
448
Notre Dame Journal of Formal Logic
Volume XIV, Number 4, October 1973
NDJFAM

ON THE INTUITIONISTIC EQUIVALENTIAL CALCULUS

ROBERT E. TAX

1 Introduction We consider first the fragment ICE of the intuitionistic
propositional calculus which consists of all wffs in which the only connec-
tives are C (implication) and E (equivalence). We then consider the
fragment IE of this system. From the Gentzen system GCE corresponding
to ICE, we construct a Gentzen system GE corresponding to IE, thus
obtaining a characterization of IE which makes no reference to an implica-
tional system. We then look at an axiomatization and, using GE, show that
it does indeed constitute an axiom system for IE.

2 The Systems The system ICE is defined as follows: The wffs of ICE are
those constructed of propositional variables and two binary connectives, C
and E. The rules of inference are substitution and Modus Ponens (from P
and CPQ we can derive Q). There are five axioms:

1) CpCqp

2) CCpCqrCCpqCpr

3) CEpqCpq

4) CEpqCqp

5) CCpqCCqpEpq.

We define IE to be the equivalential fragment of ICE. We now construct
a Gentzen system GCE corresponding to ICE: A sequent of GCE is to be
any expression of the form Pl9 . . ., Pn -* Q, where Pl9 . . ., Pn, and Q are
wffs of ICE, and n — 0. An axiom of GCE is to be any sequent of the form
P —> P. There are nine rules of inference, as follows (where Γ and Δ
represent arbitrary sequences, possibly empty, of wffs of ICE):

Γ-^P Q,T-*R P, Γ-* Q
CPQ,Γ->R # Γ — C P Q

Γ-* P Q, Γ-» R _ ^ Γ -> Q P, Γ -> R

~* i : EPQ, Γ — R ~ V ' EPQ, Γ — R

_ E . p> Γ - Q Q> Γ -* p

""* " Γ -> EPQ
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TL
 Γ " P P, P, Γ -> Q

T h m : Q , Γ - P C ° n t : P,Γ-Q

. T,P,Q, A^R Γ-*P P, T-*Q
l n t : Γ,Q,P,A^R C υ t : F = ^ ~

It is easily seen that GCE corresponds to ICE, in the sense that a
sequent Pu . . ., Pn -* Q is provable in GCE iff the wff CPiCP2C . . . CPWQ
is provable in ICE. Furthermore, just as in other Gentzen systems, the cut
rule is optional. We define an £-wff to be a wff whose only connective is E,
and an ̂ -sequent to be a sequent which is made up of E-wffs. Suppose that
S1 is transformed by rule L to S2, where Sx and S2 are sequents, and L is
not the cut rule. If S2 is an ^-sequent, it is clear from the form of the
rules that L cannot be C—» or —>C, and that Sx must be an ̂ -sequent. Given
a proof of an ̂ -sequent in GCE, then, there is a proof of this sequent which
does not use the cut rule; this proof must then consist of E-sequents, and
the rules C—> and —>C will not appear in it. We can therefore form a
Gentzen system GE, whose sequents and axioms are precisely those
sequents and axioms of GCE which are £~sequents, and whose only rules of
inference are E-*l9 E-*2, —>E, Thin, Int, and Cont.

Then an ^-sequent Pl9 . . ., Pn -* Q will be provable in GE iff the wff
CPiCPzC . .CPnQ is provable in ICE. In particular, we have the following:

Theorem 1: If P is an E-wff, then --»P is provable in GE iff P is a theorem

of IE.

We thus have a characterization of IE which makes no reference to any
system which uses a connective other than E. We will use this to prove
that the axiom system we now construct is sufficient to prove all theorems
of IE.

3 The Axiom System We now construct an axiom system for IE.1 There is
to be one axiom: EEEqEqpEEqEqpEpEpErsEEpsErp. There are to be three
rules: i) substitution for propositional variables; ii) Modus Ponens (MP):
from EPQ and P we can deduce Q; and iii) Rule *: from P we can deduce
EQEQP.

We denote provability in this system by ' h \ It is easily seen that the
axiom and the rules are provable in ICE, and hence hold in IE. Suppose
V-EPQ\ by rule *, y-EESESREESESREREREPQ; by the axiom and MP, then,
\-EERQEPR. We thus have shown the following:

1) If \-EPQ, then hEERQEPR.
Let EPQ be any theorem; by rule *, \-EpEpEPQ; by 1), \-EEpEpEPQEpp;
so, by MP,

2) hEpp.
3) By 1) and 2), we have \-EEqpEpq.

Def: we write 'P z± Q' to mean hEPQ.

1For more about the construction of the axiom, see section 6.
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By 2), pτ±p. If P^Q, then KEPQ, so, by 3) and MP, \-EQP, i.e.,
Q <=* P. By 1) and MP, we see that if P <=* Q and R z* Q, then P ^ R. But
R «=» Q if Q ̂  # ; so, if P ^ Q and Q ;=? R, then also P^ R. Thus,

4) £=? is an equivalence relation.

By 1), if P Ϊ=> Q then £βQ «=* £ P # ; since £Qi? «=? ERQ and £Pi? ^ £ # P ,
we get, by 4),

5) If P ^ Q, then £ P # ^ EQR and £ # P ̂  £#Q.

It follows that if P ^ Q and R ϊ± S, then EPR z+ EQR ^ EQS.

Def: By an expression in ply . . ., pn, where each p{ is a propositional
variable, we mean a wff containing no variable other than pu . . ., pn. If
f(Pu •> ί«) i s a n expression in />i, . . ., ίw, we denote by f(Pl9 . . ., Pn) the
result of substituting P t for />t in/(/>!, . . ., pn), for each z between 1 and n.
Similarly, if/ is any expression containing p, we denote by f(P) the result
of substituting P for p in /.

From 5), using induction on the length of the expression, we obtain:

6) If / is any expression, and if P ^ Q, then also f(P) <=± f(Q).

We will write f P ^ (n)Q' to mean that ' P ^ Q' follows from statement
number n. We will not, however, mark in this way reference to numbers 3)
and 6); use of any other statement will be marked in this way.

7) Letting θ denote any theorem, we have, by rule *, P ^ EPΘ.
8) EEqEqpEEqEqpEpEpr ^ (7) EEqEqpEEqEqpEpEpErθ z*

(Δx)EEpθErp i=> (7) EpEpr.
9) EpEpErs z* (8) EEqEqpEEqEqpEpEpErs ^ (Ax) EEpsErp ϋ? EEprEps.

10) EpEpEpq z* (9) EEppEpq ^ ( 2 , 7 ) ££<?.
11) EpEpEqr^ (10) EpEpEpEpEqr ^(9) EpEpEEpqEpr ^ (9) EEpEpqEpEpr.
12) By induction, using 11), we see that if/ is any expression in/?!,. . ., />„,

then EqEqfiPu . ., Pn) ̂ /(EqEqPl9 . . ., EqEqpn).
13) EqEqEpEqr τ± (11) EEqEqpEqEqEqr ^ (10) EEqEqpEqr z± (9)

EqEqEEqpr «=• EqEqEEpqr.

EEpqEpEqEqp Ϊ+ (9) EpEpEqEqEqp ί=? (10) EpEpEqp ϊ± EpEpEpq iz?
(10) E/)^; SO hEEpqEEpqEpEqEqp; by (9), hEEEpqpEEpqEqEqp; also,
EEpqEqEqp i=? EEqpEqEqp ί=* (9) EqEqEpEqp τϊ EqEqEpEpq; so

14) EqEqEpEpq ^ EEqpEqEqp ^ EpEpq.

In this paragraph only, let # be EpEpq, and let S be EqEqp. We then
see that EEpEpqEqEqp ^ EEEpqpEEpqq ^ (9) EEpqEEpqEpq ^ (2, 7) ££<?:
i.e., £i?S τlEpq. It follows that ERERS ^ EEpEpqEpq ^ (14) E^E^/) = S:
so a) ERERS ^ S. Furthermore, we have that EEpEpqEEpEpqp ^
EEpEpqEpEpEpq ίz (10) EEpEpqEpq ^ (14) EqEqp: i.e., b) ERERp zz S.
So EpEpEqEqr zz (12) EEpEpqEEpEpqEpEpr = EREREpEpr zz (12)
EERERpEERERpERERr zz (b) ESESERERr. Similarly, EqEqEpEpr ^
ERERESESr. But we can also see that ERERESESr zz (12)
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EERERSEERERSERERr τ± (a) ESESERERr. As a result, we have proved
the following:

15) EpEpEqEqr «=* EqEqEpEpr.

EqEqEEpqEEpqr ^ (11) EEqEqEpqEqEqEEpqr ^ (13)
EEqEqEpqEqEqEpEqr τ± (11) EqEqEEpqEpEqr «ϋ (9) EqEqEpEpEqEqr <=t
(15) EpEpEqEqEqEqr <=* (10) EpEpEqEqr, Since we also know, by 10), that
EpEpEpEpEqEqr <=? EpEpEqEqr we have the following:

16) EpEpEqEqEEpqEEpqr ^ EpEpEqEqr.

Def: For any finite set of wffs A = {α1? . . ., αw}, define a function A# by
setting A#P = Ea1Ea1Ea2Ea2E . . . EanEanP; if A = 0, set A#P=P. We will
sometimes write Ά # (P)' to mean A # P.

By 10) and 15) above, this expression is independent of the order and
possible repetitions of the «*, so A* is well-defined, up to the equivalence
relation ^ . We will use the letters A and B to refer to finite sets of wffs.
We see that for any finite sets A and B of wffs, A # B % P z* (A u B) # P.
Also, by induction on 12) above, we see that for any expression / in
Pi, .,pn w e have A #f(pl9 . . ., pn)^f(A # pl9 . . ., A ϋ pn).

4 Some Consequences For any finite set A of wffs, we define A* to be the
smallest set containing A and which is closed under E and rule *, i.e.,
which satisfies the two conditions: i) if P, QeA*, then EPQeA*; and
ii) if Pe A*, then EQEQPe A*. Note that if Pe A*, then Bϋ Pe A*.

Lemma 2: If Pe A*, ftew A # EPEPQ ^ A # Q.

Proof: We use induction on the length of P. From the definition of A*? it
is clear that we must consider three cases:

Case 1: P e A. Then A # EPEPQ ^ A ϋ {P} # Q ̂  (A U {P}) # ζ> ^ A # Q,
since A u {P} = A.

Case 2: P = £i?S, with R, Se A*. The lemma then holds for i? and S.
Then A # EPEPQ =A§ EERSEERSQ ^ (ind. hyp.) A # ERERESESEERSEERSQ
^ (16) A # ERERESESQ ^ (ind. hyp.) A W Q.

Case 3: P = ERERS, with SeA*. The lemma then holds for S. Then
A # EPEPQ =A§ EERERSEERERSQ ί=? (ind. hyp.) A # ESESEERERSEERERSQ
ϊ* (8, 15) A ̂  ESESQ ί=? (ind. hyp.) A ̂  Q, proving the lemma.

Lemma 3: // Λ c β c A*, w/tere A αnc? ^ are finite sets of wffs, then
A # Pτ±B% P.

Proo/: Let E = A u {bl9 . . ., 6W}, with each b{ e A*. Then, using Lemma 2
n times, 5 $ P ^ A ΰ Ebβbβ . . . EbnEbnP ^*Aήf P.

Def: If A is a finite set of wffs, we write (A > P ' to mean that h A # P.

Lemma 4: Z1/?̂  following properties of > fo?Zd;

a) if A > P, ^erc A> B# P;

b) z/A > £PQ flnί? A> P, then A > Q;
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c) if A > EPQ then A > EEPREQR and A > EERPERQ;
d) if A > EPQ andA> EQR then A > EPR;
e)ifA> EPQ and A > ERS then A > EEPREQS;
f) iffis an expression and A > EPQ, then A > E(fP)(fQ);

g) if PeA*, then A > Ef(EQEPR) f(EEQPR), for any expression f

Proof: a) If A > P, then hA # P; using rule *, KB # A # P, so hA # J5 # P,
i.e., A > J5# P.

b) If A > EPQ, then hA # £PQ, so hEA # PA# Q. If also A > P, then
hA # P. By MP, hA # Q, i.e., A> Q.

c) Suppose A > EPQ; by a), A > EREREPQ. But, by 9) of section 3,
\-EEREREPQEERPERQ, so, a p p l y i n g rule * s e v e r a l times, A >
EEREREPQEERPERQ. By b), then, A > EERPERQ. Similarly, A >
EEPβEQβ.

d) If A > EPQ, then A > EEPREQR by c), so A > EEQREPR. If also
A > £Q#, then A > EPR by b).

e) If A > EPQ, then A > EEPREQR by c). If A > EΛS, then A >
EEQREQS, again by c). By d), then, if A > EPQ and A>ERS, then
A > EEPREQS.

f) If / is an expression and A > EPQ, then hA # EPQ. Let /(/>) be
£"(£> <7i> •> 4n)> where £* is an expression in p, qu . . ., qn. Then /(P) =
g(P, #i> •> <7«)> so? b y an obvious induction applied to 12) above, A ^ fP^
g(A#P,A#ql9 . . .,A#<?J. Similarly, A %fQ^g{A#Q, A # qu . . . , A # # W ) .
Then, using 9) above, A # E(fP)(fQ) ^ EA # fPA #/Q ^ E^(A # P,
A # <?!, . . ., A # #W)£ (A # Q, A # #!, . . ., A # #n). Since hA #EPQ, also
hEA # PA # Q, so this last wff in the chain is a theorem, by property 6)
above; so hA # E(fP)(fQ), i.e., A >E(fP)(fQ).

g) Suppose P e A*. By Lemma 2, A # EPEPEEQEPREEQPR τ±
A # EEQEPREEQPR. But by 13) above, hEPEPEEQEPREEQPR, so
hA # EPEPEEQEPREEQPR, and hence hA # EEQEPREEQPR, i.e., A >
EEQEPREEQPR. The result then follows by f).

Notation: we write *ΣJ Pi9 to mean EP1EP2E . . . EPn-τPn. We set this
1 = 1

equal to Px if w = 1, and to any theorem if n = 0: we will often omit the
limits of the index when clear from the context, writing Σ) P{ or even^) P{.

i

We note that EpEpEqEqEpEqr τ* (13) EpEpEqEqEEpqr Ϊ=* (15, 3)
EqEqEpEpEEqpr ^ (13) EqEqEpEpEqEpr τz (15) EpEpEqEqEqEpr. Using
this and Lemmas 4b, 4f, 4g and some of the results from section 3, the
following additional properties of > are easily seen:

Lemma 4 f: Let Ql9 . . ., Qn be a permutation of Pu . . ., Pn, where each
P t € A*, and let f be any expression. Then

a) A > / ( C Pf ) iff A >f(Σ Q*);
b) A>f{EP,EP2E . . . EPW#) iffA>f{EΣ PiR)
c) A>f(EP1EP2E . . . EPW#) z#A >f(EQ1EQ2E . . . EQW#).
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5 Completeness of the Axiom System Our major goal is to show that hP
iff P is a theorem of IE. We have already noted that the axiom and rules of
our system hold in IE, so that P is a theorem of IE whenever \-P. By
Theorem 1, it suffices to show that if —»P is a theorem of GE, then \-P.
We do this by defining a relation Pl9 . . .,Pn u-Q in our system, with the
property that HP iff π-p. The desired result is then a special case of the
fact that if Pl9 . . ., Pn— Q is a theorem-of GE, then Pu . . ., Pnu-Q. To
show this, we show that the axioms of GE, when interpreted in this way,
become provable in our system, and that this property is preserved by all
rules of inference of GE. The only difficulties will be the rules E —>x and
-*E, which we dispose of in Theorems 8 and 9. We will then be able to
conclude that \-P iff P is a theorem of IE, as desired.

Def: For any finite set A of wffs, we set A1 = {B H a\ aeA, B a finite set of
wffs}.

We note that A c A' c A*. Furthermore, (AuB)' = A'uB'.

Def: If A is any finite set of wffs, we say Ά H-P' to mean that there are
wffs Ql} . . ., Qn, with each QieA', such that hEQ1EQ2E . . . EQnP. We
allow n = 0 in this definition; thus, if HP, then A H-P.

We write 'H-P' to mean φu-P. Thus, it is clear that \-P iff H-P. We
write *PU . . ., Pn"-Q' to mean {Pl9 . . ., P»}H-Q. AS noted above, we will
show that Pl9 . . ., P«H-Q whenever Ply . . ., P»—» Q is a theorem of GE.
Clearly, PH-P, for any wff P. Equally clearly, the rules Cont and Int of GE
preserve H-. If A C B, and A H-P, then it is clear from the definition of H-
that JBH-P; thus, the rule Thin also preserves H-. The rule E —>2 is an easy
consequence of the rule E —>ly when interpreted in terms of H-, since we
know that EPQ can be substituted for EQP anywhere, in our system. Thus,
we have merely to show that H-is preserved by the rules E —>x and —> E in
order to prove that we do have an axiomatization of IE. This is what we
now do, after some preliminary lemmas.

Lemma 5: Suppose A > EPQ, and Qe A*. Then AH-p.

Proof: We use complete induction on the length of Q; suppose the lemma is
true for all wffs shorter than Q. Let A = {al9 . . .,αw}.

Case 1: Q eA; since \-EaxEaxE . . . EanEanEQP, with aif QeA',AH- P.
Case 2: Q = ERS, with R, SeA*; then the lemma is true for R and S by

induction hypothesis. We have A > EERSP, with R, SeA*; by Lemma 4',
A > ERESP; by ind. hyp., AH-ESP. Then there are wffs cu . . ., cke A' c A*
such that \-EciE . . . EckESP. We then also have A > Ec^ . . . EckESP.
Since ct , Se A*, we can permute, by Lemma 4', getting A > ESEcγE. .. EckP.
By induction hypothesis, then, AH-EC^E . . . EckP. Then there are wffs .
bu . . ., bme A1 such that \-EbίE . . . EbmEcxE . . . EckP. Since each 6f ,
Cι e A', this shows that A H-P, as desired.

Case 3: Q = B # ERS, with ft, SeA*. Then A > EPEB # ft£ # S, with
J5 # ft and 5 # S in A* and shorter than Q. By Case 2, A H- P.



454 ROBERT E. TAX

Lemma 6: Suppose An-p. Then there is a wff Qe A* such that A > EQP.

Proof: By definition, there are au . . ., ane Af c A* such that \-EaxE . . .
EanP. Let Q = E «f. By Lemma 4', A > E EaγE . . . EanPEQP; also,
A > EaxE . . . EonP. By Lemma 4b, A > EQP. Also, each en e A*, so Qe A*,
as desired.

Lemma 7: Suppose A, PH-Q. Then there is a wff Re A* and finite sets
Bl9 . . ., Bn such that A > EPEPERE ( Σ B{ # P) Q and A> EPEPEQERTJ

Bi # P.

Proo/: There are al9 . . ., ak e (A u {P})f = Af u {P}f such that \-EaxE . . .
EakQ. Then A, P > E α ^ . . . EakQ, with each a{ e (A U {P})*. Let the a{'s

r

which are in Af be δ1? . . ., br, and let R = Σ b4; then Re A*. Let the other
ί = l

αz 's, which are then in {p}f, be 5i ^ P, . . ., £ w # P. By Lemma 4', we can
permute the «/Js, getting A, P > EbxE . . . EbrEBx # PE. . . EBn # PQ; by
Lemma 4', we can now reassociate the flf's, getting A, P > £ # £ (Σ) ̂ z #
p)Q, which is equivalent to the first desired form. Now, since R, Σ ^ ' #
Pe (A U {P})*, we can, by Lemma 4', rearrange the terms, getting A, P >
EQER Σ) B,- # P, which is equivalent to the other desired form.

Theorem 8: Suppose AH-P and Q, AH- β. Then EPQ, A*-R.

Proof: By Lemmas 6 and 7 we get

i) A > EQEQEa^Σ B{ % QR, with αχ€ A*,
ii) A > Ea2P, withα2eA*.

We apply {P}=fi to i), by Lemma 4a, and distribute, letting a3 = EPEPaύ
a3eA*:

iii) A > EEPEPQEEPEPQEa^EΣ Bi ϋ (EPEPQ) EPEPR.

By ii) and iii) and Lemmas 4f and 4b, we get

v) A > EEa2EPQEEa2EPQEa3EΣ B{ § (Ea2EPQ) Ea2Ea2R.

Now let a = EEa2EPQEEa2EPQEa3EΣ/ Bi W (EA2EPQ) Ea2a2; then, since each
of Ea2EPQ, a3, a2, B{# (Ea2EPQ) e (A U {EPQ})*, we see that ae (A U {EPQ})*,
and also that we can reassociate v) to get the following, using rule * and the
definition of >:

vi) A, EPQ > EaR.

By Lemma 5, then, we see that A, EPQ H-β, as desired.

Theorem 9: Suppose A, PH-Q andA, Qu-P. ThenA*-EPQ.

Proof: In the following, let i and k run from 1 to m; j from 1 to n. Let
B = A u {P, Q}. We have, by Lemma 7, since P e 5 and Q e £,

i) E > EQEaxY) Ciϋ P where fl^e A*,

ii) # > EPEa2 JJ DJ% Q where α2 e A*.
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For each j , we apply Z>; # to i), getting

iii) B > EDjti QEDjΰ a1 Σ (C U Df) # P, for each j .

By ii) and iii) and Lemmas 4b and 4f, we can 'substitute,' getting

iv) B > EPEa2 Σ (EDj# a,Σ (Q U DΊ) % P ) ;

s o , s i n c e P , a λ e B * , w e g e t , b y L e m m a 4 ' , B > E P E a 2 E Σ D j $ a γ Σ

(C{ \jDj)#P; letting a3 = Ea2Σ Dj ΰ a^A*, we get, by Lemma 4',

v) B > EPEa3 Σ (C{ U Z>7 ) # P.

Applying Ck=H, we get: For each k, B > ECk%PECk W a3 Σ (Cf U Dj U Ck)%P,

i .e . , ''/'

vi) B> ECk% PECkia3E Σ (Ck U Dj) I ? Σ (C, U D ; U Ck) ϋ P, for each k.

ϋk

But by i), B > EQEa^Σ Ck# P\ summing over k, using vi) and Lemmas 4',

4b, 4f, we see that B > EQEaλE Σ Q J a3E Σ (Ck U Dj)4IP Σ (Q U Z), U
k j,k i,j,k

itk

Ck)HP. But B> Σ ( Q U D U C ^ I P , by Lemma 4', since each term
i.j.k

itk

appears exactly twice. By Lemma 4a, then, B > EE Σ (QU £>,-)# P Σy ( c t U

.Dy u Ck)$ PΣ (Cku Df)§ P, and hence, by Lemmas 4 f, 4b, 4f, letting α4 =
/.*

Eax Σ Ck$ a3 € A*, we get 5 > £Q£α4 Σ (CΛ U D ) # P. Using v) and Lemma

4e, we see that B> EEPQEEa3Σ (CkUDj)H PEa4Σ (CkUDj)ϋP. Since

a3> a4, Σ (Ck^Dj)^ Pe B*, we can reassociate, by Lemma 4 f, getting B>
k,j

EEPQEa3a4. Letting a5 = Ea3a4eA*, we see that B > Ea5EPQ. Since B =
A u {P, Qj, we have A > EPEPEQEQEa5EPQ, so by Lemma 4b, A >
EEPEPEQEQa5EPEPEQEQEPQ. But

EPEPEQEQEPQ +=* EPEPEQEQEQP ^ (10 above) EPEPEQP ^ EPEPEPQ τ=i

(10) £PQ.

Thus, letting « = EPEPEQEQa5, we see that αe A* and A > EaEPQ. By
Lemma 5, then, A H- EPQ, as desired.

As noted before, Theorems 8 and 9 give us the following results:

Theorem 10: Pi, . . ., Pn"-Q iff Pl9 . . ., Pn— Qis a theorem of GE.
Theorem 11: For any E-tvff P, HP iff P is a theorem of IE.

6 Further Remarks To h e l p the i n t u i t i o n , we n o t e t h a t
EEpEpEqEqrEKpqEKpqr is a theorem of the full intuitionistic propositional
calculus; many of the wffs we used follow quite easily from this. For
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instance, since CCpqEpKpq is intuitionistically valid, it follows that
CCpqEEpEpEqEqrEpEpr is also. Since CpEqEqp is also intuitionistically
valid, for instance, then, so is EEpEpEEqEqpEEqEqprEpEpr. And,
since EKpqKqp is a theorem of the i n t u i t i o n i s t i c system, so is
EEpEpEqEqrEEqEqEpEpr.

Our axiom is essentially built up of three wffs: i) EEpqEqp;
ii) EEpEpEqrEEpqEpr; and iii) EEEqEqpEEqEqpEpEprEpEpr. If we were
to take i) and ii) as axioms, with the same rules as before, we would get a
very large subsystem of IE; in fact, all of the numbered wffs in section 3
would be provable with the exception of number 8. That iii) is actually
independent of i) and ii) can be shown using the following matrix:
The values are 0, α, 1+, 1-, 2+, 2-, . . ., with 0 the designated value. For
any values x and y, Exy = Eyx; Exx = 0; and EOx = ExO = x. For n = 1,
2, . . ., Ea(n±) = nψ, and E(n±)(nτ) = ((n + 1)-). Also, if m < n, then
E(m±)(n±) = (m+), and E{m±){m) = (ra-). It seems to me that this subsystem
would be of great value in any search for a shortest sole axiom of IE. I
conjecture that rule * is necessary, in the sense that there is no finite
axiomatization of IE in which the only rules are substitution and MP. I have
not succeeded in proving this, however.
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