A STRONGER THEOREM CONCERNING THE NON-EXISTENCE OF COMBINATORIAL DESIGNS ON INFINITE SETS

WILLIAM J. FRASCELLA

The aim of the present paper is to show that certain combinatorial designs on infinite sets cannot exist. To be precise we introduce the following terminology. If M is a set and p a cardinal number $\leq \overline{\bar{M}}$ (the cardinal number of M) then $[M]^{\rho}$ is the collection of all subsets of M having cardinality p.

Definition 1. A family F is called a p-tuple family of M if and only if (i) $F \subset[M]^{p}$ and (ii) $x, y \in F$ and $x \subset y$ implies $x=y$.

Definition 2. Let F and G be two families of subsets of M. G is called a Steiner cover of F if and only if for every $x \in F$ there is exactly one $y \in G$ such that $x \subset y$.

It is now possible to state the main result of the present paper.
Theorem 3. Let α, β and γ be ordinal numbers such that
(i) $\alpha<\beta<\gamma$
(ii) $\operatorname{cf}\left(\omega_{\gamma}\right) \leq \omega_{\alpha}$
(iii) $\boldsymbol{\aleph}_{\beta}^{\aleph} \alpha \leq \aleph_{\gamma}$.

Then, in every set M of cardinality \aleph_{γ} there exists an \aleph_{α}-tuple family F of M such that there does not exist a family $G \subset[M]^{\aleph_{\beta}}$ which is a Steiner cover of F.
N.B. It should be noted that this result subsumes the main result of [1] (denoted there as Theorem 6) and [2] (denoted as Theorem 4) as special cases. It should also be noted that the proofs offered for both of these results contain errors. This fact was kindly pointed out to me by Professor E. C. Milner of the University of Calgary, Alberta, Canada, whom the present author wishes to take this opportunity to thank.

We begin with some preliminaries.
Definition 4. Let F and G be families of subsets of M and n a non-zero cardinal number. G is called an n-spoiler of F if and only if for every $x \in F$ and every $y \in[M]^{n}$ there is a $z \in G$ such that $z \subset x \cup y$.

Lemma 5. Let k and n be infinite cardinal numbers and let F be a k-tuple family of an infinite set M. Suppose there exists subfamilies $F_{1}, F_{2}=F$ such that (i) F_{2} is an n-spoiler of F_{1} and (ii) $n^{k} \overline{\overline{F_{2}}}<\overline{\overline{F_{1}}}$. Then, F does not possess a Steiner cover contained in $[M]^{n}$.

Proof. To the contrary suppose there is a Steiner cover G of F which is contained in $[M]^{n}$. We will arrive at a contradiction by showing
(*) $\left(x_{0} \in F_{1}\right)\left(\forall x^{\prime} \in F_{2}\right)\left[x_{0}\right.$ and x^{\prime} are not subsets of the same member of $\left.G\right]$
If we can establish $\left(^{*}\right)$ we can derive a contradiction as follows. Let y_{0} be that unique member of G such that $x_{0}=y_{0}$. Since $x_{0} \in F_{1}, y_{0} \in[M]^{n}$ and F_{2} is an n-spoiler of F_{1} it must be that there exists some $x^{*} \in F_{2}$ such that $x^{*}=x_{0} y_{0}$. But $x_{0}=y_{0}$. Hence $x^{*}=x_{0} y_{0}=y_{0}$. This forces x_{0} and x^{*} (a member of F_{2}) to both be subsets of the same member y_{0} of G, thus contradicting (*).

To see that $(*)$ holds let G^{\prime} be defined as the set of all those members of G which contain, as a subset, at least one member of F_{2}. Now each member of G^{\prime} is a set of cardinality n and therefore can contain at most n^{k} subsets of cardinality k. Thus, since each member of G^{\prime} must contain as a subset a member of F_{2} it follows that the total number of members of F which are contained in some member of G^{\prime} cannot exceed $n^{k} \overline{\bar{F}}_{2}$. But by (ii) it then must be the case that there is some member x_{0} of F_{1} not contained in any member of G^{\prime}. Such an x_{0} will satisfy (*). This completes the proof of Lemma 5.

Proof of Theorem 3. On the strength of hypotheses (i)-(iii) it is possible to construct an increasing sequence of ordinal numbers $\{\alpha=\}$: cf(0, , such that
(1) $\boldsymbol{N}_{3}=\sum_{c f(0,)} N_{\alpha}$
and
(2) $\boldsymbol{N}_{3} \leq \boldsymbol{N}_{\alpha}<\boldsymbol{N}_{3}$ for all $\xi<\operatorname{cf}\left(\omega_{3}\right)$.

Thus we can find sets $\left\{M_{z}\right\}=$ cf((0)) such that
(3) $M=\bigcup\left\{M_{z} \mid \xi<\operatorname{cf}\left(\omega_{\imath}\right)\right\}$
(4) $\overline{\bar{M}}=\aleph_{\alpha}$.
and
(5) $M I_{1} \quad M_{2}=0$ whenever $\xi_{1} \neq \varepsilon_{2}$.

For each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right)$ let $F_{=}^{\prime}$ be any collection of pairwise disjoint subsets of M: such that
(6) $F_{z}^{\prime}=[M=]^{\text {" } \alpha}$
and
(7) $\overline{\overline{F_{=}^{\prime}}}=\overline{\overline{I_{=}}}=\kappa_{\alpha=}$.

That such $F^{\prime}=$ exist is guaranteed by the fact that $\aleph_{\alpha_{z}} \aleph_{\alpha_{z}}=\aleph_{\alpha_{\xi}}$.

Definition 6. Two elements p and q of M_{ξ} are said to be independent if and only if they are not members of the same element of F_{ξ}^{\prime}.

Definition 7. For each $\xi<\operatorname{cf}\left(\omega_{y}\right)$ let

$$
P_{\xi}=\left\{\{p, q\} \in\left[M_{\xi}\right]^{2} \mid p \text { and } q \text { are independent }\right\} .
$$

Clearly for each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right)$
(8) $\overline{\overline{P_{\xi}}} \leq \overline{\overline{M_{\xi}}}=\kappa_{a_{\xi}}$.

Definition 8. For each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right)$ let

$$
F_{\xi}=\left\{x \cup x^{\prime} \mid x \in P_{\xi} \text { and } x^{\prime} \in F_{\xi+1}^{\prime}\right\} .
$$

Lemma 9. For each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right), F_{\xi}$ is an \aleph_{α}-tuple family of M.
Proof. If $y \in F_{\xi}$ then we have $\overline{\bar{y}}=\aleph_{\alpha}+2=\aleph_{\alpha}$. Let $x \cup x^{\prime}$ and $y \cup y^{\prime}$ be elements of F_{ξ}. Now suppose $\left(x \leftharpoonup x^{\prime}\right) \subset\left(y\left(y^{\prime}\right)\right.$. But this would imply $x^{\prime} \subset y^{\prime}$ and $x \subset y$. Since $x^{\prime}, y^{\prime} \in F_{\delta+1}^{\prime}$ and x and y are finite sets of the same cardinality it must follow that $x^{\prime}=y^{\prime}$ and $x=y$. This proves Lemma 9.
Lemma 10. For each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right), \overline{\overline{F_{\xi}}}=\aleph_{\alpha_{\xi}+1}$.
Proof. By (8) we have $\overline{\overline{F_{\xi}}}=\overline{\overline{P_{\xi}}} \overline{\overline{F_{\xi+1}^{\prime}}}=\overline{\overline{P_{\xi}}} \aleph_{\alpha_{\xi}+1}=\aleph_{\alpha_{\xi^{+}}}$.
Definition 11. $F^{*}=\bigcup\left\{F_{\xi} \mid \xi<\operatorname{cf}\left(\omega_{y}\right)\right\}$.
Lemma 12. F^{*} is an \aleph_{α}-tuple family of M.
Proof. It is sufficient to show that any two distinct members of F^{*}, say x_{1} and x_{2}, are not nested. Suppose $x_{1} \in F_{\xi_{1}}$ and $x_{2} \in F_{\xi_{2}}$. Without loss of generality we may assume $\xi_{1} \leq \xi_{2}$. If $\xi_{1}=\xi_{2}, x_{1}$ and x_{2} cannot be nested since $F \xi_{1}$ is an \aleph_{α}-tuple family of M. Now suppose $\xi_{1}<\xi_{2}$. Then there are at least two elements of x_{1} which lie outside x_{2} (viz. the members of $x_{1} \cap M_{\xi_{1}}$); moreover, there are at least \aleph_{α} elements of x_{2} which lie outside x_{1} (viz. the members of $x_{2} \cap M_{\xi_{2}+1}$). Thus x_{1} and x_{2} cannot be nested. This proves Lemma 12.
Lemma 13. $\overline{\overline{F^{*}}}=\boldsymbol{N}_{\gamma}$.
Proof. $\overline{\overline{F^{*}}}=\sum_{\xi<\operatorname{cf}\left(\omega_{\gamma}\right)} \overline{\overline{F_{\xi}}}=\sum_{\xi<\operatorname{cf}\left(\omega_{\gamma}\right)} \aleph_{\alpha_{\xi^{+1}}}=\aleph_{\gamma}$.
Definition 14. $F \neq\left\{y \subset M \mid\left(y \cap M_{\xi}\right) \in F_{\xi}^{\prime}\right.$ for each $\left.\xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right\}$.
Lemma 15. F\# is an \aleph_{α}-tuple family of M.
Proof. Every element y of $F \#$ may be written as $y=\bigcup\left\{y_{\xi} \mid \xi<\operatorname{cf}\left(\omega_{\gamma}\right)\right\}$ where $y_{\xi} \in F_{\xi}^{\prime}$ for each $\xi<\operatorname{cf}\left(\omega_{\gamma}\right)$. By (6) we know $\overline{\overline{y_{\xi}}}=\aleph_{\alpha}$. Hence $\overline{\bar{y}}=$ $\aleph_{\alpha} \overline{\operatorname{cf}\left(\omega_{\gamma}\right)}=\aleph_{\alpha}$: the last equality being justified by hypothesis (ii).

Now let y and y^{\prime} be two distinct members of $F \#$. There must exist a $\xi_{0}<\operatorname{cf}\left(\omega_{\gamma}\right)$ such that $\left(y \cap M_{\xi_{0}}\right) \neq\left(y^{\prime} \cap M_{\xi_{0}}\right)$. But the sets ($y \subset M_{\xi_{0}}$) and ($y^{\prime} \cap M_{\xi_{0}}$) both are members of the family $F_{\xi_{0}}^{\prime}$ whose members are pairwise disjoint. Hence $\left(y \cap M_{\xi_{0}}\right) \cap\left(y^{\prime} \cap M_{\xi_{0}}\right)=0$. Thus there are members of y which lie outside y^{\prime} and vice versa. Thus y and y^{\prime} are not nested. This proves Lemma 15.

Lemma 16. $\overline{\overline{F \#}}>\aleph_{\gamma}$.
Proof. Since the sequence $\left\{\alpha_{亏}\right\}$ is increasing it follows from a theorem of J. König that

$$
\overline{\overline{F \#}}=\prod_{\xi<\operatorname{cf}\left(\omega_{\gamma}\right)} \overline{\overline{F_{\xi}^{\prime}}}=\prod_{\xi<\operatorname{cf}\left(\omega_{\gamma}\right)} \aleph_{\alpha_{\xi}}>\sum_{\xi<\operatorname{cf}\left(\omega_{\gamma}\right)} \aleph_{\alpha_{\xi}}=\aleph_{\gamma} .
$$

Definition 17. $F=F^{*} \cup F \#$.
Lemma 18. F is an $\mathfrak{\aleph}_{\alpha}$-tuple family of M.
Proof. It is sufficient to show that any two distinct members of F, say x_{1} and x_{2}, are not nested. Clearly, if $x_{1}, x_{2} \in F^{*}$ or $x_{1}, x_{2} \in F \#$ then they could not be nested since F^{*} and $F \#$ are both \aleph_{α}-tuple families. Now suppose $x_{1} \in F^{*}$ and $x_{2} \in F \#$. We may assume further that $x_{1} \in F_{\xi_{0}}$. Clearly x_{1} is a subset of $M_{\xi_{0}} \cup M_{\xi_{0}+1}$ which makes it impossible for x_{2}, which intersects each of the M_{ξ}, to be a subset of x_{1}. To show x_{1} is not a subset of x_{2} we may write $x_{1}=\{p, q\} \cup x_{0}$ where $\{p, q\} \in P_{\xi_{0}}$ and $x_{0} \in F_{\xi_{0}+1}^{\prime}$. If $x_{1} \subset x_{2}$ then it would follow that $\{p, q\} \subset\left(x_{2} \cap M_{\xi_{0}}\right)$. But ($x_{2} \cap M_{\xi_{0}}$) is a member of $F_{\xi_{0}}^{\prime}$, since x_{2} is a member of $F \#$, and thus the fact that p and q are independent is contradicted. Thus x_{1} and x_{2} are not nested. This proves Lemma 18.

Lemma 19. F^{*} is an \aleph_{β}-spoiler of $F \#$.
Proof. Let $x \in F \#$ and $y \in[M]^{\aleph_{3}}$. It is now necessary to produce a $z \in F^{*}$ such that $z \subset x \cup y$. Since $\overline{\bar{y}}=\aleph_{\beta}>\aleph_{\alpha}$ and $\operatorname{cf}\left(\omega_{\gamma}\right) \leq \omega_{\alpha}$ (hypothesis (ii)) there must exist an $\xi_{0}<\operatorname{cf}\left(\omega_{\gamma}\right)$ such that $\overline{\overline{\left(y \cap M_{\xi_{0}}\right)}}>\kappa_{\alpha}$. Thus there must exist two distinct elements p and q of $y \cap M_{\xi_{0}}$ which are independent (i.e., that $\{p, q\} \in P_{\varepsilon_{0}}$). This is so since a subset of $M_{\xi_{0}}$, every two elements of which are not independent, can have cardinality at most \aleph_{α} : such a subset would have to be completely contained within a single member of $F_{\xi_{0}}^{\prime}$. Let $z=$ $\{p, q\} \cup\left(x \cap M_{\xi_{0}+1}\right)$. Since $x \in F \#,\left(x \cap M_{\xi_{0+1}}\right) \in F_{\xi_{0}+1}^{\prime}$ which implies that $z \in F_{\xi_{0}}$ and hence $z \in F^{*}$. Now since $\{p, q\} \subset\left(y \cap M_{\varepsilon_{0}}\right) \subset y$ and $\left(x \cap M_{\varepsilon_{0}+1}\right) \subset x$ it must be that $z \subset x \cup y$. This completes the proof of Lemma 19.
Lemma 20. $\aleph_{\beta}^{\aleph_{\alpha}} \overline{\overline{F *}}<\overline{\overline{F \#}}$.
Proof. Using hypothesis (iii) and Lemmas 13 and 16 we have $\aleph_{\beta}^{\aleph_{\alpha}} \overline{\overline{F^{*}}} \leq$ $\boldsymbol{\aleph}_{\gamma} \boldsymbol{\aleph}_{\gamma}=\boldsymbol{\kappa}_{\gamma}<\overline{\overline{F \#}}$.

Lemmas 18, 19 and 20 together with Lemma 5 establish that the \aleph_{α}-tuple family F, given in Definition 17, does not possess a Steiner cover contained in $[M]^{\aleph_{\beta}}$. This completes the proof of Theorem 3 .

With the aid of Theorem 3 it is possible to exhibit a whole range of situations where Steiner covers are not available.

Definition 21. Let p be some fixed cardinal number. Then for any ordinal number α the cardinal number $I_{\alpha}(p)$ is defined inductively by the following conditions: (i) if $\alpha=0$ then $ב_{\alpha}(p)=p$; (ii) if $\alpha=\beta+1$ then $\beth_{\alpha}(p)=2^{2}(p)$; and (iii) if α is a limit ordinal then $I_{\alpha}(p)=\sum_{\beta<\alpha} \boldsymbol{I}_{\beta}(p)$.

Corollary 22. Let $\mathfrak{\aleph}_{\alpha}$ and $\mathfrak{\aleph}_{\beta}$ be any cardinal mumbers such that $\boldsymbol{\aleph}_{\alpha}<\mathbf{s}_{R}$. Then there exists an infinite set M and an \aleph_{α}-tuple family F of M which does not possess a Steiner cover $G \subset[M]^{N_{\beta}}$.

Proof. Let M be any set of cardinality $\beth_{\omega_{\alpha}}\left(\aleph_{3}\right)$ and let γ be such that $\boldsymbol{I}_{\omega_{\alpha}}\left(\aleph_{\beta}\right)=\aleph_{\gamma}$. Since $\operatorname{cf}\left(\omega_{\gamma}\right) \leq \omega_{\alpha}$ and $\boldsymbol{\aleph}_{\beta} \boldsymbol{N}_{\alpha} \leq 2^{\aleph}<\boldsymbol{I}_{\omega_{\alpha}}\left(\aleph_{\beta}\right)=\aleph_{\gamma}$ it follows that all the hypotheses of Theorem 3 are satisfied. Corollary 22 is thus proved.

Theorem 6 of [1] is the special case of the above corollary where $\alpha=0$ and $\beta=1$ while Theorem 4 of [2] follows a fortiori from Theorem 3 of the present paper.

REFERENCES

[1] Frascella, W. J., "The non-existence of a certain combinatorial design on an infinite set," Notre Dame Journal of Formal Logic, vol. X (1969), pp. 317-323.
[2] Frascella, W. J., "Certain counter-examples to the construction of combinatorial designs on infınite sets," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 461-466.

Indiana University at South Bend
South Bend, Indiana

