NOTE ABOUT THE BOOLEAN PARTS OF THE EXTENDED BOOLEAN ALGEBRAS

BOLES£AW SOBOCIŃSKI

Throughout this note ${ }^{1}$ the Boolean algebras extended by the additional extra-Boolean operations and postulates and containing the so-called Boolean part, in short BA, i.e., a postulate
Co the structure $\langle A,+, \times,-, 0,1\rangle$ is a Boolean algebra
will be called the extended Boolean algebras. In [3] and [2] it has been proved that in several systems of the extended Boolean algebras the postulate $C O$ can be substituted for the postulates weaker than $C O$, namely either by

C0* the structure $\langle A,+, \times,-, 0,1\rangle$ is a non-associative Newman algebra or by
C0** the structure $\langle A,+, \times,-, 0,1\rangle$ is a dual non-associative Newman algebra.
1 An inspection of the deductions presented in [3] and [2] suggests the following elementary, but general lemma:

Lemma I. Let \mathfrak{M} be an arbitrary extended Boolean algebra, M be the carrier set of $\mathfrak{M}, \boldsymbol{A}$ be the set of all primitive extra-Boolean operations occurring in the definition of \mathfrak{M}, and \mathfrak{B} be the set of all extra-Boolean postulates accepted in \mathfrak{M}. Let Z be a unary extra-Boolean operation which either belongs to \boldsymbol{A} or is definable in the field of the postulates of \mathfrak{M}. Then:
(i) if Z either belongs to A or is syntactically definable in the field of CO*, extended by the postulates belonging to \mathcal{B}, and in that field a formula

$$
[a]: a \in M . \supset . a+\mathrm{Z} a=\mathrm{Z} a
$$

[^0]is provable, then in the postulate-system of \mathfrak{M}, the axiom CO can be replaced by C0*;
and
(ii) if Z either belongs to A or is syntactically definable in the field of C0**, extended by the postulates belonging to \mathcal{B}, and in that field the formulas

B1 [a]: $a \in A . \supset . a \times \mathrm{Z} a=a$
B2 $0=\mathrm{Z} 0$
are provable, then in the postulate-system of \mathfrak{M}, the axiom $C 0$ can be replaced by C0**.

Proof: Let us assume that Z is an operation which satisfies the assumptions of Lemma I and the antecedent of its point (i). Hence, we have formula $A 1$ and, due to C0*, the Theorems M1, M4, D1, M7 and M25 presented in [3], pp. 532-533. Then:

```
R1 [a]: a\epsilonM.Ј. }a=a+
```

PR [a]: $\mathrm{Hp}(1) . \supset$.

$$
\begin{aligned}
a & =a \times(\mathrm{Z} 1+-\mathrm{Z} 1)=a \times((1+\mathrm{Z} 1)+-\mathrm{Z} 1) \\
& =a \times(1+(\mathrm{Z} 1+-\mathrm{Z} 1))=a \times(1+1)=a+a
\end{aligned}
$$

$$
[1 ; M 4 ; A 1]
$$

[M25; D1; M1; M7]
On the other hand, if Z is an operation which satisfies the assumptions of Lemma I and the antecedent of its point (ii), then we have the formulas $B 1$ and $B 2$ and, due to $C 0^{* *}$, the Theorems $N 1$ and $N 7$ presented in [3], pp. 536-537. Then:
T1 $\quad[a] a \in M . \supset . a=a \times a$
PR [a]: $\operatorname{Hp}(1) . J$.
$a=a+0=a+(0 \times \mathrm{Z} 0)=a+(0 \times 0)=a \times a \quad[1 ; N 7 ; B 1 ; B 2 ; N 1 ; N 7]$
Since the additions of $R 1$ to $C 0^{*}$ and of $T 1$ to CO** yield Boolean algebras in both cases, cf. [5], pp. 533-534, section 1.2, and pp. 538-539, section 2.2, the proof is complete.

2 As an example, we shall discuss here an application of Lemma I to the monadic algebras of Halmos, $c f$. [1]. In the style which is used for the definitions of the algebraic systems in [3] and [2], these algebras are presented here as follows:

Any algebraic structure

$$
\mathfrak{A}=\langle A,+, \times,-, 0,1, \exists\rangle
$$

where + and \times are two binary operations, and -and \exists are two unary operations defined on the carrier set A, and 0 and 1 are two constant elements belonging to A, is a monadic algebra, if it satisfies the following postulates: C0 and

$$
[a]: a \in A . \supset . a \leqslant \exists a
$$

V2 $\quad \exists 0=0$
V3 [ab]: $a, b \in A . J . \exists(a \times \exists b)=\exists a \times \exists b$
$C f$. [1], p. 21 and p. 40. Since in \mathfrak{A} we have the postulate $C O$ and " \leqslant " is not a primitive notion of the investigated system, obviously we have two inferentially equivalent forms of $V 1$, viz.

V1* [a]: $a \in$ A.ग. $a+\exists a=\exists a$
and
$V 1 * *[a]: a \in A . \supset . a \times \exists a=a$.
Therefore, there are two versions which are inferentially equivalent to the postulate system of \mathfrak{A}, namely $\left\{C 0, V 1^{*}, V 2, V 3\right\}$ and $\left\{C 0, V 1^{* *}, V 2\right.$, $V 3\}$. It follows automatically from Lemma I that in the first version $C 0$ can be replaced by $C 0 *$ and in the second version $C O$ can be replaced by CO**.
2.1 In [1], p. 21, it is stated that in the field of $C 0$ the set of postulates $V 1$, $V 2$ and $V 3$ is inferentially equivalent to the following set of axioms: V1, V2 and

```
W1 [ab]: \(a, b \in A . \supset . \mathbf{3}(a+b)=\boldsymbol{\exists} a+\boldsymbol{3} b\)
W2 [a]: \(a \in A . \supset . \exists-\exists a=-\exists a\)
W3 [a]: \(a \in A . \supset . \exists \exists a=\exists a\).
```

As far as I know, it was not mentioned in the literature that, in this second postulate-system of the monadic algebras, the axioms V1 and $W 3$ are superfluous.

Proof: Assume $C O$ and the axioms V1, W1 and W2. Then:
V2 $\quad 30=0$
PR

1. $\quad \exists 1=1$
[V1; BA」

$$
0=-1=-31=3-31=3-1=30
$$

[BA; 1; W2; 1; BA]
W3 [a]: $a \in A . \supset . \exists \exists a=\exists a$
PR [a]: $\mathrm{Hp}(1) . \supset$.
2. $\exists a=-\exists-\exists a$
$\exists a=-\boldsymbol{\Xi}-\boldsymbol{\exists} a=\boldsymbol{3}-\boldsymbol{\Xi}-\boldsymbol{\exists} a=\boldsymbol{\exists} \boldsymbol{\exists} a$
[1; W2, BA]
$[1 ; 2 ; W 2 ; 2]$
Thus, in the field of $C 0, V 1$ and $W 2$ imply $V 2$ and $W 3$ and, therefore, due to the deductions given in [1], pp. 40-44, we can establish that

$$
\{C 0, V 1, V 2, V 3\} \rightleftarrows\{C 0, V 1, W 1, W 2\}
$$

2.2 Now, it follows from Lemma I at once that $\{C 0, V 1, W 1, W 2\} \rightleftarrows\left\{C 0^{*}\right.$, $V 1 *, W 1, W 2\}$. On the other hand, a proof that the equivalence

$$
\begin{equation*}
\{C 0, V 1, W 1, W 2\} \rightleftarrows\left\{C O^{* *}, V 1 * *, W 1, W 2\right\} \tag{a}
\end{equation*}
$$

holds is more elaborate, since we have to prove that in the field of CO**, $V 1^{* *}$, W1 and $W 2$ imply V2 and, therefore, in virtue of Lemma I, C0. It will be shown here that in the case of the equivalence (a) such deduction is possible.

Proof: Let us assume C0**, V1**, W1 and W2. Hence, due to C0** we have at our disposal the Theorems N1, Df1, N7, N20, N24 and N25, cf. [3], pp. 536-538, sections 2 and 2.1. Then:
W3 [a]: $a \in A . \supset . \exists a=\exists \exists a$
PR [a]: Hp(1)..
2. $\exists a=-\boldsymbol{3}-\exists a \quad[1 ;$ N20; W2]

$$
\exists a=-\exists-\exists a=\exists-\exists-\exists a=\exists \exists a \quad[1 ; 2 ; W 2 ; 2]
$$

W4 [a]: $a \in A . \supset . \exists a=\exists a \times \exists a$
PR [a]: $\mathrm{Hp}(1) . \supset$.

$$
\exists a=\exists a \times \exists \exists a=\exists a \times \exists a \quad[1 ; V 1 * *, W 3]
$$

W5 [a]: $a \in A . \supset .-\exists a=-\exists a \times-\exists a$
PR [a]: $\mathrm{Hp}(1) . \supset$.

$$
-3 a=-\exists a \times \exists-\exists a=-\exists a \times-\exists a \quad\left[1 ; V 1^{* *}, W 2\right]
$$

T1 [a]: $a \in A . \supset . a=a \times a$
PR [a]: $\mathrm{Hp}(1) . J$.
$a=a+0=a+(\exists a \times-\exists a)=a+((\exists a \times \exists a) \times(-\exists a \times-\exists a))$
[1; N7; Df1; W4; W5]
$\begin{array}{llr}=a+((\exists a \times-\exists a) \times(\exists a \times-\exists a)) & {[N 24 ; N 25]} \\ =a+(0 \times 0)=(a+0) \times(a+0)=a \times a & {[D f 1 ; N 1 ; N 7]}\end{array}$
Since the addition of $T 1$ to $C 0^{* *}$ generates $C 0$ and since, in the field of CO, V1** implies V1, we have V2, cf. section 2.1 above. Therefore, in virtue of Lemma I, $V 1^{* *}$ and $V 2$, the proof is complete.

REFERENCES

[1] Halmos, P. R., Algebraic Logic, Chelsea Publishing Co., New York (1962).
[2] Sobociński, B., "Remark about the Boolean parts in the postulate-systems of closure, derivative and projective algebras," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 111-117.
[3] Sobociński, B., "Solution to the problem concerning the Boolean bases for cylindric algebras,', Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 529545.

University of Notre Dame
Notre Dame, Indiana

[^0]: 1. An acquaintance with [3] and [2] is presupposed.
