ON THE INTUITIONISTIC EQUIVALENTIAL CALCULUS

ROBERT E. TAX

1 Introduction We consider first the fragment ICE of the intuitionistic propositional calculus which consists of all wffs in which the only connectives are C (implication) and E (equivalence). We then consider the fragment IE of this system. From the Gentzen system GCE corresponding to ICE, we construct a Gentzen system GE corresponding to IE, thus obtaining a characterization of IE which makes no reference to an implicational system. We then look at an axiomatization and, using GE, show that it does indeed constitute an axiom system for IE.

2 The Systems The system ICE is defined as follows: The wffs of ICE are those constructed of propositional variables and two binary connectives, C and E. The rules of inference are substitution and Modus Ponens (from P and $C P Q$ we can derive Q). There are five axioms:

1) $C p \subset q p$
2) CCpCqrCCpqCpr
3) $C E p q \subset p q$
4) $C E p q C q p$
5) $С С р q \subset C q p E p q$.

We define IE to be the equivalential fragment of ICE. We now construct a Gentzen system GCE corresponding to ICE: A sequent of GCE is to be any expression of the form $P_{1}, \ldots, P_{n} \rightarrow Q$, where P_{1}, \ldots, P_{n}, and Q are wffs of ICE, and $n \geq 0$. An axiom of GCE is to be any sequent of the form $P \rightarrow P$. There are nine rules of inference, as follows (where Γ and Δ represent arbitrary sequences, possibly empty, of wffs of ICE):

$$
\begin{gathered}
C \rightarrow \frac{\Gamma \rightarrow P Q, \Gamma \rightarrow R}{C P Q, \Gamma \rightarrow R} \quad \rightarrow C: \frac{P, \Gamma \rightarrow Q}{\Gamma \rightarrow C P Q} \\
E \rightarrow_{1}: \frac{\Gamma \rightarrow P Q, \Gamma \rightarrow R}{E P Q, \Gamma \rightarrow R} \quad E \rightarrow \rightarrow_{2}: \frac{\Gamma \rightarrow Q \quad P, \Gamma \rightarrow R}{E P Q, \Gamma \rightarrow R} \\
\rightarrow E: \frac{P, \Gamma \rightarrow Q \quad Q, \Gamma \rightarrow P}{\Gamma \rightarrow E P Q}
\end{gathered}
$$

$$
\begin{array}{cc}
\text { Thin: } \frac{\Gamma \rightarrow P}{Q, \Gamma \rightarrow P} & \text { Cont: } \frac{P, P, \Gamma \rightarrow Q}{P, \Gamma \rightarrow Q} \\
\operatorname{Int}: \frac{\Gamma, P, Q, \Delta \rightarrow R}{\Gamma, Q, P, \Delta \rightarrow R} & \text { Cut: } \frac{\Gamma \rightarrow P P, \Gamma \rightarrow Q}{\Gamma \rightarrow Q}
\end{array}
$$

It is easily seen that GCE corresponds to ICE, in the sense that a sequent $P_{1}, \ldots, P_{n} \rightarrow Q$ is provable in GCE iff the wff $C P_{1} C P_{2} C \ldots C P_{n} Q$ is provable in ICE. Furthermore, just as in other Gentzen systems, the cut rule is optional. We define an E-wff to be a wff whose only connective is E, and an E-sequent to be a sequent which is made up of E-wffs. Suppose that S_{1} is transformed by rule L to S_{2}, where S_{1} and S_{2} are sequents, and L is not the cut rule. If S_{2} is an E-sequent, it is clear from the form of the rules that L cannot be $C \rightarrow$ or $\rightarrow C$, and that S_{1} must be an E-sequent. Given a proof of an E-sequent in GCE, then, there is a proof of this sequent which does not use the cut rule; this proof must then consist of E-sequents, and the rules $C \rightarrow$ and $\rightarrow C$ will not appear in it. We can therefore form a Gentzen system GE, whose sequents and axioms are precisely those sequents and axioms of GCE which are E-sequents, and whose only rules of inference are $E \rightarrow_{1}, E \rightarrow_{2}, \rightarrow E$, Thin, Int , and Cont.

Then an E-sequent $P_{1}, \ldots, P_{n} \rightarrow Q$ will be provable in GE iff the wff $C P_{1} C P_{2} C \ldots C P_{n} Q$ is provable in ICE. In particular, we have the following:

Theorem 1: If P is an E-wff, then $\rightarrow P$ is provable in GE iff P is a theorem of IE.

We thus have a characterization of IE which makes no reference to any system which uses a connective other than E. We will use this to prove that the axiom system we now construct is sufficient to prove all theorems of IE.

3 The Axiom System We now construct an axiom system for IE. ${ }^{1}$ There is to be one axiom: EEEqEqpEEqEqpEpEpErsEEpsErp. There are to be three rules: i) substitution for propositional variables; ii) Modus Ponens (MP): from $E P Q$ and P we can deduce Q; and iii) Rule $*$: from P we can deduce $E Q E Q P$.

We denote provability in this system by ' \vdash '. It is easily seen that the axiom and the rules are provable in ICE, and hence hold in IE. Suppose $\vdash E P Q$; by rule ${ }^{*}, \vdash E E S E S R E E S E S R E R E R E P Q$; by the axiom and MP, then, $\vdash E E R Q E P R$. We thus have shown the following:

1) If $\vdash E P Q$, then $\vdash E E R Q E P R$.

Let $E P Q$ be any theorem; by rule ${ }^{*}, \vdash E p E p E P Q$; by 1), $\vdash E E p E p E P Q E p p$; so, by MP,
2) $\vdash E p p$.
3) By 1) and 2), we have $\vdash E E q p E p q$.

Def: we write ' $P \rightleftarrows Q$ ' to mean $\vdash E P Q$.

[^0]By 2), $p \rightleftarrows p$. If $P \rightleftarrows Q$, then $\vdash E P Q$, so, by 3) and MP , $\vdash E Q P$, i.e., $Q \rightleftarrows P$. By 1) and MP, we see that if $P \rightleftarrows Q$ and $R \rightleftarrows Q$, then $P \rightleftarrows R$. But $R \rightleftarrows Q$ if $Q \rightleftarrows R$; so, if $P \rightleftarrows Q$ and $Q \rightleftarrows R$, then also $P \rightleftarrows R$. Thus,
4) \rightleftarrows is an equivalence relation.

By 1), if $P \rightleftarrows Q$ then $E R Q \rightleftarrows E P R$; since $E Q R \rightleftarrows E R Q$ and $E P R \rightleftarrows E R P$, we get, by 4),
5) If $P \rightleftarrows Q$, then $E P R \rightleftarrows E Q R$ and $E R P \rightleftarrows E R Q$.

It follows that if $P \rightleftarrows Q$ and $R \rightleftarrows S$, then $E P R \rightleftarrows E Q R \rightleftarrows E Q S$.
Def: By an expression in p_{1}, \ldots, p_{n}, where each p_{i} is a propositional variable, we mean a wff containing no variable other than p_{1}, \ldots, p_{n}. If $f\left(p_{1}, \ldots, p_{n}\right)$ is an expression in p_{1}, \ldots, p_{n}, we denote by $f\left(P_{1}, \ldots, P_{n}\right)$ the result of substituting P_{i} for p_{i} in $f\left(p_{1}, \ldots, p_{n}\right)$, for each i between 1 and n. Similarly, if f is any expression containing p, we denote by $f(P)$ the result of substituting P for p in f.

From 5), using induction on the length of the expression, we obtain:
6) If f is any expression, and if $P \rightleftarrows Q$, then also $f(P) \rightleftarrows f(Q)$.

We will write ' $P \rightleftarrows(n) Q$ ' to mean that ' $P \rightleftarrows Q$ ' follows from statement number n. We will not, however, mark in this way reference to numbers 3) and 6); use of any other statement will be marked in this way.
7) Letting θ denote any theorem, we have, by rule $*, P \rightleftarrows E P \theta$.
8) $E E q E q p E E q E q p E p E p r \rightleftarrows(7) E E q E q p E E q E q p E p E p E r \theta \rightleftarrows$ ($\mathbf{A x}$) EEp $\theta E r p \rightleftarrows$ (7) EpEpr.
9) EpEpErs \rightleftarrows (8) EEqEqpEEqEqpEpEpErs $\rightleftarrows(\mathbf{A x})$ EEpsErp \rightleftarrows EEprEps.
10) $E p E p E p q \rightleftarrows(9) E E p p E p q \rightleftarrows(2,7)$ Epq.
11) $E p E p E q r \rightleftarrows(10) E p E p E p E p E q r \rightleftarrows(9)$ EpEpEEpqEpr $\rightleftarrows(9) E E p E p q E p E p r$.
12) By induction, using 11), we see that if f is any expression in p_{1}, \ldots, p_{n}, then $E q E q f\left(p_{1}, \ldots, p_{n}\right) \rightleftarrows f\left(E q E q p_{1}, \ldots, E q E q p_{n}\right)$.
13) $E q E q E p E q r \rightleftarrows(11)$ EEqEqpEqEqEqr $\rightleftarrows(10)$ EEqEqpEqr $\rightleftarrows(9)$ EqEqEEqpr $\rightleftarrows E q E q E E p q r$.

EEpqEpEqEqp $\rightleftarrows(9) ~ E p E p E q E q E q p \rightleftarrows(10)$ EpEpEqp $\rightleftarrows E p E p E p q \rightleftarrows$ (10) $E p q$; so $\vdash E E p q E E p q E p E q E q p$; by (9), トEEEpqpEEpqEqEqp; also, $E E p q E q E q p \rightleftarrows E E q p E q E q p \rightleftarrows(9) E q E q E p E q p \rightleftarrows E q E q E p E p q$; so
14) $E q E q E p E p q \rightleftharpoons E E q p E q E q p \rightleftarrows E p E p q$.

In this paragraph only, let R be $E p E p q$, and let S be $E q E q p$. We then see that $E E p E p q E q E q p \rightleftarrows E E E p q p E E p q q \rightleftarrows(9) E E p q E E p q E p q \rightleftarrows(2,7) E p q$: i.e., $E R S \rightleftarrows E p q$. It follows that $E R E R S \rightleftarrows E E p E p q E p q \rightleftarrows(14) E q E q p=S$: so a) ERERS $\rightleftarrows S$. Furthermore, we have that EEpEpqEEpEpqp \rightleftarrows EEpEpqEpEpEpq $\rightleftarrows(10) E E p E p q E p q \rightleftarrows(14) E q E q p:$ i.e., b) ERERp $\rightleftarrows S$. So $E p E p E q E q r \rightleftarrows(12) E E p E p q E E p E p q E p E p r=E R E R E p E p r \rightleftarrows(12)$ EERERpEERERpERERr $\rightleftarrows(\mathrm{b})$ ESESERERr. Similarly, EqEqEpEpr \rightleftarrows ERERESESr. But we can also see that ERERESESr $\rightleftharpoons(12)$

EERERSEERERSERERr \rightleftarrows (a) ESESERERr. As a result, we have proved the following:
15) $E p E p E q E q r \rightleftarrows E q E q E p E p r$.
$E q E q E E p q E E p q r \rightleftarrows(11) E E q E q E p q E q E q E E p q r \rightleftarrows(13)$
EEqEqEpqEqEqEpEqr $\rightleftarrows(11) E q E q E E p q E p E q r ~ \rightleftarrows(9) E q E q E p E p E q E q r ~ \rightleftarrows$ (15) EpEpEqEqEqEqr $\rightleftarrows(10) E p E p E q E q r$. Since we also know, by 10), that $E p E p E p E p E q E q r \rightleftarrows E p E p E q E q r$, we have the following:
16) $E p E p E q E q E E p q E E p q r \rightleftarrows E p E p E q E q r$.

Def: For any finite set of wffs $A=\left\{a_{1}, \ldots, a_{n}\right\}$, define a function $A \#$ by setting $A \# P=E a_{1} E a_{1} E a_{2} E a_{2} E \ldots E a_{n} E a_{n} P$; if $A=\phi$, set $A \# P=P$. We will sometimes write ' A \# (P)' to mean A \# P.

By 10) and 15) above, this expression is independent of the order and possible repetitions of the a_{i}, so A^{*} is well-defined, up to the equivalence relation \rightleftarrows. We will use the letters A and B to refer to finite sets of wffs. We see that for any finite sets A and B of wffs, $A \# B \# P \rightleftarrows(A \cup B) \# P$. Also, by induction on 12) above, we see that for any expression f in p_{1}, \ldots, p_{n} we have $A \# f\left(p_{1}, \ldots, p_{n}\right) \rightleftarrows f\left(A \# p_{1}, \ldots, A \# p_{n}\right)$.

4 Some Consequences For any finite set A of wffs, we define A^{*} to be the smallest set containing A and which is closed under E and rule $*$, i.e., which satisfies the two conditions: i) if $P, Q \in A^{*}$, then $E P Q \in A^{*}$; and ii) if $P \in A^{*}$, then $E Q E Q P \in A^{*}$. Note that if $P \in A^{*}$, then $B \# P \in A^{*}$.

Lemma 2: If $P \in A^{*}$, then $A \# E P E P Q \rightleftarrows A \# Q$.
Proof: We use induction on the length of P. From the definition of A^{*}, it is clear that we must consider three cases:

Case 1: $P \in A$. Then $A \# E P E P Q \rightleftarrows A \#\{P\} \# Q \rightleftarrows(A \cup\{P\}) \# Q \rightleftarrows A \# Q$, since $A \cup\{P\}=A$.

Case 2: $P=E R S$, with $R, S \in A^{*}$. The lemma then holds for R and S. Then $A \# E P E P Q=A$ \# EERSEERSQ \rightleftarrows (ind. hyp.) A \# ERERESESEERSEERSQ \rightleftarrows (16) A \# ERERESESQ \rightleftarrows (ind. hyp.) A \# Q.

Case 3: $P=E R E R S$, with $S \in A^{*}$. The lemma then holds for S. Then $A \# E P E P Q=A \# E E R E R S E E R E R S Q \rightleftarrows$ (ind. hyp.) A \# ESESEERERSEERERSQ $\rightleftarrows(8,15) A \# E S E S Q \rightleftarrows$ (ind. hyp.) $A \# Q$, proving the lemma.

Lemma 3: If $A \subset B \subset A^{*}$, where A and B are finite sets of wffs, then A \# $P \rightleftarrows B \# P$.

Proof: Let $B=A \cup\left\{b_{1}, \ldots, b_{n}\right\}$, with each $b_{i} \in A^{*}$. Then, using Lemma 2 n times, $B \# P \rightleftarrows A \# E b_{1} E b_{1} E \ldots E b_{n} E b_{n} P \rightleftarrows A \# P$.

Def: If A is a finite set of wffs, we write ' $A>P$ ' to mean that $\vdash A$ \# P.
Lemma 4: The following properties of $>$ hold:
a) if $A>P$, then $A>B \# P$;
b) if $A>E P Q$ and $A>P$, then $A>Q$;
c) if $A>E P Q$ then $A>E E P R E Q R$ and $A>E E R P E R Q$;
d) if $A>E P Q$ and $A>E Q R$ then $A>E P R$;
e) if $A>E P Q$ and $A>E R S$ then $A>E E P R E Q S$;
f) if f is an expression and $A>E P Q$, then $A>E(f P)(f Q)$;
g) if $P \in A^{*}$, then $A>E f(E Q E P R) f(E E Q P R)$, for any expression f.

Proof: a) If $A>P$, then $\vdash A$ \# P; using rule *, $\vdash B \# A \# P$, so $\vdash A$ \# $B \# P$, i.e., $A>B \# P$.
b) If $A>E P Q$, then $\vdash A \# E P Q$, so $\vdash E A \# P A \# Q$. If also $A>P$, then $\vdash A \# P$. By MP, $\vdash A \#$ Q, i.e., $A>Q$.
c) Suppose $A>E P Q$; by a), $A>E R E R E P Q$. But, by 9) of section 3, $\vdash E E R E R E P Q E E R P E R Q$, so, applying rule * several times, $A>$ EEREREPQEERPERQ. By b), then, $A>E E R P E R Q$. Similarly, $A>$ EEPREQR.
d) If $A>E P Q$, then $A>E E P R E Q R$ by c), so $A>E E Q R E P R$. If also $A>E Q R$, then $A>E P R$ by b).
e) If $A>E P Q$, then $A>E E P R E Q R$ by c). If $A>E R S$, then $A>$ $E E Q R E Q S$, again by c). By d), then, if $A>E P Q$ and $A>E R S$, then $A>E E P R E Q S$.
f) If f is an expression and $A>E P Q$, then $\vdash A \# E P Q$. Let $f(p)$ be $g\left(p, q_{1}, \ldots, q_{n}\right)$, where g is an expression in p, q_{1}, \ldots, q_{n}. Then $f(P)=$ $g\left(P, q_{1}, \ldots, q_{n}\right)$, so, by an obvious induction applied to 12) above, $A \# f P \rightleftarrows$ $g\left(A \# P, A \# q_{1}, \ldots, A \# q_{n}\right)$. Similarly, $A \# f Q \rightleftarrows g\left(A \# Q, A \# q_{1}, \ldots, A \# q_{n}\right)$. Then, using 9) above, A \# $E(f P)(f Q) \rightleftarrows E A \# f P A \# f Q \rightleftarrows E g(A \# P$, $\left.A \# q_{1}, \ldots, A \# q_{n}\right) g\left(A \# Q, A \# q_{1}, \ldots, A \# q_{n}\right)$. Since $\vdash A \# E P Q$, also $\vdash E A \# P A \# Q$, so this last wff in the chain is a theorem, by property 6) above; so $\vdash A$ \# $E(f P)(f Q)$, i.e., $A>E(f P)(f Q)$.
g) Suppose $P \in A^{*}$. By Lemma 2, A \# EPEPEEQEPREEQPR \rightleftarrows A \# EEQEPREEQPR. But by 13) above, $-E P E P E E Q E P R E E Q P R$, so $\vdash A$ \# EPEPEEQEPREEQPR, and hence $\vdash A$ \# EEQEPREEQPR, i.e., $A>$ $E E Q E P R E E Q P R$. The result then follows by f).
Notation: we write ' $\sum_{i=1}^{n} P_{i}$ ' to mean $E P_{1} E P_{2} E \ldots E P_{n-1} P_{n}$. We set this equal to P_{1} if $n=1$, and to any theorem if $n=0$: we will often omit the limits of the index when clear from the context, writing $\sum_{i} P_{i}$ or even $\sum P_{i}$.

We note that $E p E p E q E q E p E q r \rightleftarrows(13)$ EpEpEqEqEEpqr $\rightleftarrows(15,3)$ $E q E q E p E p E E q p r \rightleftarrows(13) E q E q E p E p E q E p r \rightleftarrows(15) E p E p E q E q E q E p r$. Using this and Lemmas $4 \mathrm{~b}, 4 \mathrm{f}, 4 \mathrm{~g}$ and some of the results from section 3 , the following additional properties of $>$ are easily seen:

Lemma 4': Let Q_{1}, \ldots, Q_{n} be a permutation of P_{1}, \ldots, P_{n}, where each $P_{i} \in A^{*}$, and let f be any expression. Then
a) $A>f\left(\sum P_{i}\right)$ iff $A>f\left(\sum Q_{i}\right)$;
b) $A>f\left(E P_{1} E P_{2} E \ldots E P_{n} R\right)$ iff $A>f\left(E \sum P_{i} R\right)$;
c) $A>f\left(E P_{1} E P_{2} E \ldots E P_{n} R\right)$ iff $A>f\left(E Q_{1} E Q_{2} E \ldots E Q_{n} R\right)$.

5 Completeness of the Axiom System Our major goal is to show that $\vdash P$ iff P is a theorem of IE. We have already noted that the axiom and rules of our system hold in IE, so that P is a theorem of IE whenever $\vdash P$. By Theorem 1, it suffices to show that if $\rightarrow P$ is a theorem of GE , then $\vdash P$. We do this by defining a relation $P_{1}, \ldots, P_{n}+Q$ in our system, with the property that $\vdash P$ iff $\Vdash P$. The desired result is then a special case of the fact that if $P_{1}, \ldots, P_{n} \rightarrow Q$ is a theorem of GE , then $P_{1}, \ldots, P_{n}+Q$. To show this, we show that the axioms of GE, when interpreted in this way, become provable in our system, and that this property is preserved by all rules of inference of $G E$. The only difficulties will be the rules $E \rightarrow_{1}$ and $\rightarrow E$, which we dispose of in Theorems 8 and 9 . We will then be able to conclude that $\vdash P$ iff P is a theorem of IE, as desired.

Def: For any finite set A of wffs, we set $A^{\prime}=\{B \# a \mid a \in A, B$ a finite set of wffs $\}$.

We note that $A \subset A^{\prime} \subset A^{*}$. Furthermore, $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}$.
Def: If A is any finite set of wffs, we say ' $A+P$ ' to mean that there are wffs Q_{1}, \ldots, Q_{n}, with each $Q_{i} \in A^{\prime}$, such that $\vdash E Q_{1} E Q_{2} E \ldots E Q_{n} P$. We allow $n=0$ in this definition; thus, if $\vdash P$, then $A+P$.

We write ' $H P$ ' to mean $\phi+P$. Thus, it is clear that $\vdash P$ iff $H P$. We write ' $P_{1}, \ldots, P_{n} H$ ' to mean $\left\{P_{1}, \ldots, P_{n}\right\}+Q$. As noted above, we will show that $P_{1}, \ldots, P_{n}+Q$ whenever $P_{1}, \ldots, P_{n} \rightarrow Q$ is a theorem of GE. Clearly, $P H P$, for any wff P. Equally clearly, the rules Cont and Int of GE preserve H. If $A \subset B$, and $A H P$, then it is clear from the definition of H that $B H P$; thus, the rule Thin also preserves H. The rule $E \rightarrow_{2}$ is an easy consequence of the rule $E \rightarrow_{1}$, when interpreted in terms of H, since we know that $E P Q$ can be substituted for $E Q P$ anywhere, in our system. Thus, we have merely to show that H is preserved by the rules $E \rightarrow_{1}$ and $\rightarrow E$ in order to prove that we do have an axiomatization of IE. This is what we now do, after some preliminary lemmas.
Lemma 5: Suppose $A>E P Q$, and $Q \in A^{*}$. Then $A H P$.
Proof: We use complete induction on the length of Q; suppose the lemma is true for all wffs shorter than Q. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$.

Case 1: $Q \in A$; since $\vdash E a_{1} E a_{1} E \ldots E a_{n} E a_{n} E Q P$, with $a_{i}, Q \in A^{\prime}, A+P$.
Case 2: $Q=E R S$, with $R, S \in A^{*}$; then the lemma is true for R and S by induction hypothesis. We have $A>E E R S P$, with $R, S \in A^{*}$; by Lemma 4', $A>E R E S P$; by ind. hyp., $A+E S P$. Then there are wffs $c_{1}, \ldots, c_{k} \in A^{\prime} \subset A^{*}$ such that $\vdash E c_{1} E \ldots E c_{k} E S P$. We then also have $A>E c_{1} E \ldots E c_{k} E S P$. Since $c_{i}, S \in A^{*}$, we can permute, by Lemma 4^{\prime}, getting $A>E S E c_{1} E \ldots E c_{k} P$. By induction hypothesis, then, $A+E c_{1} E \ldots E c_{k} P$. Then there are wffs $b_{1}, \ldots, b_{m} \in A^{\prime}$ such that $\vdash E b_{1} E \ldots E b_{m} E c_{1} E \ldots E c_{k} P$. Since each b_{i}, $c_{i} \in A^{\prime}$, this shows that $A \Vdash P$, as desired.

Case 3: $Q=B \# E R S$, with $R, S \in A^{*}$. Then $A>E P E B \# R B \# S$, with $B \# R$ and $B \# S$ in A^{*} and shorter than Q. By Case $2, A \sharp P$.

Lemma 6: Suppose $A+P$. Then there is a wff $Q \in A^{*}$ such that $A>E Q P$. Proof: By definition, there are $a_{1}, \ldots, a_{n} \in A^{\prime} \subset A^{*}$ such that $\vdash E a_{1} E .$. . $E a_{n} P$. Let $Q=\sum a_{i}$. By Lemma $4^{\prime}, A>E E a_{1} E \ldots E a_{n} P E Q P$; also, $A>E a_{1} E \ldots E a_{n} P$. By Lemma $4 \mathrm{~b}, A>E Q P$. Also, each $a_{i} \in A^{*}$, so $Q \in A^{*}$, as desired.

Lemma 7: Suppose $A, P H Q$. Then there is a wff $R \in A^{*}$ and finite sets B_{1}, \ldots, B_{n} such that $A>\operatorname{EPEPERE}\left(\sum B_{i} \# P\right) Q$ and $A>E P E P E Q E R \sum$ $B_{i} \# P$.
Proof: There are $a_{1}, \ldots, a_{k} \in(A \cup\{P\})^{\prime}=A^{\prime} \cup\{P\}^{\prime}$ such that $\vdash E a_{1} E \ldots$ $E a_{k} Q$. Then $A, P>E a_{1} E \ldots E a_{k} Q$, with each $a_{i} \epsilon(A \cup\{P\}) *$. Let the a_{i} 's which are in A^{\prime} be b_{1}, \ldots, b_{r}, and let $R=\sum_{i=1}^{r} b_{i}$; then $R \in A^{*}$. Let the other a_{i} 's, which are then in $\{P\}^{\prime}$, be $B_{1} \# P, \ldots, B_{n} \# P$. By Lemma 4^{\prime}, we can permute the a_{i} 's, getting $A, P>E b_{1} E \ldots E b_{r} E B_{1} \# P E \ldots E B_{n} \# P Q$; by Lemma 4^{\prime}, we can now reassociate the a_{i} 's, getting $A, P>E R E\left(\sum B_{i}\right.$ \# $P) Q$, which is equivalent to the first desired form. Now, since $R, \sum B_{i} \#$ $P \in(A \cup\{P\})^{*}$, we can, by Lemma 4^{\prime}, rearrange the terms, getting $A, P>$ $E Q E R \sum B_{i} \# P$, which is equivalent to the other desired form.
Theorem 8: Suppose $A+P$ and $Q, A+R$. Then $E P Q, A+R$.
Proof: By Lemmas 6 and 7 we get
i) $A>E Q E Q E a_{1} E \sum B_{i} \# Q R$, with $a_{1} \in A^{*}$,
ii) $A>E a_{2} P$, with $a_{2} \in A^{*}$.

We apply $\{P\} \#$ to i), by Lemma 4a, and distribute, letting $a_{3}=E P E P a_{1}$; $a_{3} \in A^{*}$:
iii) $A>E E P E P Q E E P E P Q E a_{3} E \sum B_{i} \#(E P E P Q) E P E P R$.

By ii) and iii) and Lemmas 4 f and 4 b , we get
v) $A>E E a_{2} E P Q E E a_{2} E P Q E a_{3} E \sum B_{i} \#\left(E a_{2} E P Q\right) E a_{2} E a_{2} R$.

Now let $a=E E a_{2} E P Q E E a_{2} E P Q E a_{3} E \sum B_{i} \#\left(E A_{2} E P Q\right) E a_{2} a_{2}$; then, since each of $E a_{2} E P Q, a_{3}, a_{2}, B_{i} \#\left(E a_{2} E P Q\right) \in(A \cup\{E P Q\})^{*}$, we see that $a \epsilon(A \cup\{E P Q\})^{*}$, and also that we can reassociate v) to get the following, using rule $*$ and the definition of $>$:
vi) $A, E P Q>E a R$.

By Lemma 5, then, we see that $A, E P Q H R$, as desired.
Theorem 9: Suppose $A, P H Q$ and $A, Q+P$. Then $A H E P Q$.
Proof: In the following, let i and k run from 1 to m; j from 1 to n. Let $B=A \cup\{P, Q\}$. We have, by Lemma 7, since $P \in B$ and $Q \in B$,
i) $B>E Q E a_{1} \sum_{i} C_{i} \# P$ where $a_{1} \in A^{*}$,
ii) $B>E P E a_{2} \sum_{j} D_{j} \# Q$ where $a_{2} \in A^{*}$.

For each j, we apply $D_{j} \#$ to i), getting
iii) $B>E D_{j} \# Q E D_{j} \# a_{1} \sum_{i}\left(C_{i} \cup D_{j}\right) \# P$, for each j.

By ii) and iii) and Lemmas 4 b and 4 f , we can 'substitute,' getting
iv) $B>E P E a_{2} \sum_{j}\left(E D_{j} \# a_{1} \sum_{i}\left(C_{i} \cup D_{j}\right) \# P\right)$;
so, since $P, a_{1} \in B^{*}$, we get, by Lemma $4^{\prime}, B>E P E a_{2} E \sum_{j} D_{j} \# a_{1} \sum_{i, j}$ $\left(C_{i} \cup D_{j}\right) \# P$; letting $a_{3}=E a_{2} \sum_{j} D_{j} \# a_{1} \in A^{*}$, we get, by Lemma 4^{\prime},
v) $B>E P E a_{3} \sum_{i, j}\left(C_{i} \cup D_{j}\right) \# P$.

Applying $C_{k} \#$, we get: For each $k, B>E C_{k} \# P E C_{k} \# a_{3} \sum_{i, j}\left(C_{i} \cup D_{j} \cup C_{k}\right) \# P$,
i.e.,
vi) $B>E C_{k} \# P E C_{k} \# a_{3} E \sum_{j}\left(C_{k} \cup D_{j}\right) \# P \sum_{\substack{i, j \\ i \neq k}}\left(C_{i} \cup D_{j} \cup C_{k}\right) \# P$, for each k.

But by i), $B>E Q E a_{1} \sum_{k} C_{k} \# P$; summing over k, using vi) and Lemmas 4', $4 \mathrm{~b}, 4 \mathrm{f}$, we see that $B>E Q E a_{1} E \sum_{k} C_{k} \# a_{3} E \sum_{j, k}\left(C_{k} \cup D_{j}\right) \# P \sum_{\substack{i, j, k \\ i \neq k}}\left(C_{i} \cup D_{j} \cup\right.$ $\left.C_{k}\right) \# P$. But $B>\sum_{\substack{i, j, k \\ i \neq k}}\left(C_{i} \cup D_{j} \cup C_{k}\right) \# P$, by Lemma 4^{\prime}, since each term appears exactly twice. By Lemma 4a, then, $B>E E \sum_{j, k}\left(C_{k} \cup D_{j}\right) \# P \sum_{\substack{i, j, k \\ i \neq k}}\left(C_{i} \cup\right.$ $\left.D_{j} \cup C_{k}\right) \# P \sum_{j, k}\left(C_{k} \cup D_{j}\right) \# P$, and hence, by Lemmas 4', 4b, 4f, letting $a_{4}=$ $E a_{1} \sum_{k} C_{k} \# a_{3} \in A^{*}$, we get $B>E Q E a_{4} \sum_{j, k}\left(C_{k} \cup D_{j}\right) \# P$. Using v) and Lemma 4 e , we see that $B>E E P Q E E a_{3} \sum_{j, k}\left(C_{k} \cup D_{j}\right) \# P E a_{4} \sum_{j, k}\left(C_{k} \cup D_{j}\right) \# P$. Since $a_{3}, a_{4}, \sum_{k, j}\left(C_{k} \cup D_{j}\right) \# P \epsilon B^{*}$, we can reassociate, by Lemma 4', getting $B>$ $E E P Q E a_{3} a_{4}$. Letting $a_{5}=E a_{3} a_{4} \in A^{*}$, we see that $B>E a_{5} E P Q$. Since $B=$ $A \cup\{P, Q\}$, we have $A>E P E P E Q E Q E a_{5} E P Q$, so by Lemma $4 \mathrm{~b}, A>$ EEPEPEQEQa $a_{5} E P E P E Q E Q E P Q$. But
$E P E P E Q E Q E P Q \rightleftharpoons E P E P E Q E Q E Q P \rightleftharpoons(10$ above $) E P E P E Q P \rightleftharpoons E P E P E P Q \rightleftharpoons$ (10) $E P Q$.

Thus, letting $a=E P E P E Q E Q a_{5}$, we see that $a \in A^{*}$ and $A>E a E P Q$. By Lemma 5, then, $A+E P Q$, as desired.

As noted before, Theorems 8 and 9 give us the following results:
Theorem 10: $P_{1}, \ldots, P_{n}+Q$ iff $P_{1}, \ldots, P_{n} \rightarrow Q$ is a theorem of $\mathbf{G E}$. Theorem 11: For any $E-w f f P, \vdash P$ iff P is a theorem of IE.
6 Further Remarks To help the intuition, we note that $E E p E p E q E q r E K p q E K p q r$ is a theorem of the full intuitionistic propositional calculus; many of the wffs we used follow quite easily from this. For
instance, since $C C p q E p K p q$ is intuitionistically valid, it follows that $C C p q E E p E p E q E q r E p E p r$ is also. Since CpEqEqp is also intuitionistically valid, for instance, then, so is EEPEpEEqEqpEEqEqprEpEpr. And, since $E K p q K q p$ is a theorem of the intuitionistic system, so is EEpEpEqEqrEEqEqEpEpr.

Our axiom is essentially built up of three wffs: i) EEpqEqp; ii) $E E p E p E q r E E p q E p r$; and iii) $E E E q E q p E E q E q p E p E p r E p E p r$. If we were to take i) and ii) as axioms, with the same rules as before, we would get a very large subsystem of $I E$; in fact, all of the numbered wffs in section 3 would be provable with the exception of number 8. That iii) is actually independent of i) and ii) can be shown using the following matrix:
The values are $0, a, 1+, 1-, 2+, 2-, \ldots$, with 0 the designated value. For any values x and y, Exy $=E y x ; E x x=0$; and $E 0 x=E x 0=x$. For $n=1$, 2, . . ., $E a(n \pm)=n \mp$, and $E(n \pm)(n \mp)=((n+1)-)$. Also, if $m<n$, then $E\left(m_{ \pm}\right)\left(n_{ \pm}\right)=(m+)$, and $E\left(m_{ \pm}\right)(n \mp)=(m-)$. It seems to me that this subsystem would be of great value in any search for a shortest sole axiom of IE. I conjecture that rule $*$ is necessary, in the sense that there is no finite axiomatization of IE in which the only rules are substitution and MP. I have not succeeded in proving this, however.

University of Chicago
Chicago, Illinois

[^0]: ${ }^{1}$ For more about the construction of the axiom, see section 6 .

