 = 0 \\ V3 & [ab]: a, b \in A . \supset . \exists (a \times \exists b) = \exists a \times \exists b \end{array}$

Cf. [1], p. 21 and p. 40. Since in \mathfrak{A} we have the postulate C0 and " \leq " is not a primitive notion of the investigated system, obviously we have two inferentially equivalent forms of V1, viz.

$$V1* [a]: a \in A . \supset . a + \exists a = \exists a$$

and

 $V1^{**} [a]: a \in A : \supset .a \times \exists a = a.$

Therefore, there are two versions which are inferentially equivalent to the postulate system of \mathfrak{A} , namely $\{CO, VI^*, V2, V3\}$ and $\{CO, VI^{**}, V2, V3\}$. It follows automatically from Lemma I that in the first version CO can be replaced by CO^{**} .

2.1 In [1], p. 21, it is stated that in the field of CO the set of postulates V1, V2 and V3 is inferentially equivalent to the following set of axioms: V1, V2 and

 $\begin{array}{ll} W1 & [ab]:a, b \in A . \supset . \ \exists (a+b) = \exists a+\exists b \\ W2 & [a]:a \in A . \supset . \ \exists - \exists a = - \exists a \\ W3 & [a]:a \in A . \supset . \exists \exists a = \exists a. \end{array}$

As far as I know, it was not mentioned in the literature that, in this second postulate-system of the monadic algebras, the axioms V1 and W3 are superfluous.

Proof: Assume C0 and the axioms V1, W1 and W2. Then:

$0 = -1 = -31 = 3 - 31 = 3 - 1 = 30$ $W3 [a]: a \in A . \supset . \exists \exists a = \exists a$ $PR [a]: Hp(1) . \supset .$ $2. \exists a = -3 - \exists a$ $[1; W2, BA]$	V2	$0 = 0\mathbf{E}$	
$0 = -1 = -31 = 3 - 31 = 3 - 1 = 30$ $W3 [a]: a \in A . \supset . \exists \exists a = \exists a$ $PR [a]: Hp(1) . \supset .$ $2. \exists a = -3 - \exists a$ $[1; W2, BA]$	PR		
$W3$ $[a]: a \in A . \supset . \exists \exists a = \exists a$ PR $[a]: Hp(1) . \supset .$ $2.$ $\exists a = - \exists - \exists a$ $[1; W2, BA]$	1.	$\exists 1 = 1$	[V1; BA]
PR $[a]: Hp(1) . \supset.$ 2. $\exists a = -\exists -\exists a$ [1; W2, BA]		0 = -1 = -31 = 3 - 31 = 3 - 1 = 30	[BA; 1; W2; 1; BA]
2. $\exists a = -\exists -\exists a$ [1; <i>W</i> 2, BA]	W3	$[a]:a \in A : \supset . \exists \exists a = \exists a$	
	PR	$[a]$: Hp(1). \supset .	
$\exists a = - \exists - \exists a = \exists - \exists - \exists a = \exists \exists a$ [1; 2; W2; 2	2.	$\exists a = - \exists - \exists a$	[1; <i>W2</i> , BA]
		$\exists a = - \exists - \exists a = \exists - \exists - \exists a = \exists \exists a$	[1; 2; W2; 2]

Thus, in the field of CO, V1 and W2 imply V2 and W3 and, therefore, due to the deductions given in [1], pp. 40-44, we can establish that

$$\{C0, V1, V2, V3\} \rightleftharpoons \{C0, V1, W1, W2\}$$

2.2 Now, it follows from Lemma I at once that $\{C0, V1, W1, W2\} \rightleftharpoons \{C0^*, V1^*, W1, W2\}$. On the other hand, a proof that the equivalence

(a)
$$\{C0, V1, W1, W2\} \rightleftharpoons \{C0^{**}, V1^{**}, W1, W2\}$$

holds is more elaborate, since we have to prove that in the field of $C0^{**}$, $V1^{**}$, W1 and W2 imply V2 and, therefore, in virtue of Lemma I, C0. It will be shown here that in the case of the equivalence (a) such deduction is possible.

Proof: Let us assume $C0^{**}$, $V1^{**}$, W1 and W2. Hence, due to $C0^{**}$ we have at our disposal the Theorems N1, Df1, N7, N20, N24 and N25, cf. [3], pp. 536-538, sections 2 and 2.1. Then:

W3	$[a]: a \in A : \supset \exists a = \exists \exists a$	
PR	$[a]$: Hp(1). \supset .	
2.	$\exists a = - \exists - \exists a$	[1; N20; W2]
	$\exists a = - \exists - \exists a = \exists - \exists - \exists a = \exists \exists a$	[1; 2; W2; 2]
W4	$[a]: a \in A : \supset . \exists a = \exists a \times \exists a$	
PR	$[a]$: Hp(1). \supset .	
	$\exists a = \exists a \times \exists \exists a = \exists a \times \exists a$	[1; V1**, W3]
W5	$[a]: a \in A . \supset . \neg \exists a = \neg \exists a \times \neg \exists a$	
PR	$[a]$: Hp(1). \supset .	
	$-\exists a = -\exists a \times \exists - \exists a = -\exists a \times -\exists a$	$[1; V1^{**}, W2]$
T1	$[a]: a \in A. \supset a = a \times a$	
PR	$[a]$: Hp(1). \supset .	
	$a = a + 0 = a + (\exists a \times \neg \exists a) = a + ((\exists a \times \exists a) \times (\neg \exists a))$	$ a \times - \exists a\rangle$)
		[1; N7; Df1; W4; W5]
	$= a + ((\exists a \times \neg \exists a) \times (\exists a \times \neg \exists a))$	[<i>N24</i> ; <i>N25</i>]
	$= a + (0 \times 0) = (a + 0) \times (a + 0) = a \times a$	[Df1; N1; N7]

Since the addition of T1 to $C0^{**}$ generates C0 and since, in the field of C0, $V1^{**}$ implies V1, we have V2, cf. section 2.1 above. Therefore, in virtue of Lemma I, $V1^{**}$ and V2, the proof is complete.

REFERENCES

- [1] Halmos, P. R., Algebraic Logic, Chelsea Publishing Co., New York (1962).
- [2] Sobociński, B., "Remark about the Boolean parts in the postulate-systems of closure, derivative and projective algebras," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 111-117.
- [3] Sobociński, B., "Solution to the problem concerning the Boolean bases for cylindric algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 529-545.

University of Notre Dame Notre Dame, Indiana