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SOME RESULTS AND ALGEBRAIC APPLICATIONS IN THE
THEORY OF HIGHER-ORDER ULTRAPRODUCTS

WILFRED G. MALCOLM

Intvoduction Perhaps the chief result of this paper is the higher-order
extension, (Theorems 3.11, 3.12), via the ultraproduct construction, of a
first-order embedding theorem of Robinson, cf. (7], p. 34, Theorem 2.4.1.

Section 1 summarises the higher-order ultraproduct construction and
gives a partial answer to the question of necessary and sufficient conditions
for the preservation of the ‘fullness’ property by that construction. Section
2 provides an extension of £.0§’s theorem for a first-order ultraproduct and
an associated formal language to a higher-order ultraproduct and an
associated higher-order language involving a special class of formulae of
infinite length. Section 3 develops a number of results involving sub-
systems of higher-order systems and leads to the embedding theorems.
Section 4 illustrates some of these results in two algebraic situations. The
first is Stone’s representation theorem for non-finite boolean algebras and
the second, properties of Sylow (maximal) p-subgroups of locally normal
groups.

Tevminology Let T be the class of finite types as described in Kreisel and
Krivine [5], pp. 95-101. A (relational) system of order 7e¢ T, (hereafter
called a 7-system), is a collection M = {E°|oc < 7} U {¢’|0c < 7,020} U
(Ry, .., Ry, . ), where {E’|oc <7} is a collection of non-empty, mutually
disjoint classes; for each o<7,0 = (0y,..,0,), €’ is an n + l-placed
‘membership’ relation defined on (E“'x..xE”)xE’ and each R, is an
n-placed relation on some E’'x..xE" o,, .., 0, <7. Such an R, is said
to be of type (04, . ., 0,). If 0 =(0y, .., 0x), 0 <7and R, is a relation of type
(01, . ., On) then R, may be regarded as a nominated member of E"." If
(@1, . .,an) e E%tx . . xE°”and ae E° then (a,, . .,a,) is said to ‘belong’ to «,
written (ay, . ., @) €’a, if, and only if, € (a4, . ., a,, a); that is if, and only
if, ay, . ., @y, a are related by ¢°. E°is the class of individuals of M. The

1. If R, is O-placed of type 0 it will be regarded as a nominated member of E°.
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members of the classes E°, o <7, are the objects of M. The Ry’s are
called the constant relations of M.

¥N={Flosn}ul{elos<sr,o#0tu(S,..S, .. is a 7,-system
then M and N are said to be similar if 7= 7,, and if, for every p, the
corresponding relations R, and Sp are both k-placed, for some integer &,
and of type (oy, .., 0p) for some oy, .., 0r <7. The class of all systems
similar to M is called the similarity class of M.

M is called a normal structure if, for allo <7, 0 = (0, . ., 0»), and for
alla, be E’, a = b if, and only if, & = b, where & = {(a,, . ., an)l(al, .., Un) €°a}
and b is defined similarly. Unless otherwise stated all systems later
discussed will be assumed normal.

L'(M) is a formalized logic associated with the similarity class of M,
where L'(M) has, for each o <7, a countable class of variable symbols of
type o, viz {x7 »9 .. x{, v7, . } for each 0 <7, 0 #0, a ‘membership’
relation symbol €¢’; and (R,, .., Rp..,) a sequence of constant relation
symbols. (No confusion will be caused by using ‘c?,” ‘R,’ to denote both
elements of M and of L'(M).) For each ¢ <7, L'(M) will have an identity
symbol, =.

A standard interpretation of L'(M) with respect to any member, N, of
the similarity class of M will be one in which each symbol ¢’ of L'(M)
denotes the ‘membership’ relation, €’ of N; each symbol R, denotes the
relation Rp of N; and each identity symbol of type o of L'(M) denotes the
identity relation on F’ of N.

Let a = {ai, a;, . .) be a sequence of objects of M. If ¢ is a formula
with free variables x7l, . ., x;,; then a is said to be ¢-allowable if a;,€ E7%,
1<k <n. A ¢-allowable sequence a is said to satisfy ¢ in M, written
M E=¢(a), (or if ¢ is written q)(x',’l, o xi") then M E¢(a) may be alternatively
written as M E¢(a;, . ., a,)), if the sequence {a;, . ., &,) satisifes ¢ in M
under the a551gnment of a;, to x,k, 1<k <n. ¢ holds in M, M = ¢, if for all
¢-allowable sequences a, M = ¢(a).

1 Higher Ovder Ultvaproducts Let {M;|liel} be a family of T-systems
belonging to the same similarity class. That is, for each iel, let M; =
{Ello stu{e’lo <7, 0#0}U(R,, . ., Ry, . ). If X is an ultrafilter over /
then the ultraproduct of the family is the T-system 7M;/X = {nE{/X|o <7} U
{e?lo <7, 0# 0} U(Ry, . ., Ry, . .). For each o <7, 7E//X is the set of

equivalence classes of the cartesian product 7 Ef = {flf:l—» U Eflien,

f(Z) e E{} under the equivalence relation defined by: f~ g if, and only if,
{zlfz) ='g(i)}e X. The equivalence class of f is denoted by f. For each
o<71,0= (0, .. 0,), € is defined in 7M;/X by: (fy, . ., f,) €°f if, and only
if, {i[ (f1(@), . ., f2(0)) €"f()}e X. Similarly each R,, (where, for each M;, Ry
is k-placed and of type (o3, . ., 0) say) is defined in 7M;/X by, Ry( f1, - -, fi)
if, and only if, {|R,( /1(0), . ., /(@) }e X.

The necessary lemmas to support the above definitions are assumed.
It is noted that 7M;/X belongs to the same similarity class as the M;. The
requirement of similarity for the family {M; [i eI} is not a necessary one
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for the definition of the ultra-product. A relaxation of the similarity
condition in the case of the first-order ultraproduct construction is
discussed in a paper by the author [6]. The method extends to higher order
systems, if desired.

Theorem 1.1 If each member of {M;|iel} is a novmal system then so is
WMi/X.

Proof: Take f, 3eE’, o <7. Let F ={i|f(i) = g(d)}. Assume f=3, that is
FeX. Now (fi, .. f,€’f if, and only if, Ge X, where G ={i|(fi(d),
f.(4)) €°f(@)}. But each M; is normal and so H O G N F, where H= {ll(fl(l), .o

fa(@)) €°g{d)}. Hence Hge X and so (fis + - f) €°Z. Similarly (f,, . ., ) €’f if

(fr - » /) €’gand so f = g.
Conversely, assume f # g, that is F¢ X and so CFe X. Now as each M;

is normal there exists for eachie CF, (ai, . ., an) €E{* x . . x E{" such that
@, .. an) ‘belongs to one, and only one, of f(7), g({). For eachieCF
define f;(¢) = @;, 1 <j <n. Thus f,, 1 <j<mn, are well defined as CFeX.
Let F, = {zl(fl(z), .o (D) €f(@)} and G, = {z‘f(fl(i), .., L) e’g(i)}. Now
(CFNF)U(CFNGy) = CFand (CFNFp) N (CFN G = ¢. Therefore one,
and only one, of F,, G, belongs to X; that is (fl, . ., f,) ‘belongs’ to one, and
only one, of f, 3. Thusqug Q.E.D.

A T-system M is termed full if, for eacho <7, 0= (04, . ., 05, and for
each subclass K of E’tx . .xE’" there exists an object @ ¢ E° such that
@ = K. The next three theorems discuss the fullness of the ultraproduct of
a family of full systems.

Theorem 1.2 Let {M,-liel} be a family of similar and full T-systems.
If X is a given ultvafilter ovev I and nM;/X the ultvaproduct then fov each
0<7,0= (0, .. 0,), and for each subclass K of E’tx . . xE"", there exists
some fe E’ such that K C f.

Proof: For each iel, let K; = {(f,(@), . ., L) |(f, . ., /) eK}. But each M;
is full and so there exists some object a; € E; such that @; = K;. Define fe E’
by f() =a;, for each iel. Take any (f, .. f,)eK. Hence {i|(A@),
£,@) €’ f6)t = 1. ButIeX and so (f, . ., 7,)e°f. Thus K C 7. Q.E.D.

Theorem 1.3 Let {Mi[iel} be a family of similar and full T-syslems. Lel
X be an ultrafilter over I and nM;/X is the vesulling ultvaproduct. If
osT,0=(0y, .. 0,), and if K is a subclass of E°'x ..xE’" such that
K| = = B, (that is the cardinality of K is f), then theve exzsts no feE” such
thatf K only if X is B-incomplete.

Proof: Let the members of K be indexed by 8, that is K={(2, . ., &»);lj < 8}.
Further, for each j <3, let (gy, . , &») be an arbitary but fixed representa-
tion of (g, . ., &). Let K; = {(g:(d), . ., £,(0)); |7 < B}, each iel and as in
Theorem 1.2 let fe E° be defined such thatfz) = K;, eachiel. Thus KC f

Assume there exists no ge E” such that g g = K and so there exists some
(fi, - - f) € E7tx . . xE?" such that (fi, . ., f,) € f but is not a member of K.
Let F = {i| (f,(d), . ., f,(@)) €°f(@)} and so Fe X. Let F; = F n{i|(f:(d), .., fx(})) =
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(£16), - ., £4(2));}, for all j < B. Now F; ¢ X, j <B, as (f, .., f,) ¢ K. Further,
U{Fi |j < B}=F as, for all i e I, f(i) = K;, and the K; have been defined using

only the fixed representations of the members of K. Therefore n{CF,- [j <
B} N F = ¢ and hence X is B-incomplete. Q.E.D.

The question as to whether the incompleteness of the ultrafilter X
guarantees the non-fullness of the ultraproduct does not seem to have an
immediate answer. The next theorem is a possible step towards such an
answer.

Theorem 1.4 Let {M;li e I} be a family of similar and full T-systems. Let
X be a B-incomplete ultvafilter over 1. wM;/X is the vesulting ultvaproduct.
If for o <7,0=(0y, .. 0, theve exists some K C E°1x . .xE’" say K =

{@y, . ., Bn)jli<al}, B<a, such that GeX, where G = n{CF,,,,,, [m, n< B,

m #n}, and Fpn={ f_(gl(z‘), e oy 8n@)m= (&6), - ., €n@))n), all m, n < B, m # n,
then therve exists no fe E? such that f = K.

Proof: As X is B-incomplete let {Hp|k < B} be a family of members of X

such that n{Hklk < B}=¢. Assume there exists feE’ such that f = K.
Thus, for eachj < a, (g, . ., Zn)j €°f if, and only if, (g,, . ., 5,); € K.
For each j < B8 put Gj = {1(g,¢), . ., £,¢)); €°f@)}, Gj = Gi N Gand Hj =

Gjn H;. Thus G}, HleX analU{C'H]|j < g} = G, where C'H] = G N CH/. Now
define (fy, . ., f,) e E™2x . .xE’” as follows: For all ie C'H} put (f,(), . .,
£.@) = (g.6), . ., g.(i))o. Assume (f,@), . ., f»(¢)) has been defined for all

ieU{c'H]lj <8}, for some &< B, and define (£, - ., f,() = &), - .,
g,())s, for all ie ﬂ{H;l j <6} - Hj. By transfinite induction (f,(3), . ., fx(2))

is defined for all ie G, as U{C'H,fl j<B}=G. Hence (fy, .., f,) is well
defined as Ge X. _ _
But (gh L] gﬂ)] + (fl, LT fn); for any ] < B; as {zf(gl(z)’ L) gn(l))l =

(), - - 4@} 0 6 =N {Hile <j}n CH], and CH{X. Hence (7, . ., F){K.
But (f, . ., ) €°F as {il(fi(@), . -, f2(:)) €°f(d)} 2 G. This contradicts the
assumption that = K and hence the theorem is established. Q.E.D.

2 Ultraproducts and an Associated Highev-Ovder Language. Let {M;|ie I}
be a family of 7-systems of the same similarity class. .’ is the
formalized language associated with this similarity class, as described in
the introduction. If a = (fj, f5, . .) is a sequence of elements where each
member of the sequence is an object of 7M;/X, for some ultrafilter X, then
a(@) = (f1(9), fo(@), . .) is the associated sequence of objects of M;, each iel.
The first theorem of this paragraph is the natural extension of X.os’s
theorem for a first order ultraproduct and associated language.

Theorem 2.1 Let X be a given_ulfrafilter over I. If ¢ is any well formed
formula (wff) of L' and a={f, f, ..) any ¢-allowable sequence then
TM; /X Eo(a) if, and only if, {i|M; = ¢(a(i))}e X.
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Proof: The details of proof are straightforward extensions of those for the
first order theorem—for which see Kochen [3], pp. 226-229, Theorem 5.1.

Corollary If ¢ is a sentence of L' then nM;/Xk¢ if, and only if,
{i|M; FoleX.

Proof: Immediate from Theorem 2.1.

For the purpose of later application (see footnote on page 15),
the language [ is extended to include a wider class of formulae, developed
relative to 7M;/X as follows: Let {¢,|Ze a} be any class of wff’s of £’ such
that (i) only a finite number of distinct free variables occur in all of the
¢, te a; (ii) for any ¢,-allowable sequence, a, (because of (i) any sequence
allowable for one ¢, will be allowable for all), and for all kea, if there
exists some je I such that M; = ¢,(a(j)) then {i| M; & ¢p(a(i))}e X. The infinite

disjunction V,fatp, will be a (7M;/X) allowable formula.

Formulae generated by the rules of formation of £’ from the wffs of
L together with the (7M;/X) allowable disjunctions will comprise the wider
class of formulae of L". L'’ (7M;/X), or in context just £'’, will denote .’
with this wider class of formulae.

Theorem 2.2 Let X be a given ultvafilter over I. If ¢ is any wff of L'™ and
a any ¢-allowable sequence of objects of nM;/X then nM;/XF ¢(a) if, and
only if, {il M; E¢(a(i))}e X.

Proof: In view of the inductive procedures of the proof of Theorem 2.1 it
is necessary only to consider the case where ¢ is of the form V,€a¢, as

described above. First assume that 7M;/XkE V,mqs,(a) and so by the
semantical rules for a disjunction there exists some kea such that
TM;/XE ¢p(a). Hence from Theorem 2.1, {i|M;E ¢x(a(s))}eX and so

{i131, =V i @)} € X
Conversely, assume that {iIMi¥= Vtca¢t(u(i))} € X. Hence there exists

some jel such that M;E V,,¢,(a(¢)) and thus some kea such that
M;E ¢p(a(j). Therefore {i| M; = ¢,(1(?))}e X and so 7M;/X k= ¢(a). Therefore

1M /X EVia 6:(8). QE.D.

Corollary If ¢ is a sentence of L'" then nM;/X=¢ if, and only if,
{il M; E ¢}e X.

Proof: Immediate from Theorem 2.2.

Theorem 2.3 Let X be a given ultvafilter ovev I. If K is a class of wffs of

L' and a any sequence of objects of nM;/X, (allowable for all members of
K), then wM;/X =K (a) if {i| M; = K(a(@))}e X.

Proof: Assume {i|M; =K(a(s))}e X. Thus for all ¢eK, {ilM; = o(a(i))}eX
and hence 7M;/X E=¢(a). That is 7M;/X FK(a). Q.E.D.
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Corollary If Kis a collection of sentences of L' then
TM; /X EKif §IM; EK}e X
Proof: Immediate from Theorem 2.3.

The final theorem of this paragraph is a partial converse to Theorem
2.3.

Theorem 2.4 Let X be a given ultvafilter over I. If K is a set of wffs of L'’
such that |K|= B and X is B-complete then, for any allowable sequence a,
TM; /X EK(a) only if {i|M; = K(a(i)}eX.

Proof: Assume mM;/XF K(a) and so, for all ¢eK, nM;/X =¢(a). Let Fy=

{i1M; = 9(a))}, for all eK. Now {i|M;E K@)} = N{Fyl¢e k). But each
FueX and X is B-complete. Thus {i|M; = K(a(?))}e X. Q.E.D.

Corollary If K is a class of sentences of L'" such that |K| =8 and X is
B-complete then M;/X =K only if {il M; = K(a(i))}e X.

Proof: Immediate from Theorem 2 .4.

3 Substructurves and Embeddings Let M={E°lo <7}u{e’lo <1, 0+0}uU
(Ry, . ), and N={F’lo s7}u{e’lo <7, 0#0}U(S,, ..) be two normal 7-
systems. N is called a subsystem of M if (i) F® C E®% (ii) for each o <7,
o # 0, there exists a surjective map p:E” — F’, and for 0 = 0; p:F° — F°is
the identity map, such that for all (play), . ., pla) e F*x .. xF% o=
(o, . ., 0x), and all pla)e F°, (pla,), . ., plan) €° p(a) if, and only if, there
exists some (aj, . ., @) e E’'x . . xE” such that p(a) = p(az), 1 <k <n, and
(ai, . ., ay) €’ a; (iii) there exists a surjective map p:(R,, . .) — (S;, . .) such
that if R, is a relation of type (oy, . ., 0,), 04, . ., 0, <7, then p(R;) is of the
same type and for all (play), . ., plan)) € F7ix . . xF" p(R,)(p(ay), . ., Plan))
if, and only if, there exists (aj, . ., @) e E”'x . . xE’” such that p(a) = p(ay),
1<k <n, and R/(ai, . ., a,i). The family of maps is denoted by p: M — N
and called the canonical projection of M to the subsystem N.

Theorem 3.1 If N is a subsystem of the T-system M then the canownical
projection p: M — N is unique.

Proof: Let pi:M— N, p,: M — N be two canonical projections. Now, for
0=0, p; = p, as both are the identity map on F°. Assume for all o; < g,
o <7, that p, = p, on E”%, (on F° if 0; = 0). Now to show p, = p, on E’.

For any aeE’ o= (0, .., 0,), consider p,(a), p,(a). Take (p,(ay), . .,
pi(@)) €7 py(a). Therefore there exists some (ai, . ., ;) e E”'x . . xE’” such
that (aj, . ., a,)e’a and py(ay) = pi(ar), 1 <k <n. Hence (py(ay), . ., p(a) €’
p(a). But p,=p, on E% o; <o. Hence py(al) = plal) = pap), 1 <k <n.
That is (pi(@y), . ., pulan)) €7 p(a). Similarly if (p(ay), . ., (@) €7 po(a) then
(pola@), . ., po(a) €’ pi(@). Thus py(a) = p.(@) and as N is normal then p,(a) =
po(a). By a similar argument it can be shown that for all constant relations
R, of M, p(R;) = p»(R,). Hence p, =p,: M — N. Q.E.D.

If N is a subsystem of M then N can be regarded as being in the same
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similarity class as M. For if (R}, . .) is the sequence of constant relations
of M then (p(R;), .. can be taken as the corresponding sequence of
relations of N. As p is surjective all of the relations of N will be included
in this sequence, although there may be repetitions. This will not matter.

Canonical subsystems M is a 7-system and F°® a given, non-empty, subset
of E°. A 7-system, N, can be built inductively on F° as follows (cf. Kreisel
and Krivine, [5], p. 98, Theorem 16):

(i) F° comprises the individuals of N.

(ii) Take o <7, 0= (04, . ., 0u), and assume F'’ is defined for all o; < o,
together with surjective maps p:E’* — F% o0; #0, and p:F°— F° the
identity map. For each ae E?, define p(a) = {(p(a)), . ., p(as))| there exists
al, . ., an, such that p(a;j) = pla)), 1 <j<n, and (af, . ., an) €’ a}. Let F7=
{pla}laecE’} and p:E° — F’ is thus defined. Now for all (p(ay), . .,
pla))e Fix . .xF°" and all p(a) e F°, define (p(ay), . ., plan) €’ pla) if
(p(ay), . ., p(an)) e p(a). That is € in N is the ordinary membership relation.
(iii) For each relation R, of M of type (04, . ., 04), Oy, . ., On < T, define p(R,)
by: p(R)(p(@y), . ., (@) if there exists (al, . ., as) such that p(a)) = p(az),
1 <k sn, and R/(a}, . ., an).

i

Theorem 3.2 N as constructed above is a novmal T-system.
Proof: Immediate from a direct checking of the definitions.

Theorem 3.3 If M is a T-system and N is constvucted as above on a subset
F° of E® then N is a substructure of M. (N is termed a canonical sub-
structure.)

Proof: Immediate from the details of the construction and where the maps
p form the canonical projection of M to the subsystem N.

If M, N, are two similar 7-systems then M and N are said to be
isomorphic if there exists, for each o <7, a bijective map y :E” — F? such
that (i) if o = (oy, . ., 0,) then for all (a,, . ., a,) e E”'x . . xE°"and all a e E’,
(ay, . ., an) € a if, and only if, (W(ay), . ., ¥(a,) €”Y(a); (ii) for all R, of type
(04, . ., 0») and all (a,, . ., a,) e E%*x . . xE’", R/(a,, . ., a,) if, and only if,
Si(W(a,), . ., Y(an). (Note: The correspondence between the R,’s and the
S;’s could be varied by permutations of either the relations of M or the
relations of N, but compatible with the similarity requirements.)

Theorem 3.4 If M is a T-system and N,, N, ave two subsystems of M such
that F9 = FY then N, and N, ave isomovphic.

Pyoof: Letp,:M — Ny, p,: M— N be the canonical projections of M to N,,
and N, respectively.

It is first established by induction that for all o <7 and all p,(a),
p1(b) € Fy, that pi(a) = p,(d) if, and only if, p,(a) = p,(b). If 0 =0 then the
result is immediate as p,, p, are identity maps on F{=FJ., For o <7,
o= (o, .. 0s), assume that the result is true for all o; < 0. Take p,(a),
p:(d) e F{ and assume py(a) = p,(b). Take any (ps(a,), . ., pa(a,)) €”pala).
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Hence there exists some (ai, . ., a.) €’a such that py(af) = po(a), 1 <k <n.
Therefore (p(a)), . ., pr(an) €” py(b), as py(a) = p(b), and so there exists
(a}, .., a) e’ b, where py(ar) = pi(ay), 1 <k <n. Thus (p(a}), . ., pu(al)) e
p»(b). But from the induction assumption p,(ay)= p.(@), 1 <k <n, and so
(baol@y), . ., Palan)) € py(D). Siﬁﬂ\arluf\(pz(aﬂ, <+ D2(an)) €°P5(D) then (py(ay), . .,
Do(an) €9 p(@). Therefore p,(a) = p,(b) and so p,(a) = p,(b). Conversely if
po(a) = p,(b) then p,(a) = p,(b). Hence this first result is established.

Now define y(p,(a) = p,(a). Y is thus well defined, for if p,(a) = p,(d)
then p,(a) = p,(b). It is now necessary to show that y is an isomorphism
between N, and N,. First to show that for each o <7,y :F]— Fj is
bijective. If ¢ = 0 theny : F} — Fj is the identity map as F} = F§ and p,, p,
are the identity maps on F}, F respectively. Let ¢ = (o,, .., 04), and assume
that for all o; <o, y:F{i — FJ is bijective. For any p,(a), p,(b) e F{, if
Y(p(a)) = (py(b)) then pyla) = p,(b) and so p,(a)=p,(b). That is ¢ is injective.
If py(@)eFy then aeE” and so p,(a)e F{ and y(p,(a)) = p,(@). That is
Y :F, — F, is surjective. Hence by induction y :F{ — Fj is bijective for
each o < 7.

Take 0 <7, 0 = (g, . ., 0,) and any (py(an), . ., py(@,) € p,(a). Therefore
there exists (al, .., ax)e’a such that p,(a;) = py(a,), 1 <k <n. Hence
(paad), . ., bolan) €7 pyla). But as py(ap) = py(@), 1 <k <n, then py(a) = pylar).
Hence (py(ay), . ., po(ay)) €” po(a). That is (W(pi(ay)), . ., v(pi(an)) ey (p,(a)).
Conversely, take (y(pi(ay), . ., ¥(Pi(@n))) €Y (py(a)). That is (psla,), . .,
Do(an)) € py(@) and so, by a similar argument to that above, (p,(a,), . .,
p1(an)) Eopx(a)~

Finally, by a similar argument as above, it can be shown that if p,(R,)
is any #n-placed relation on Fi'x..xF% g, .. 0, <7, then for all
(prl@y), . ., prlan), pr(RI(Di@y), . ., pilan)) if, and only if, p(R,)(W(pi(ay)), - .,
Y(p.(a))). Hence ¢ : N, — N, is an isomorphism between N; and N.. Q.E.D.

Corollary If M is a T-system then every subsvstem of M is isomovphic to
a canonical subsystem of M.

Proof: Let N, be any substructure of M. Let N, be the canonical substruc-
ture of M constructed on F¢C E°. Hence from Theorem 3.4 N, is
isomorphic to N,.

Theorem 3.5 N,, N, ave two subsystems of a T-system M. If F} C FJ then
N, is a subsystem of Np and if p3:N, — N, is the canonical projection of N,
fo Ny, then for o <7, and all p,(a)e F3, psp,(a) = pla), wheve p,, p, ave the
canonical projections from M to N,, N, vespectively.

Proof: By an argument similar to that in the proof of Theorem 3.4 it can
be shown (i) that for any o <7, and all p,(a), p,(b) € FY, if p,(a) = p,(b) then
pila) = p(b); (ii) that if for each o <7, p;:F; — F{ is defined by putting
Dps(po(a)) = py(a), for all py(a) e F7, and if for each constant relation p,(R,) of
Na, pa(pa(R,)) is defined as py(R,), then p3: N, — N; is the canonical projec-
tion defining N, as a subsystem of N,. Further, by definition p;p,=
p1:E?— FY, for each o <7, 0 #+ 0. Q.E.D.

Theorem 3.6 If N, is a subsystem of a T-system M such that (p,(a,), . .,
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p(an)) €°p.@), o <7, 0 = (04, . ., 0n) then in any subsystem N, of M, which
contains Ny, (po(a,), . ., polan) €°0,(a). Similavly if py(R.)(p:(ay), . . D1(an))
does not hold in N, then p,(R,)(P,(a,), . ., P»(a,)) does not hold in N,.

Proof: Let p3:N, — N; be the canonical projection as in Theorem 3.5.
Assume (pz(a1), .y pz(an)) €’ py(a) and so (Ps(l)z(ax)), .+ DslPa(an))) €7 polpa(a)).
Hence (p,(a,), . ., pi(an) €9 D,(a), as pyp, = p,. That is if (p,(a,), . ., Pi(@n)) £°
pila) then (ps(a,), . ., pa(an)) £°b,(a). The second part follows likewise.Q.E.D.

Theorem 3.7 Any subsystem, N, of a full T-system M is itself full.

Proof: Take o <7, 0= (0y, . ., 0») and K any subclass of F1x . . xF°" It is
required to find some p(a)e F such that K = p(a) where p: M — N is the
canonical projection associated with N. Let K' —{(al, . a,,)l(p(al), R
pla,)) e K}. Now M is full and K' is a subclass of E”1x . . xEU" and so there
exists a e E?such that a = K'.

Now to show that K =f@. Take (pla,), . ., (@) e K. Hence (ay, ..,
ay,) € K' and so (ay, . ., @:)€°a. Therefore (play), . ., pla.)) e’pla). That is
K C $(@). Now take (P(al), . ., Dlan)) €’ p(a). Therefore there exists (@f, . .,
an) €’a, where plap) = plar), 1 <k <n. Hence (al, .., ar) €K', as & = K', and
so (p@}), . ., plas) e K. That is (p(a,), . ., plas)) € K. Thus p/(a\)g K and so
pla) = K. Q.E.D.

Theorem 3.8 Let {M; |i € I} be a family of similar T-systems. For eachiel,
let N; be a subsystem of M;. If X is any ultrafilter over I then nN; /X is a
subsystem of nM;/X.

Proof: For eachiellet p; :M; — N; be the canonical projection associated
with each N;. Defirig:nM,-/X — 7N;/X as follows: For ¢ =0 and for all
geF° define p(g) = p(g), where p(g): I— mF; is defined by p(g)(i) = g(i),
alliel. Hence p:F°® — F°is the identity map.

For 0+ 0, o0 <7, for all fe E° put p(f) = p(f), where p(f) :I — m; F{ is
defined by p(f)G) = p:(fG)), all i el. If f; ~ f then p(f) ~ p(f), as {i|£,(d) =
f@)}eX; and so p : E” — F’is well defined. Further pis surjective as each
p; :E{ — F{ is surjective.

Take o = (0y, . ., 0s), 0 <7 and consider (>(F), . ., () €’ p(f). Hence
GeX, where G={i|(p(f)@), . ., p(f,)@) € p(f)@)}. That is, for eachieG,
(P,(fl(z)) - i(/,(2)) €p;(f(@)) and so there exists (ai, . ., an)e f(@), where
p;(al) = p,(f2(8)), 1 sk <n. Now define g, ¢ F 7k 1 <k <n, by putting g,(i) = af,
all ie G. Thus g,, 1 <k <n, are well defmed as Ge X. Now {i|(g,(%), .
&) €°f (i)} 2 G and so (g4, . ., §,) €°f. And further, p(g,) = P(f/e) 1<k <ﬂ,
as {i1p;(gu(@) = p:(fui))} D G. Conversely, take (gl, . ., Za) €°F such that
p(g) = p(f), 1 <k <n. Let Gy={ilp:(g(@)) = p:(fG))}, 1 <k <m, and G, =

{il(g.6), . ., gu(2)) €’f(i)}. Thus GeX, where G =n{GkI0 <k <n}. Hence
B, - - PE) € p(P) as f1 @AW, . ., p:(£:6) € pi(FEN} 2 G

By a similar argument it can be shown that p(R,) can be defined in
7N:/X by reference to p;(R,) for each M; and that p(R,)(p(fD), . ., p(f) if,
and only if, there exists (gy, . ., g,) such that R/(g,, . ., &), Where p(g,) =
p(fk), 1<k <n. Hence 7N;/X is a subsystem of 7M;/X with canonical
projection p: 7M; /X — nN;/X as defined. Q.E.D.
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a-embeddings A T,-system M, is said to be a-embedded in a 7,-system M,,
where 7, <7, by an a-embedding map y° if (i) a is an injective map from
[7.] to || (I7,] ={olo <7,}) such that for each o <7, 0= (0, .., 0),
a(o) = (a(oy), . ., a(os); (ii) for each o <7, Y* is an injective map from E{
to E2) such that for all (ay, . ., a) e E}*x . . xE3" a€eEY, (ay, . ., ax) e’ a if,
and only if, (W%ay), . ., ¥*(an)) €y %a); (iii) for each R,, n-placed and of
type (o4, .., 0,), Y*(R,) is an n-placed relation of M, of type (a(d,), .., a(o,)),
such that R,(ay, . ., @,) if, and only if, Y*(R,)W*(@,), . ., ¥%@w). If a:|71,| —
| 7,] is such that a(0) = 0 then the a-embedding is referred to simply as an
embedding and the a is omitted from the ¢*’s.

Local family of subsystems (cf. Kurosh [4], vol. II, §55, p. 166.) A family
of subsystems {N;|ieI}, of a T-system M, is called a local family of M if
(i) every member of E® belongs to at least one Nj;, iel; and (ii) for every
i, jel (and hence for any finite number of elements of!) there exists kel
such that N; and N; are subsystems of N;.

Theorem 3.9 If L is the class of all finite subsystems of a T-system M
then L is a local family of M.

Proof: Immediate.

L -finitary systems A T-system M, with a given local family € = {N;|iel},
is said to be L-finitary if (i) for each o0 <7, 0 = (0, . ., O, if (ay, . ., @) £°a
then there exists some member, N, of & such that (p(a,), . ., pla.)) £°pla),
where p:M — N is the canonical projection; (ii) similarly if R,(a,, . ., @)
does not hold in M then for some Ne &, p(R,)(p(a,), . ., p(as)) does not hold
in N. If @ is the family of all finite subsystems of M and if M is L-finitary
then M will be simply termed finitary.

Theorem 3.10 If M is any fivst ovdev system and & any local family of M
then M is L -finitary.

Proof: Let R, be a n-placed constant relation of type (0, .., 0). Take
@y, . ., ay€ E® such that R,(a,, . ., @a,) does not hold in M. Let N be some
member of & which contains a,, . .,a,. Hence p(R,;)(p(a,),. ., plas)) does not
hold in N, where p : M — N is the canonical projection. Q.E.D.

L -associated ultvafilter Let @ = {N;|i eI} be a local family of a T-system
M. For each Ne @ let Fy ={i|N; > N}. Now {Fy|Ne 8} = Bis such that the
intersection of any finite set of members of B is non-empty. The ultrafilter
X formed on B as sub-basis is called the L-associated ultvafilter.

Theorem 3.11 & = {N;|iel} is a local family of a L-finitary T,-system M
such that, for each ie I, N; can be a-embedded in a T,-system, N,'-, Ty STy,
wheve each such Nj is a model of a class of sentences, K, of L'™2(1N;/X), X
being the L-associated ultvafiltev. Then M can be a-embedded in a model
of K.

Proof: For each iel, let ¥&:N; — Ni be an a-embedding. Define ¢%: M —
aNi/X by (i) if a e E® put ¢*@) = f,, where f,(i) = ¢%(a), for all i e Fy, where
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N is a member of & containing a; (ii) for each o <7,, 0# 0, and each ae E?,
put v%a) = f,, where f,(i) = ¢5(p; (a)), for all e/, and where p;: M — N; is
the canonical projection. The N,, iel, can be regarded as belonglng to the
same similarity class as M by ignoring all constant relations in N} other
than those connected to N; by y{. It is now required to show that ¢%: M —
7N;/X is an a-embedding. Take ¢ <7, 0= (0,, . ., 0,) and (ay, . ., a,) e°a.
Let J be the subset of {1, 2, . ., n} such that if je J then o; = 0. Now for all
ie FNy, where N is some member of & which contains each q;, jeJ,
(pi(@y), - ., pi(a) e"ps(@). Hence {i|Wi(pi(a)), . ., wilbi(an)) € yilpi(a)} e X.
That is {z{(fa @), . ,fan(z))e"fa(z}eX and s0 (fay, . . fa,) € fa. That is
W%ay), . ., ¥ (a,,))e Y%a). Conversely, assume that (a,, . ., an) £°a. Now M
is L-finitary and so there exists some member N of g such that (p(a,),
plas)) ¢°p(a), where p:M — N is the canonical projection. Let Fy ={iI[N; ON
and N; e 2} and so FN eX Now from Theorem 3.6, {i|(p:(ay), . ., pi(@.)) £°

} D Fy and so {i| @i(pi(ay), . ., ¥i(pi(an)) £°¥i(pi(a)) e X. Hence (W%ay),
.y V@) €94%a). Slmllarly, if R, is a constant relation of type (oy, . ., o),
Oy, . ., On < Ty, then R,(ay, . ., a,) if, and only if, ¢*(R,)(W%(a,), . ., ¥%(a,)).

Further, it needs to be shown that tp“ is injective at each level o <7,.
Let 0 =0 and take @, beE° such that ¥%a) = ¢%(d). Thus 7, = 7,. Let N,,
N, e such that f,(i) = Yi(a), for all ie Fy » f,,(z) = lp,(b) for all ie Fy,. If
G = {i| f,() = f,(2)} then G N Fy, N Fy, is non-empty and so there exists an
iel such that y§(a) = Yi(b). Hence a=b, as Yy is injective. Now take
o<T7,0=(0,, .., 0,) and a, beE° such that a # 0. Hence there exists
(a4, . ., @) which ‘belongs’ to one, and only one, of a and b. Therefore
W%ay), . ., ¥*(a,)) ‘belongs’ to one, and only one, of y*(a) and ¢*(b). That is
v*(a) # ¢*(b). Thus ¢*: M — 7N;/X is an a-embedding.

Finally it remains to comment that 7N;/X is a model of K as each N},
iel, is a model of K (Theorem 2.3). The theorem is therefore estab-
lished. Q.E.D.

Corollary If every finite subsystem of a finitary system M can be
a-embedded in a model of K then M can be so embedded.

Proof: Immediate from Theorems 3.10 and 3.11.

The first order case of the above corollary, (with a(0) = 0), is proved
by Robinson, cf. [7], p. 34, Theorem 2.4.1, by the method of diagrams.
Gritzer, cf. [2], p. 243, Theorem 4, and p. 261, Theorem 7, gives a proof
of this first order result using ultraproducts.

Theorem 3.12 If € = {N;lieI} is a local family of a L-finitary T-system M
then M can be embedded in wN;/X wheve X is the L-associated ultrvafilter.

Proof: In Theorem 3.11, put a(0) = 0, K = ® and, for eachiel, put Nj = N;
and Y as the identity map on N;.

4 Some algebrvaic applications of highev ovder ultvaproducts This final
paragraph illustrates the presence and application of the higher order
ultraproduct construction in two known algebraic situations.
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Non-finite Boolean algebras

Theorem 4.1 Any infinite Boolean algebrva is isomovphic to a subset
subalgebra of a second ovder ultvaproduct (cf. Stone’s representation
theorem).

Proof: Let M be the infinite Boolean algebra regarded as a first order
system. E°is the set of elements of the algebra. {’, v, ) is the sequence
of constant relations, where ' is the complement operator regarded as a
two-place relation of type (0, 0); v, » are the wedge and join operators of
the algebra regarded as three-place relations of type (0, 0, 0). Now let
7, = (0) and {C, U, M) be a sequence of constant relation symbols, C being of
type ((0), (0)), and U, N each of type ((0), (0), (0)). (C(x,»®) will be
written Cx® = y(® and similarly for N and U.)
Let K be the set of sentences of L2 as follows:

(i) V\’(O)VV(O)(Cx(O) = PV vy (0 Oy (°)<=>\70k/(0) ).
(ii) vx(o) VV(O)VZ(O)(Y(O) U v(O) =20 sy, © ( e (0)@(}(0 (0)x(0) v
x° (O)y(0>)))'

(iii) Vx(")Vy(o)Vz(o)(x(o) (’1_\’(0) - z(°)®Vx°(,v°e(°)z O s (40 ¢(@(0)
X% (O)y(o)))).

Now & ={N;|N; is a finitely generated subalgebra of M} forms a local
family of subsystems of M. Moreover each such N; is finite and so can be
a-embedded in N/, a model of K, where a(0) = (0). Thus, by Theorem 3.11,
M can be a-embedded in TTN,"/X, where X is the L-associated ultrafilter.
(Note: M is L-finitary.) As K consists only of universal sentences, the
image of M in 7N;/X under the embedding is also a model of K. Finally, as
in general 1rN,~'/X is not a full system, the universal quantifiers of K of type
(0) will not include all possible subsets of the individuals of the ultra-
product, and so the image of M will not be a full subset algebra. Q.E.D.

Locally normal groups The following results from the theory of finite
groups are assumed:

(a) For every two Sylow p-subgroups, P, @, of a finite group @ there
exists an inner automorphism of @& which when restricted to P is an
isomorphism between P and @.

(B) If His a normal subgroup of a finite group G, P a Sylow p-subgroup of
@, then PN H is a Sylow p-subgroup of H.

(y) If P is a p-subgroup of a finite group @, N a normal subgroup of @,
such that N2 P, and @ a Sylow p-subgroup of N containing P, then there
exists a Sylow p-subgroup, @', of @ which contains P and such that
Q' NN-=Q.

Let M be a locally normal group. Regard M as a 7-system, where
7= ((0, 0), (0)). E° is the individuals of the group M.? E*° is the set of

2. E©@ is the set of all subsets of E°.
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all subsets of E°xE® and E” = {}. The ‘membership’ relations are the
ones of ordinary set membership, and will be written without the type
prefixes. (S, e, ©) is the sequence of constant relations, where S is of type
(0, 0, 0), representing the binary operation of M, e is the 0-placed relation,
of type 0, denoting the identity element of the group. C is of type ((0), (0)),
and denotes the strict inclusion relation.

Let & = {N;|ie I} be the family of finite normal subgroups of M. Hence
® can be regarded as a local family of subsystems of M, as M is locally
normal. Further, M is L-finitary. Let X be the L-associated ultrafilter
on I.

Take the following sentences and formulae of L'’ (7N;/X). K, is the
conjunction of sentences characterising group structure with respect to a
binary operation S and identity e. (We adopt the usual shorthand that
xovy =z stands for S(x,y, 2), v ="' stands for S(x, y, e) and so on.)
Gs(x?), (%' is a subgroup), is the formula

(0)

-1
Va°Vy°(x% e ¥ a30e @ = x°01° € ) a K.

S:(y°) is the formula y° = e.
5,(3%, (3° is of order %, n an integer), is the formula
3" = e ATS,00%) v . . v $1(3°)).
Sop(y"), (° has order some power of p, p a prime integer), is the formula

Vo Spk(3°), where N is the set of integers.
Gps(x(")), (¢! is a p-subgroup), is the formula

Go(x@) A V(30 e 2@ = 5,,(»)).

1@ 2 @00 (36(% is an isomorphism between subgroups x(® and y®)),

denotes the conjunction of the following formulae:

(i) Gs(x(O)) A Gs(y(O))’

(ii) V2°2%€ x@ = 3"l € v A (2°, 1) € 00'®?)),
(iii) Vx°Vy° V221 € x9n y0e x O n 2% O A (x°, 2% € w
(°, 2% e w(® =>x° = y°),

(iv) V2%2%€ @ = 3x°(x° € O a (x°, 2°) € w>?)),

() Va° V3O Vil Voo (x% e a3 e O A 1l e v @ A 0% y O A (2%, 1 € w0!%O A
<yo, vo) € w(o,o) = <x°oy°, uooz)°> € w(o,o))‘

(0,0) 5

Theorem 4.2 If M is a locally normal gvoup as descvibed above then
a) 7N;/X is a group; b) P is a subgroup of M if, and only if, Y(P) is a
subgroup of wN;/X; c) P is a p-subgroup of M if, and only if, V(P) is a
p-subgvoup of wN;/X, (wheve Yy :M — wN;/X is the embedding of Theorem
3.12), (see footnote on page 15.)

Proof: a) wN;/XEK, as {i|N;FK,}=1I, and so 7N;/X is a group with
respect to the binary operation ¢ (S).

b) Let P be a subgroup of M and so for each ¢, P,=N; NP is a
subgroup of N;. But P; = p,;(P), where pi:M — N; is the canonical projec-
tion associated with the subgroup N;, regarded as a subsystem of M. Now
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{iIN; EG4(P;)} = I and therefore =N;/XkEGy(P)). That is Y(P) is a
subgroup of 7N;/X. Conversely, assume (P) is a subgroup of 7N,;/X. Let
v = {FlaeM}yand ¢(P) = {f,la ¢ P}, where fa is defined as in Theorem
3.12. Therefore w(fJ) = (P) mp(M) Lp(M) is isomorphic to M and zp(P) is
1s0morph1c to P. But t,D(P) Y(P) N yZ/(M) and so w(P) is a subgroup of
d/(M), that is P is a subgroup of M.

c) Let P be a p-subgroup of M. Hence {i|N; E Gps(P; )}=1 and so
TN;/X = Gy(U(P)); that is Y(P) is a p- subgroup of 7N;/X. Conversely,
assume y(P) is p-subgroup of nN;/X. Hence y/(P) is a p- subgroup, and so
P is a p-subgroup. Q.E.D.

The final two theorems are results first proved by Baer in [1], p. 604,
Theorem 4.1 and p. 608, Theorem 4.4. Alternative proofs, via an
ultraproduct construction, are here provided. Kurosh, cf. [4], vol. II,
pp. 167-170, §55, records a proof of these results by the method of
projection sets, (inverse limits). Grazter, ¢f. (2], p. 160, Exercise 100,
details the relationship between an ultraproduct of a family of algebras and
the inverse limit of an associated family of algebras.

Theorem 4.3 If M is a locally novmal group and P a given Sylow
p-subgrvoup of M then the intevsection of P with an arbitary finite normal
subgroup H of M is a Sylow p-subgroup of H.

Proof: Assume that PN H is not a Sylow p-subgroup of H. Let Q' bea
Sylow p-subgroup of H containing PN H. Put G = {i{|N; D H}. Hence Ge X,
where @ is the local family of M as described above and X is the
L -associated ultrafilter. But from property (B8) above, for each ie G,
P; = N; N P is not a Sylow p-subgroup of N;. Hence for each ie G a Sylow
p-subgroup, &;, of N; can be chosen so that P; C Q; and-Q; N H = @',
(Property (y).) Take ge wN;/X, such that g(i) = Q;, alli e G. Hencegisa
subgroup of 7N;/X and ¢(P) € Z. But y(P) is a Sylow p-subgroup of y (1)
as P is a Sylow p-subgroup of M. Also g ﬂx[/(M) is a p-subgroup of xp(]l7[)
and so w(fD) =§ﬂz,b(1f/1). But there exists some ae @' such that af P.
Therefore, for all ie G, ae @; but a¢ P;. Hence f,eg, but f,¢y(P), where
f.(i) = a, all ie G. But 7, e Y(#), and so Y(P) # Ny (#1). From the contra-
diction it is established that P N H is a Sylow p-subgroup of M. Q.E.D.

Theorem 4.4 Any two Sylow p-subgroups of a locally novmal group M are
isomovphic and locally conjugate.

Proof: Let M be the T-system as above with & = {N,-]ie I} the local family
of normal, finite subgroups. Let P, @ be two given Sylow p-subgroups of
M. By Theorem 4.3, for each iel, P, = PN N;, @ = @ NN;, are Sylow
p-subgroups of N;. Hence, by property (a), for each ie I, there exists an
inner automorphism, w;, of N; taking P; to @;. Let we nN;/X be defined by
w(i) = w;, all iel. Now {i|N;EP;=~ Q;(w;)}=1 and so 7N;/Xky(P)=
Y(Q)@). That is w is an isomorphism between Y (P) and ¢ (Q). It is now
required to show that @ restricted to ¢/(P) is an isomorphism between y/(P)
and ¥(Q). For this it is sufficient to show that if w(f) = 7, (as (f, ) e w will
be now written), and fe 4/(13) thenge d/(@).
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Take f,, such that ae P. Let F = {i|f,(i) =a} and so FeX. Let k be
some member of F and put F'={i|N; D N, and ie F}. Thus F'eX. Now,
for all ie F', if w;(a) = b; then b; € @, as N, is normal in N; and w;is an
inner automorphism of N;. Let the individuals of @, be b,, . ., b,, and let
F;= {ilwi(a) = bj and i€ F'}, 1 <j<n. Now F,U..UF,=F'" and so one,
and ogly one, of the Fl-’s, say F,, belongs to X. Thereforegf:fbm and so
gey(Q).

Finally, it is required to show that % restricted to an isomorphism
between Y(P) and Y(Q) is locally an inner automorphism. Take fal, Y
fa"ew(P) that is a,, . ., a,€P. Let w(fa) fb/, bjeQ, 1 <j<n. Itisre-
quired to find some f, ey (M) such that Fal Ofa, of, = f,,, 1<j<n. Let
Gj = {ilfy@) = a;j}, 1 <j <mn, and H,—{zlgb bil, 1<7 n. Let Dj =

{ilwil@;) =b;}, 1 <j <n. Thus GeX, where G =Nic; n HiND;j|1<j <n}.
Take some me G and let D = {i|N; O N,}. Therefore DN Ge X. Now wy, is
an inner automorphism of N,, taking P, to @». Therefore there exists some
ae Nn such that wm(ej) =a 'ogjoa, all 1 <j<n. But for all ie DNG,
wi(a;) = b; = wml(a;), 1 <j <n. That is {i|w;(aj) =a 'oajoaleX, 1 <j<n.
Therefore f, "o j,,j. 0f, = f,,l., all 1 <j <n. Hence the required result. Q.E.D.

Footnote added at proof stage: It was initially thought by the author that the
formula So,,(yo) was (7 N;/X) allowable. This is not so. Thus Theorem 4.2,
part c¢) must be restricted to the ‘if’ statement alone. Counter-examples
exist for the ‘only if’ portion.
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