
1
Notre Dame Journal of Formal Logic
Volume XV, Number 1, January 1974
NDJFAM

SOME RESULTS AND ALGEBRAIC APPLICATIONS IN THE
THEORY OF HIGHER-ORDER ULTRAPRODUCTS

WILFRED G. MALCOLM

Introduction Perhaps the chief result of this paper is the higher-order
extension, (Theorems 3.11, 3.12), via the ultraproduct construction, of a
first-order embedding theorem of Robinson, cf. [7], p. 34, Theorem 2.4.1.

Section 1 summarises the higher-order ultraproduct construction and
gives a partial answer to the question of necessary and sufficient conditions
for the preservation of the 'fullness' property by that construction. Section
2 provides an extension of Los's theorem for a first-order ultraproduct and
an associated formal language to a higher-order ultraproduct and an
associated higher-order language involving a special class of formulae of
infinite length. Section 3 develops a number of results involving sub-
systems of higher-order systems and leads to the embedding theorems.
Section4 illustrates some of these results in two algebraic situations. The
first is Stone's representation theorem for non-finite boolean algebras and
the second, properties of Sylow (maximal) p -subgroups of locally normal
groups.

Terminology Let T be the class of finite types as described in Kreisel and
Krivine [5], pp. 95-101. A (relational) system of order re T, (hereafter
called a τ-system), is a collection M = {Eσ\σ < r} u {eσ |σ ^ T, σ Φ 0} U
(Ru . ., Rp, . .), where {E°Ίσ ^ τ} is a collection of non-empty, mutually
disjoint classes; for each σ < T, σ = (σu . ., σn), e° is an n + 1-placed
'membership' relation defined on (Eσix. . xE ί ;")xE σ; and each Rp is an
n-placed relation on some E σ i x . . xE σ", σu . ., σn ^ τ. Such an Rp is said
to be of type (σu . ., σn). If σ = (σ l5 . ., σn), σ < τ and Rp is a relation of type
{σu . ., σn) then Rp may be regarded as a nominated member of E V If
(al9 . ,,an)e E°ιx . . x Eσn and ae Eσ then (α1? . .9an) is said to 'belong' to «,
written (al9 . ., an) eσa, if, and only if, eσ (al9 . ., an, a); that is if, and only
if, au . ., an, a are related by eσ. E° is the class of individuals of M. The

1. If Rp is 0-placed of type 0 it will be regarded as a nominated member of E°.
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members of the classes Eσ, σ < r, are the objects of M. The Rp's are
called the constant relations of M.

If N = {Fσ\σ < Tj} U {eσ |σ ^ τί9 σ Φ 0} U <Si, . ., Sp, . .) is a ^-system
then M and AT are said to be similar if r = τl9 and if, for every p, the
corresponding relations Rp and S/> are both ^-placed, for some integer k,
and of type (σl9 . ., σk) for some σ u . ., σ& < r. The class of all systems
similar to M is called the similarity class of M.

M is called a normal structure if, for all σ < T, σ = (σ1? . ., σn), and for
all a} b e Eα, α = 6 if, and only if, a -b, where a = {(αi, .., αw) | (α^ . ., an) eσa}
and 6 is defined similarly. Unless otherwise stated all systems later
discussed will be assumed normal.

LT(M) is a formalized logic associated with the similarity class of M,
where Lr(M) has, for each σ < r, a countable class of variable symbols of
type σ, viz {xσ, yσ, . . x°9 y°, . .}; for each σ ^ r, σ Φ 0, a 'membership'
relation symbol eσ; and (Rl9 . ., Rp . .,) a sequence of constant relation
symbols. (No confusion will be caused by using ζeσ,' (Rp' to denote both
elements of M and of LT{M).) For each σ ^ T, L/(M) will have an identity
symbol, =.

A standard interpretation of LT{M) with respect to any member, AT, of
the similarity class of M will be one in which each symbol eσ of \J(M)
denotes the 'membership' relation, eσ, of N; each symbol Rp denotes the
relation Rp of N; and each identity symbol of type σ of LT{M) denotes the
identity relation on Fσ of N.

Let a = (ai, a2, . .) be a sequence of objects of M. If φ is a formula
with free variables ΛΓ̂ J, . ., x°", then a is said to be 0-allowable if α^e Eσk,
1 ^k ^n. A 0-allowable sequence a is said to satisfy φ in M, written
M t=$(a), (or if φ is written φ{x°i\, . ., xϊn) then M f=ψ(a) may be alternatively
written as M\=φ(aiι9 . .,ain))9 if the sequence (α^, . .,ain) satisifes φ in M
under the assignment of aik to x?£, I ^k ^n. φ holds in M, Λf 1=0, if for all
^-allowable sequences a, M{=0(a).

1 Higher Order Ultraproducts Let {M U'e/} be a family of r-systems
belonging to the same similarity class. That is, for each iel, let Mj =
{E^|σ ^ r} U {eσ\σ ^ r, σ ^ 0} U <βχ, . ., Rp, . .). If X is an ultrafilter over /
then the ultraproduct of the family is the τ-system πMi/X = {ττEf/x\σ < r} u
{eσ |σ < T, σ Φ 0} U (Rl9 . ., β^, . .). For each σ < T, πE,V-X" is the set of

equivalence classes of the cartesian product π Ef= {/!/:/—» UίE^U'e/},

/(z)eEf? under the equivalence relation defined by: f~g if, and only if,
{i\f(i)=g(i)}eX. The equivalence class of/ is denoted by/ . For each
or < r, σ = (σ1? . ., σw), eσ is defined in πM{/X by: (/^ . ., fn) eσf if, and only
H,{i\(fi(i), . .,fn(i))eσf(i)}eX. Similarly each Rp, (where, for each Mh Rp
is ^-placed and of type (σ1? . ., σk) say) is defined in πMi/X by, Rp(fi, . ., fk)
if, and only if, {i\Rp(Mi), . .,fk(i))}eX.

The necessary lemmas to support the above definitions are assumed.
It is noted that ΈMJX belongs to the same similarity class as the Λf,-. The
requirement of similarity for the family {M^iel} is not a necessary one
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for the definition of the ultra-product. A relaxation of the similarity
condition in the case of the first-order ultraproduct construction is
discussed in a paper by the author [6]. The method extends to higher order
systems, if desired.

Theorem 1.1 If each member of {Mj\iel} is a normal system then so is
-πMi/X.

Proof: Take /, ge Eσ, σ < r. Let F = {i\f(i) = g{i)}. Assume f=~g, that is
FeX. Now (Λ, . .Jn)eσf if, and only if, GeX, where G = {ι|(/1(z), . .,
fn(i)) eσf(ϊ)}> But each Mf is normal and so H D G Π F, where H= {i\(A{i), . .,
fnO)) eσg(i)}. Jlence HeX^nά so (fu . .,fn)eσg. Similarly (fu . .,fn)eσfiί
(fu . , / w )e σ £ and so/=£-_.

Conversely, assume f Φ g, that is F / X a n d so CFe X. Now as each Mi
is normal there exists for each ie CF, (a[, . ., cfyeE?1* . . x E°n such that
(a[, . ., aii) 'belongs' to one, and only one, of f(i), g(i). For each i e CF
define /;(z) = a), 1 ^j ^n. Thus /,-, 1 ^j < n, are well defined as CFeX.
Let Fo = {z|(Λ(z), . .,fn(i))eσf(i)} and Go = {i\(Λ(i), . ., /„(/)) eσg(i)}. Now
(CF Π Fo) U (CF Π Go) = C F and (CF Π Fo) Π (CF C\ Go) = ft. Therefore one,
and only one, of F o , Go belongs to X; that is (fl9 . ,,fn) ^belongs' to one, and
only one, of /, g. Thus Jφg. Q.E.D.

A τ-system M i s termed full if, for each σ < r, σ = (σ1} . ., σn), and for
each subclass K of E σ i x . . x Eσn, there exists an object a e Eσ such that
a = K. The next three theorems discuss the fullness of the ultraproduct of
a family of full systems.

Theorem 1.2 Let {Mi\iel} be a family of similar and full τ-systems.
If X is a given ultrafilter over I and ΉMJ/X the ultraproduct then for each
σ < T, σ = (σl9 . ., σ j , andjor each subclass KofE°lx . . xE°n

9 there exists
some fe Eσ such that K c / .

Proof: For each iel, let K{ = {(Ad), . ., /„(*')) I(7i, . . , / J e K}. But each M,
is full and so there exists some object α, e E^ such that α̂  = Kj. Define fe Eσ

by f(ί) =a{, for each iel. Take any (Λ, . . ,/ w )eK. Hence {f | (/i(z), . .,
Mi))eσf(i)}= I. But 7 e X and so (fu . .Jn)eσf. Thus K c / . Q.E.D.

Theorem 1.3 Let {Mi\iel} be a family of similar and full τ-systems. Let
X be an ultrafilter over I and πMi/X is the restating ultraproduct. If
σ ^ r, σ= (σ1? . ., σn)9 and if K is a subclass of E σ i x . . x E°n such that
|K | = β9 (that is the cardinality of K is β)9 then there exists no fe E° such
that f = K only if X is β-ίncomplete.

Proof: Let the members of K be indexed by β, that is K = {(^i, . ., gn)j\j < β}-
Further, for each j < β, let (gl9 . ., gn) be an arbitary but fixed representa-
t i o n o f (gly . ., g n ) . L e t Ki = {(gί(i), . ., g n ( i ) ) j \j < β } , e a c h iel a n d a s i n

Theorem 1.2 let fe E σ be defined such that/(z) = Ki9 each iel. Thus /Cc/.
Assume there exists no ge E° such that g =K and so there exists some

(Λ, . ., fn) e E σ i x . . x Eσn such that (fu . ., /„) e/ but is not a member of K.
Let F = {i\ (fS), ., Mi)) eσf(i)} and s o F e l . Let ^ - F n {* | (Λ(i), . ., /Λ(f)) =
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tei(O, , gn(f))j}> for all j < β. Now Fj jX, j < β, as (fί9 .., fn) / K. Further,

U{^/ I j < β} = F as, for all i e I, f(i) = Ki9 and the K{ have been defined using

only the fixed representations of the members of K. Therefore Π{CF7 \j <
β] π F = 0 and hence X is β-incomplete. Q.E.D.

The question as to whether the incompleteness of the ultrafilter X
guarantees the non-fullness of the ultraproduct does not seem to have an
immediate answer. The next theorem is a possible step towards such an
answer.

Theorem 1.4 Let {Mf |z el} be a family of similar and full τ-systems. Let
X be a ^-incomplete ultrafilter over I. irMi/X is the resulting ultraproduct.
If for σ ^ r, σ = (σ^ . ., σn), there exists some K c E°ι x . . x E°n

9 say K =

{G?i, .,gn)j \j < «}, β <«, such that G e l , where G = (]{CFm,n \m,n<β,
m Φ n\ and Fm,n = {i I {gi{i), . ., gn(i))m= {gi(i), , ̂ «(*))«}, «M m, n < β, m * n,
then there exists no f e Eσ such that f = K.

Proof: As X is β-incomplete let {Hk\k < β} be a family of members of X

such that Π{ffjfc < β} = φ. Assume there exists fe E° such t h a t / = K .
Thus, for each j < a, (gl9 . ., gn)j e^/ if, and only if, (gl9 . ., gn)j e K.

For each j < β put G; = {i \ (grf), . ., ̂ Λ(i))f. e
σ/(**)}, Gy = G/ Π Gand HJ =

G Π ffy. Thus G/, ^ e l and \J{CHJ\j <β}=G, where Cfi// = G Π C^/. Now
define (/1? . . ,/Je Eσiχ . . xE°n as follows: For all ieC'H'o put (/^f), . .,
fn(i)) = (gid), ;gn(i))o> Assume (/$), . .,/«&')) has been defined for all

ie\J{CΉj\j < δ}, for some δ < ft and define (£({), . .,/„(«)) = ̂ (z), . .,

gn(i)h, for all ie(){HJ\j < δ} - ^ . By transfinite induction (Mi), . ., fn(i))

is defined for all ie G, as U{C f ^ |j < β} = G. Hence (£, . ., /„) is well
defined as Ge X.

But {gu . ., fw); ^ (fl9 . ,9fn)9 for any j < β9 as {/|(^Ί(Z), . ., gn{i))j =

(Λ(ί), ., fn(i))}n G =Γ\{Hf

k\k < j}nCH'h andCi/ /X. Hence (Λ, . . ,/J/K.
But (fl9 . .9fn)eσj as {i\(Mi), . ., fn(i))eσf{i)} Ώ G. This contradicts the
assumption that/= K and hence the theorem is established. Q.E.D.

2 IJltrapro ducts and an Associated Higher-Order Language, Let {M, U" e/}
be a family of τ-systems of the same similarity class. £ is the
formalized language associated with this similarity class, as described in
the introduction. If a = (fl9 /2, . .) is a sequence of elements where each
member of the sequence is an object of τrMi/X9 for some ultrafilter X9 then
a(z) = (fi(i), ΛίOj •) is the associated sequence of objects of M, , each iel.
The first theorem of this paragraph is the natural extension of Los's
theorem for a first order ultraproduct and associated language.

Theorem 2.1 Let X be a given ultrafilter over I. If φ is any well formed
formula (wff) of JC and a = {fl9 f2, . .) any φ-allowable sequence then
τrMi/X\=φ(n) if, and only if, {i\M{ \= φ(n(i))}eX.
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Proof: The details of proof are straightforward extensions of those for the
first order theorem—for which see Kochen [3], pp. 226-229, Theorem 5.1.

Corollary If φ is a sentence of £τ then πMj/X\=φ if, and only if,
{i\Mi\=φ}eX.

Proof: Immediate from Theorem 2.1.

For the purpose of later application (see footnote on page 15),
the language £τ is extended to include a wider class of formulae, developed
relative to uMi/X as follows: Let {φt \te a} be any class of wff's of £τ such
that (i) only a finite number of distinct free variables occur in all of the
φt, tea; (ii) for any 0^-allowable sequence, a, (because of (i) any sequence
allowable for one φt will be allowable for all), and for all kea, if there
exists some je /such that M; l=0Λ(aϋ)) then {i|Mf \= φk(n{i))}eX. The infinite

disjunction Vt€aφt will be a (-nMi/X) allowable formula.
Formulae generated by the rules of formation of JC from the wffs of

<£τ together with the (πMi/X) allowable disjunctions will comprise the wider
class of formulae of *Cr. ^rT (uMi/X), or in context just j£tτ, will denote £τ

with this wider class of formulae.

Theorem 2.2 Let X be a given ultrafilter over L If φ is any wff of £fτ and
a any φ-allowable sequence of objects of -nMi/X then uMi/Xhφ(n) if, and
only if, {i|Mf l=φ(a(*))}e X.

Proof: In view of the inductive procedures of the proof of Theorem 2.1 it

is necessary only to consider the case where φ is of the form VuaΦt a s

described above. First assume that πMi/X\=vtiaφt(n) and so by the
semantical rules for a disjunction there exists some kea such that
iιMi/X\= φfc(a). Hence from Theorem 2.1, {ί|Mf f= φ*(a(z'))} eX and so

{ί I M. N V ^ Φ , (a (*))}€*.
Conversely, assume that U\Mi\=yteaφt(n(i))\eX. Hence there exists

some jel such that Mj\=yt€aφt(n(i)) and thus some kea such that
Mj N φk(*(j))- Therefore {i \ M{ 1= φkW))}e X and so irMi/X £ φk(n). Therefore

ΉMi/X\=Wt€aφt(n). Q.E.D.

Corollary If φ is a sentence of *Ctτ then vMi/X\=φ if, and only if,
{i\Mi\=φ}eX.

Proof: Immediate from Theorem 2.2.

Theorem 2.3 Let X be a given ultrafilter over L If K is a class of wffs of
£fτ and a any sequence of objects of ΉMJ/X, (allowable for all members of
K), thenττMi/X^K(n) if{i\Mi\=K(&(i))}eX.

Proof: Assume {i\Mi \=K(n(i))}e X. Thus for all φe K, {Z|M, \=φ(n(i))}eX
and hence τrM, /XN0(a). That is ττMi/X\=K(n). Q.E.D.
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Corollary If K is a collection of sentences of -C'5 then

ΉMi/X \=Kif {i \Mi \= K}e X.

Proof: Immediate from Theorem 2.3.

The final theorem of this paragraph is a partial converse to Theorem
2.3.

Theorem 2.4 Let X be a given ultrafilter over I. If K is a set of wffs of <£TΓ

such that \κ\ = β and X is β-complete then, for any alloiυable sequence a,
ΉMI/X\=K(n) only if {i \M{ != K(n(i))}eX.

Proof: Assume πMi/X^ K(%) and so, for all φeK, πM, /XI=0(a). Let Fφ =

{i\Mi\=φ(n(i))}9 for all φeK. Now {i\Mi \= K(*(i))} 2 C\{Fφ\ φeK}. But each
FφeX and X is β-complete. Thus {i \M{ \= K(n{i))}e X. Q.E.D.

Corol lary If K is a class of sentences of *Q1T such that | K | = β and X is

β-complete then uMi/X^K only if {i\Mi 1= K(a(z))}e X.

Proof: Immediate from Theorem 2.4.

3 Substructures and Embeddings Let M = {Eσ| σ < r} u {eσ \ σ ^ r, σ Φ 0} U
(Rly . .), and N= {F°\σ ** r} u {eσ |σ < r, σ ̂  0} u (S1? . .) be two normal T-
systerns. iV is called a subsystem of M if (i) F° c E°; (ii) for each σ ̂  r,
α ^ O , there exists a surjective map £ : Eσ —» Fσ, and for σ = 0; p : F° —> F° is
the identity map, such that for all (£(aj, . ., p(an)) e F σ i x . . xF σ w , σ =
(σL, . ., σ«), and all />(«) e Fσ, (p{ax), . ., p{an)) eσp{a) if, and only if, there
exists some (a[, . ., α )̂ e E σ i x . . xE σ w such that p(ak) = p(flfe), 1 ̂  k ^ n, and
(α{, . ., alt) eσa; (iii) there exists a surjective map p:(Rl9 . .) —> (Sl9 . .) such
that if Rt is a relation of type (σlf . ., σw), σx, . ., σw ̂  r, then p(Rt) is of the
same type and for all (p(ai), . ., ̂ J ) e F σ i x . . x Fσ w, piRMpiaJ, . ., />(«„))
if, and only if, there exists (a[, . ., «„') e E σ i x . . xE σ w such that />(αfe) = i?(^),
1 < k ^ n, and Rt(a[, . ., α^). The family of maps is denoted by p:M—* iV
and called the canonical projection of M to the subsystem iV.

Theorem 3.1 If N is a subsystem of the r-system M then the canonical
projection p : M —» iV zs unique.

Proof: Let p^.M—* iV, p 2 : M —* ΛΓ be two canonical projections. Now, for
σ = 0, Pi = p2 as both are the identity map on F°. Assume for all σt < σ,
σ ^ 7, that p1 = p2 on Eσ\ (on F° if σ, = 0). Now to show pγ = p2 on Eσ.

For any ae Eσ, σ= (σ1? . ., σn), consider pλ(a), p2(a). Take (A(«i), .,
PiM) eσ piia). Therefore there exists some (a[, . ., a'n) e E σ i x . . x Eσw such
that (fl{, . ., O e σ « and ̂ (fl^ = />i(«I), 1 < k ̂  n. Hence (/>2(α[), . ., ρ2{a7)) eσ

P2(a). But p1 = Λ on E% σ, < σ. Hence p2{a'k) = />x(4) = ̂ ( α j , 1 ̂  k < n.
That is (jOΛαx), . ., A(««)) €αA(«):_Similarly^if (^(α^, . ., p2(an)) eσ p2(a) then
(p2(aι), •, p2(an)) eσ Pι(a). Thus /^(α) = />2(β) and as AT is normal then p^a) =
p2(a). By a similar argument it can be shown that for all constant relations
Rt of M, ΛίΛί) - /)2(-R,). Hence px = p 2 : M - AT. Q.E.D.

If Â  is a subsystem of Λf then iV can be regarded as being in the same
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similarity class as M. For if (Rl9 . .) is the sequence of constant relations
of M then (p(Rι), . .) can be taken as the corresponding sequence of
relations of N. As p is surjective all of the relations of iVwill be included
in this sequence, although there may be repetitions. This will not matter.

Canonical subsystems M i s a τ-system and F° a given, non-empty, subset
of E°. A τ-system, N, can be built inductively on F° as follows (cf. Kreisel
and Krivine, [5], p. 98, Theorem 16):

(i) F° comprises the individuals of N.
(ii) Take σ < r, σ = (σl9 . ., σ«), and assume F°ι is defined for all σ, < σ,

together with surjective maps p:Eσi—Fσ\ σt Φ 0, and p: F° — F° the
identity map. For each ae Eσ, define p(a) = {(p{ax)9 . ., p(an))\ there exists
a[9 . ., On, such that />(«/) = p(aj), 1 < j < w, and « . ., al) eσ a}. Let F σ =
{£(α}|αeEσ} and p: Eσ — F σ is thus defined. Now for all (/>(αθ, . .,
/>(«„)) € Fσ* x . . x Fσ", and all />(α) € Fσ, define (/>(Λl), . ., p{an)) eσp(a) if
(ί(«i), . ., p{an))e p(a). That is eσ in iVis the ordinary membership relation,
(iii) For each relation Rt of M of type (σ1? . ., σn), σl9 . ., σn ^ r, define ^(i?/)
by: P(Rt)(P(^ι)9 . ., P(α«)) if there exists (αj, . ., an) such that ί(αi) = P(ak),
1 ^k ^n9 and Λ/(α{, . ., α»).

Theorem 3.2 ΛΓαs constructed above is a normal τ-system.

Proof: Immediate from a direct checking of the definitions.

Theorem 3.3 If M is a r-system and N is constructed as above on a subset
F° of E° then N is a substructure of M. (N is termed a canonical sub-
structure.)

Proof: Immediate from the details of the construction and where the maps
p form the canonical projection of M to the subsystem N.

If My N9 are two similar r-systems then M and N are said to be
isomorphic if there exists, for each σ ^ r, a bijective map ψ : Eσ —> Fσ such
that (i) if σ = (σ1? . ., σn) then for all (al9 . ., a») e EO lx . .xE°n and all αe Eσ,
(al9 . ., α j eσα if, and only if, ( ψ ^ J , . ., ψ(an)) eσψ(a)) (ii) for all Rt of type
(σl9 . ., σw) and all (al9 . ., αw) e E σ i x . . xE σ", i?,(αi, . ., an) if, and only if,
S/(Ψ(αi)? •? Ψ(an)). (Note: The correspondence between the Rt's and the
St's could be varied by permutations of either the relations of M or the
relations of N9 but compatible with the similarity requirements.)

Theorem 3.4 If M is a τ-system and Nl9 N2 are two subsystems of M such

that F? = F° then Nι and N2 are isomorphic.

Proof: Let p1: M —• Nl9 p 2 : M-* N2 be the canonical projections of M to jVΊ,
and iV2 respectively.

It is first established by induction that for all σ ^ r and all pι(a)9

Pi(b)e Fi, that p^α) =/>i(6) if, and only if, p2(a) = p2(b). If σ = 0 then the
result is immediate as pl9 p2 are identity maps on F? = F2.ψ For σ ^ r,
σ = (σx, . ., σn), assume that the result is true for all σ, < σ. Take p^a),
pί(b) e Fι and assume pλ(a) = pλ(b). Take any (p^a^, . ,9 p2{an)) eσp2{ά).
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Hence t h e r e exis ts some {a[, . ., (in) eσa such that p2(a'k) = p2(cik), 1 ̂  k ̂  n.
Therefore {pλ{a[), . ., px{qi) eσp^b), a s pλ{a) = px(b), and so t h e r e ex i s t s
(aϊ, . .,an)eσb, where pMl) =/>i(«ϊ), l^k^n. Thus U>2(a"), . ., p2(a%)) eσ

P2(b). But from the induction assumption P2(a'k) = P2(
ak), 1 ̂  k ̂  nf and so

(Λ(«i), , Asia*)) eσ&>(6). S i i n i l a r l y i f ^ i a J , .., p2{ari) eσp2(b) then (&>(%), . .,
P2(

an)) eσp2(a). Therefore />2(a) = p2(b) and so />2(«) = p2(b). Conversely if
£2(«) - £2(6) then /?!(«) = pι(b). Hence this first result is established.

Now define ψ(pι(a) = p2(a). ψ is thus well defined, for if p^a) = p^b)
then p2(a) = p2{b). It is now necessary to show that ψ is an isomorphism
between Nx and N2. First to show that for each σ ̂  T, ψ : F ^ - ^ F2 is
bijective. If σ = 0 then ψ : F? —» F° is the identity map as F? = F£ and ρu p2

are the identity maps on Fj, F2 respectively. Let σ = (σl9 .., σn), and assume
that for all σf- < σ, ψ : F?f" — F? is bijective. For any p^a), p^b) e Fσ

u if
Ψ(/>i(β))=ψ(/>i(δ)) then/>2(α)=/>2(δ) and so pί(a)=pι(b). That is ψ is injective.
If p2{a)eFl then α € Eσ and so Pι(a)eFl and ψ(Pda)) = p2(a). That is
ψ : Fx —* F 2 is surjective. Hence by induction ψ : Ff —» F^ is bijective for
each σ «? r.

Take σ « r, σ = (σ υ . ., σn) and any (/>i(α«), . ., />i(««) eσpι(a). Therefore
there exists (α{, . ., «») eσ a such that Pι(aί) = pι{θn)9 l^k^n. Hence
(Λ>(«ί), , />2(««)) eσp2{a). But as / i ^ ) = p^ik), I ̂  k ̂  n, then />2(αA

f) = p2(ak).
Hence ( ^ ( α j , . ., p2(an)) eσp2(a). That is (ψ^^αx)), . ., ψ(^i(αw))) €σψ(pM))'
Conversely, take (ψiptiaj), . ., ψ{pMn))) eσψ(pι(a)). That is (p2(ad, .,
P2{an)) e°P2(

a) and so, by a similar argument to that above, (/>i(αL), . .,
/>i(««))€σ/>!(«).

Finally, by a similar argument as above, it can be shown that if pι(Rt)
is any n-placed relation on F^x . . xF^", σ1? . ., σn ̂  T, then for all
(Pifoi), , Ai(««)), Pi(Rt)(Pι(aι), . ., Pi(αJ) if, and only if, />2(Λ/)(Ψ(Pi(«i)), .,
Ψ(Pi(an)))- Hence ψ : ΛΓi -* N2 is an isomorphism between Nι and iSΓ2. Q.E.D.

Corollary If M is a r-system then every subsystem of M is isomorphic to
a canonical subsystem of M.

Proof: Let Nι be any substructure of M. Let N2 be the canonical substruc-
ture of M constructed on F? C E°. Hence from Theorem 3.4 iVΊ is
isomorphic to AΓ2.

Theorem 3.5 Nly N2 are hvo subsystems of a τ-system M. / / F ? c F2 then
Nι is a subsystem of N2 and if p 3 :N2 —• ΛΓL is the canonical projection of N2

to Nu then for σ < T, and all p2(a) e F2, pzp2{a) = pι(a), where ψu p2 are the
canonical projections from M to Nu N2 respectively.

Proof: By an argument similar to that in the proof of Theorem 3.4 it can
be shown (i) that for any σ ̂  r, and all pι(a), p^b) e Fσ

u if p2(a) = p2(b) then
Pι(a) = Pι(b)\ (ii) that if for each σ ̂  r, p3: F 2 — F? is defined by putting
PsiPiia)) = Pi(a)9 for all ^2(«) e F 2, and if for each constant relation ^(i?/) of
#2, p3(p2(Rt)) is defined as pi(Rt), then p3:iV2 — AΓX is the canonical projec-
tion defining Λ/\ as a subsystem of N2. Further, by definition p3p2 =
pι: Eσ — Ff, for each σ ̂  r, σ ̂  0. Q.E.D.

Theorem 3.6 If N^ is a subsystem of a 7-system M such that (pι(a^), . .,
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PiM) fίσpM), σ ^ T, σ = (σu . ., σn) then in any subsystem N2 of M, which
contains Nl9 (p2(a1)> . ., p2{an)) ίap2(a). Similarly if pάRΛiPiM, . ., pMn))
does not hold in Nt then P2(Rt)(P2(

ai), , £2(
β«)) does not hold in N2.

Proof: Let p3:N2 — Nt be the canonical projection as in Theorem 3.5.
Assume (A>(«i), . ., P2(

an)) eσP2(a) and so (P3(P2(ax))y . ., P3(p2(an))) eσp3(p2(a)).
Hence (pjaj, . ., p^an)) eσp1(a)9 as p3p2 = px. That is if (PάaJ, . ., pJM)?
Piia) then (p2(aλ), . ., p2(an)) {°p2(a). The second part follows likewise.Q.E.D.

Theorem 3.7 Any subsystem, N, of a full τ-system M is itself full.

Proof: Take σ < r, σ = (σ1? . ., σn) and K any subclass of F σ i x . . x F°n. It is
required to find some p(a) e Fσ such that K = p{a), where p :M -^ N is the
canonical projection associated with N. Let Kτ = {(au . ., an) \ (p{ax)y . .,
p(θn)) e K}. NOW M is full and Kr is a subclass of E σ i x . . x Eσ" and so there
exists ae Eσ such that a = Kr.

Now to show that K = iHa). Take {p{a^, . ., P(θn))e K. Hence (α^ ..,
an)eKr and so («!, . .,an)eσa. Therefore φfμ^ . ., p{an)) eσp(a). That is
K Q'pϊβ). Now take (/>(«i), . ., p(an))eσp(a). Therefore there exists (α(, . .,
an)eσa, where p(aί) = />(«*), 1 ^ ^ <w. Hence (α{, . ., aί)eKr

9 as α = # ' , and
so (/>(«{), . ., />(α»)€ K. That is ί/>(«i), . ., p(dn)) e K. Thus ^(αT c K and so
£{ίT=K. Q.E.D.

Theorem 3.8 L^ί {Mi \i e /} δ^ a family of similar r-systems. For each i e /,
Z ί̂ iV/ be a subsystem of Mi, If X is any ultrafilter over I then -πNi/X is a
subsystem of πM, /X

Proof: For each iel let γ{ :Mj -* Ni be the canonical projection associated
with each N{. Define p mMi/X —> πNi/X as follows: For σ = 0 and for all
Jfe F° define p(g) = pig), where p(g): I— π, f i F ? is defined by p(g)(i) =g(i),
all i e I. Hence p : F° —» F° is the identity map.

For σ Φ 0, σ ^ r, for all fe Eσ put p(J) = p(f), where p(j) :I - πzV/ F^is
defined by p(f)(i) = />, (/(z)), all fe/ . IfΛ - / then p(fx) - />(/), as {z If^i) =
/(f)}el; and so^> : E σ -^ F σ is well defined. Further pis surjective as each
Pi : E ? — Ff i s surjective.

Take σ = (σif . ., σn), σ < r and consider (£(/i), . ., ^(7«)) eσp(f). Hence
GeX, where G = {i Hp(fd(i), . ., ί (/»)(*)) eσ/>(/)(t)}. That is, for each i e G,
(PΛfiϋ)), , Pi(fn(i)))eσPi{f(i)) and so_ there exists (α{, . ., aί)eσf{i), where
Piia'ύ^Piifkd)), I ^k ^n. Now define ^ . c Fσ^, 1 ^ ^ <n, by putting^(z) = α ,̂
all ieG. Thus ^ , 1 ^k ^n, are well defined as GeX. Now {t|(£Ί(ι'), .,
gnd))eσf(i)} Ώ G and so (glf . ., ^ w ) e σ / . And further, p{gk) =p(fk), l^k^n,

as {i\Pi(gkp)) = PΛfktt))} Ώ G. Conversely, take (gίf . .,gn)eσf such that

/>(£*) = P(fk), l^k^n. Let Gfe= {/ |^(^(i)) = PάfH))\ Kk^n, and Go =

{*I(ΛW, . - ,#•««)€ σ Λ')}. Thus G e l , where G = f l { G j θ ^ < w } . Hence
(/>(Λ), . ., P(fn))e°p(f) as {*|(fc(Λ(ί)), . ., Λ(/w(z)))6σΛ(/(z))} 2 G.

By a similar argument it can be shown that p(Rt) can be defined in
TϊNi/X by reference to pi(Rt) for each Mf and that p(Rt)(p{fi), . ., />(/»)) i f ,
and only if, there exists ( ^ , . ., gn) such that ^ ( ^ 1 ? . ., gn), where /)(^,) =
P(fύ> 1 ^ ^ ^ ^ . Hence TϊNi/X is a subsystem of uMi/X with canonical
projection £ : πMi/X —» πNi/X as defined. Q.E.D.
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a-embeddίngs A T^-system M1 is said to be α-embedded in a τ2-system M2,
where τι ^ τ2, by an α-embedding map ψα, if (i) a is an injective map from
| τ j to \τ2\ ( I r J = {σ|σ ^ r j ) such that for each σ ^ τl9 σ = (σl9 . ., σw),
cn(σ) = (cKα^, . ., a(σn))'9 (ϋ) for each σ ^ τl9 ψQ is an injective map from Eΐ
to E? ( σ ) such that for all (au . ., an) e E^x . . x E£n, a e Eσ

l9 (au . ., an) eσa if,
and only if, ty/W, . ., ψa(an)) ea{σ)ψa(a); (iii) for each Rh rc-placed and of
type (σ2, . ., σn), ψa(Rt) is an ̂ -placed relation of M2 of type (a(σx), . ., a(σn)),
such that Rt(au . ., αw) if, and only if, ψa(Rt){ψa(a1)9 . ., ψa(an)). If α r k j -
I τ21 is such that «(0) = 0 then the α-embedding is referred to simply as an
embedding and the of is omitted from the ψa>s.

Local family of subsystems (cf. Kurosh [4], vol. II, §55, p. 166.) A family
of subsystems {Ni\ieϊ\, of a τ-system M, is called a local family of M if
(i) every member of E° belongs to at least one Ni9 i e /; and (ii) for every
i, j e / ( a n d hence for any finite number of elements of/) there exists kel
such that N( and Nj are subsystems of Nk.

Theorem 3.9 If L is the class of all finite subsystems of a r-system M
then L is a local family of M.

Proof: Immediate.

L -finitary systems A τ-system M, with a given local family 8 = {iV/ \i el},
is said to be l-finitary if (i) for each σ ^ r, σ = (σl9 . ., σn), if (al9 . ., an){σa
then there exists some member, N, of S such that (p(aι), . ., p(an)) {°p(a)9

where p:M—>N is the canonical projection; (ii) similarly if Rt(al9 . ., an)
does not hold in M then for some Ne 8, p{Rt)(p{aλ)9 . ., p{an)) does not hold
in N. If 8 is the family of all finite subsystems of M and if M is L-finitary
then M will be simply termed finitary.

Theorem 3.10 If M is any first order system and 8 any local family of M
then M is L -finitary.

Proof: Let Rt be a ^-placed constant relation of type (0, . . ,0) . Take
al9 . ., ane E° such that Rt(aly . ., an) does not hold in M. Let JV be some
member of 8 which contains al9 . .,«„. Kence p{Rt)(p(aλ),. ., p(an)) does not
hold in iV, where p : M—•> iVis the canonical projection. Q.E.D.

I-associated ultrafilter Let 8 = {AΓ, k' e/} be a local family of a τ-system
M. For each iVe 8 let F N = {*' | ^ DAT}. Now {î N|ΛΓe 8} = B is such that the
intersection of any finite set of members of B is non-empty. The ultrafilter
X formed on B as sub-basis is called the [.-associated ultrafilter.

Theorem 3.11 8 = {Nj\iel} is a local family of a I-finitary T^system M
such tliat, for each ie I, N, can be a-embedded in a τ 2-system, Λ ,̂ τx ^ τ2,
where each such JVj is a model of a class of sentences, K, of 4!rr2(ττNt /x)9 X
being the L -associated ultrafilter. Then M can be a-embedded in a model
ofK.

Proof: For each i e /, let ψf:Ni —* Ni be an α-embedding. Define \pa:M —*

ΈNI/X by (i) if a e E° put ψ » =Λ, where Λ(z) = ψ?(α), for all z e F N , where
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N is a member of 8 containing a; (ii) for each σ ^ τl9 σ Φ 0, and each ae Eσ,
put ψa(a) = fa, where fa(i) = ψ°i(Pi{a)), for all ie I, and where ψ{ :M -* N{ is
the canonical projection. The NJ, iel, can be regarded as belonging to the
same similarity class as M by ignoring all constant relations in iV/ other
than those connected to Ni by ψf. It is now required to show that ψa:M —*
-πNi/X is an α-embedding. Take σ < τl9 σ = (σl9 . ., σn) and («!, . ., an) e°a.
Let J be the subset of {l, 2, . ., n} such that if je J then σ, = 0. Now for all
ieFN, where N is some member of 8 which contains each «/ , jeJ ,
(ft («i), ,Pi(θn))eσpi(a). Hence {* | (ψΐipdaj),. ., ψj(pi(an))) eσ ψ"(Pi(a))} e X.
That is {t|(/β l(i), . .,/^(i))cσΛ(*)}€X and so (Λχ, . ., faj e°U That is
(ψα(«i), , ψa(an)) eσψa(a). Conversely, assume that (al9 . ., an)f[σa. Now M
is L-finitary and so there exists some member N of 8 such that (£(αj, . .,
£(β«)) ί°P(a), where p :M —* N is the canonical projection. Let FN ={z | Â  D AT
and iVf e 8} and so F N e X. Now from Theorem 3.6, {i\(pi(aι), . ., pί{an))έσ

Pi(a)} Ώ FN and so {z | (ψfoiiaj), . ., ψ?(A(««))) fίσψ"(Pi(a))}e X. Hence (ψ o( β l),
. ., ψa(an))fίσψa(a). Similarly, if Rt is a constant relation of type (σ1? . ., σw),
CΓI, . ., σ» < τ 1 ? then ^ ( α ^ . ., an) if, and only if, i / Λ ^ K ψ V ) , . ., ψ V ) )

Further, it needs to be shown that ψα is injective at each level σ < τ x .
Let σ = 0 and take α, δe E° such that ψa(a) = ψa(b). Thus fa = fb. Let AT1?

N2e2 such that /Λ(f) = ψ?(α), for all ύ F N i , Λ(z) = ψf(b), for all z e F ^ . If
G = {i\fa(i) =fb(i)} t n e n G Π F N n i ^ is non-empty and so there exists an
z e / s u c h that ψ^a) = ψ°[(b). Hence a = b9 as ψf is injective. Now take
σ < rl9 σ= (σx, . ., σn) and α, b e Eσ such that a φb. Hence there exists
(al9 . ., an) which 'belongs' to one, and only one, of a and b. Therefore
(Ψα(«i), . •> ψa(an)) 'belongs' to one, and only one, of ψa(a) and ψQ(δ). That is
ψa(a) Φ ψa(b). Thus ψa:M —> πNj/X is an α-embedding.

Finally it remains to comment that ΉNJ/X is a model of K as each iv/,
ze/, is a model of K (Theorem 2.3). The theorem is therefore estab-
lished. Q.E.D.

Corollary If every finite subsystem of a finitary system M can be
a-embedded in a model of K then M can be so embedded.

Proof: Immediate from Theorems 3.10 and 3.11.

The first order case of the above corollary, (with ctί(O) = 0), is proved
by Robinson, cf. [7], p. 34, Theorem 2.4.1, by the method of diagrams.
Gratzer, cf. [2], p. 243, Theorem 4, and p. 261, Theorem 7, gives a proof
of this first order result using ultraproducts.

Theorem 3.12 If 8 = {Â  \ieϊ} is a local family of a L -finitary r-system M
then M can be embedded in ΉN^/X where X is the L-associated ultrafilter.

Proof: In Theorem 3.11, put a(0) = 0, K = φ and, for each ie I, put jv/ = Ni
and ψf as the identity map on Ni.

4 Some algebraic applications of higher order ultraproducts This final
paragraph illustrates the presence and application of the higher order
ultraproduct construction in two known algebraic situations.
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Non-finite Boolean algebras

Theorem 4.1 Any infinite Boolean algebra is isomorphic to a subset
subalgebra of a second order iiltraproduct (cf. Stone's representation
theorem).

Proof: Let 2R be the infinite Boolean algebra regarded as a first order
system. E° is the set of elements of the algebra. (', V,Λ) is the sequence
of constant relations, where ' is the complement operator regarded as a
two-place relation of type (0, 0); v, Λ are the wedge and join operators of
the algebra regarded as three-place relations of type (0, 0, 0). Now let
τ2 = (0) and (C, u, Π) be a sequence of constant relation symbols, C being of
type ((0),(0)), and U, n each of type ((0), (0), (0)). (C(x(0), y(0)) will be
written Cx{0) = y ( 0 ) and similarly for Π and U.)

Let K be the set of sentences of -C2 as follows:

(i) V.r(0)Vv(°)(Cx(0) = v(o)^Vxo(xoeio)x{o)^x°έ{o)v(o))).
(ii) V* ( 0 ) Vy ( 0 ) V£ ( 0 V 0 ) U v ( 0 ) =z{0)<=ΦVx V e ( ( V 0 ) Φ = > ( x ° e ( ( V 0 ) v

*°€(0)v(0)))).
(in) v*(o)v/o)V£(oVo) n v(0) = Z^ΦΦVX%X°e(0V°W U°€

(°yo)Λ
*°e ( o y o ) ))).

Now S = {Ni \N{ is a finitely generated subalgebra of M} forms a local
family of subsystems of Wl. Moreover each such Ni is finite and so can be
^-embedded in JV/, a model of K, where a(Q) = (0). Thus, by Theorem 3.11,
Wl can be α-embedded in πNj/X, where X is the L-associated ultrafilter.
(Note: 2W is L-finitary.) As K consists only of universal sentences, the
image of 9JΪ in πNj/X under the embedding is also a model of K. Finally, as
in general ΉNJ/X is not a full system, the universal quantifiers of K of type
(0) will not include all possible subsets of the individuals of the ultra-
product, and so the image of 9W will not be a full subset algebra. Q.E.D.

Locally normal groups The following results from the theory of finite
groups are assumed:

(a) For every two Sylow p-subgroups, P, Q, of a finite group © there
exists an inner automorphism of © which when restricted to P is an
isomorphism between P and Q.
(β) If H is a normal subgroup of a finite group G, P a Sylow ^-subgroup of
©, then P Π H is a Sylow p-subgroup of H.
(γ) If P is a /?-subgroup of a finite group <B, N a normal subgroup of @,
such that N D P, and Q a Sylow p-subgroup of N containing P, then there
exists a Sylow p-subgroup, Q\ of © which contains P and such that
Qr CλN= Q.

Let 2W be a locally normal group. Regard M as a τ-system, where
τ = ((0, 0), (0)). E° is the individuals of the group 3tt.2 £ ( 0 > 0 ) is the set of

2. E(o) is the set of all subsets of E°.
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all subsets of E°xE° and Eτ = {&}. The 'membership' relations are the

ones of ordinary set membership, and will be written without the type

prefixes, (s, e, c) is the sequence of constant relations, where S is of type

(0, 0, 0), representing the binary operation of 9W, e is the 0-placed relation,

of type 0, denoting the identity element of the group, c is of type ((0), (0)),

and denotes the strict inclusion relation.

Let 8 = {Ni\ie /} be the family of finite normal subgroups of 2K. Hence

8 can be regarded as a local family of subsystems of M, as 9W is locally

normal. Further, M is L-finitary. Let X be the L-associated ultrafilter

on /.

Take the following sentences and formulae of *Qtτ(πNi/X). Ko is the

conjunction of sentences characterising group structure with respect to a

binary operation S and identity e. (We adopt the usual shorthand that

xoy = z stands for S(x, y, z), y = x'1 stands for S(ΛΓ, y, e) and so on.)

G s(# ( 0 )), (# ( 0 ) is a subgroup), is the formula

V*ovyVe x(0) Λ / e x(o) ^x0oy0~\x{0))*K0.

Sι(y°) is the formula y° = e.

S«( °̂), (y° is of order n, n an integer), is the formula

/^AlS^v 0 ) v. .v Sî 0)).

Sop(y°), (y° has order some power of p, p a prime integer), is the formula

*k€N$pHyo)y where AT is the set of integers.
Gps(#

(0)), (#(0) is a /^-subgroup), is the formula

G S ( ^ ( O ) ) A V / ( V O 6 I ( O W V ( / ) ) .

x(0) 9* y{0)(w(0>0)), (w{0>0) is an isomorphism between subgroups x(0) and / 0 ) ) ,

denotes the conjunction of the following formulae:

(i)G s(* ( 0 ))ΛG s(v ( 0 )),

(ii) Vz°(z° e x(0) =Φ 3 ' u°(ιι° e v ( 0 ) A (Z°, ιι°) e H > ( 0 > 0 ) ) ) ,

(iii) V X 0 V 3 ; 0 V ^ V 0 € ^ ( 0 ) A v o e^ ( o ) Λ/6 V ( O ) Λ(I° , z°) e ιv(0>0) *

(y°, z°)eιv(0>0)==ϊx0 = / ) ,

(iv) Vz°(z° e y(0) =Φ 3x°(x° e x(o) Λ (X°, Z°) e w(0>0))),

(v) Vx° Vv° Vu° Vυ°{x° e x{0) A / e x{0) A U° e v(0) A υ° e v(0) A (X°, U°) e ιv(0>0) A

(/, v°)e w{0>0)==ϊ(x0oy0, u°ov°) e w{0>0)).

Theorem 4.2 If Wl is a locally normal group as described above then

a) τrNi/X is a group', b) P is a subgroup of ffl if, and only if, ψ(P) is a

subgroup of πNi/X; c) P is a p-subgroup of 9W if, and only if, ψ(P) is a

p-subgroup of ΉN{/X, (tvhere ψ :M -» ΉNΪ/X is the embedding of Theorem

3.12), (see footnote on page 15.)

Proof: a) πNi/X\=K0, as {i \ N{ \= Ko} = /, and so ΉN{/X is a group with

respect to the binary operation ψ(S).

b) Let P be a subgroup of 93Ϊ and so for each i, Pέ = Nj Π P is a

subgroup of Ni. But Pi = Pi(P), where y{:M -+ fy is the canonical projec-

tion associated with the subgroup Nif regarded as a subsystem of M. Now
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{i\Ni hGs(Pi)} = / and therefore ττNi/X\=Gs(ψ(P)). That is ψ(P) is a
subgroup of πNi/X. Conversely, assume ψ(P) is a subgroup of itNi/X. Let
ψ(M) = {/J<2eM}and ψ(P) = {/J<zeP}, where fa is defined as in Theorem
3.12. Therefore ψ(P) = ψ(P) Γ\ψ(M), ψ(M) is isomorphic to M and ψ(P) is
isomorphic to P. But ψ(P) = ψ(P) Π ι//(M) and so ί//(P) is a subgroup of
ψ(M); that is P is a subgroup of 9W.

c) Let P be a p-subgroup of 3tt. Hence {i \N{ |= Gps(P/)} = / and so
7rNt /Xl=GpS(ψCP)); that is ψ(P) is a p-subgroup of ΉNΪ/X. Conversely,
assume ψ(P) is p-subgroup of -nNi/X. Hence ψ(P) is a p-subgroup, and so
P is a p-subgroup. Q.E.D.

The final two theorems are results first proved by Baer in [l], p. 604,
Theorem 4.1 and p. 608, Theorem 4.4. Alternative proofs, via an
ultraproduct construction, are here provided. Kurosh, cf. [4], vol. II,
pp. 167-170, §55, records a proof of these results by the method of
projection sets, (inverse limits). Grazter, cf. [2], p. 160, Exercise 100,
details the relationship between an ultraproduct of a family of algebras and
the inverse limit of an associated family of algebras.

Theorem 4.3 If 331 is a locally normal group and P a given Sylow
p-subgroup of 9JΪ then the intersection of P with an arbitary finite normal
subgroup H of Wl is a Sylow p-subgroup of H.

Proof: Assume that P Π H is not a Sylow p-subgroup of H. Let Q* be a
Sylow p-subgroup of H containing P ΠH. Put G = {i\N{ D H}. Hence Ge X,
where £ is the local family of M as described above and X is the
L-associated ultrafilter. But from property (β) above, for each ieG,
Pi = N{ Π P is not a Sylow p-subgroup of N{. Hence for each ie G & Sylow
p-subgroup, Qi, of AT,- can be chosen so that P, c Q{ and Q{ Π H = Q\
(Property (y).) Take ge irNi/X, such that g(i) = Qif all ieG. Hence g is a
subgroup of πNi/X and ψ(P) c g. But ψ(P) is a Sylow p-subgroup of ψ(M)
as P is a Sylow p-subgroup of Wl. Also gΠψ(M) is a p-subgroup of ψ(M)
and so ψ(P) = g Γ)ψ(M). But there exists some aeQτ such that α / P .
Therefore, for all ieG, ae Qi but α / P , . Hence faeg, but Λ/ψ(P), where
fa(ϊ) = «> a l l ί € G. But /fl e ψ(M), and so ψ(P) =* g Π ψ(M). From the contra-
diction it is established that P Π # is a Sylow p-subgroup of 9H. Q.E.D.

Theorem 4.4 Any two Sylow p-subgroups of a locally normal group 2W are
isomorphic and locally conjugate.

Proof: Let M be the τ-system as above with β = {iVf |ze /} the local family
of normal, finite subgroups. Let P, Q be two given Sylow p-subgroups of
93Ϊ. By Theorem 4.3, for each iel, Pi = P Π Nh Q{ = Q Π Nif are Sylow
p-subgroups of i\Γf . Hence, by property (a), for each iel, there exists an
inner automorphism, Wi, of JVt taking Pf to Q, . Let Ίve iτNi/X be defined by
w(i) = wi9 all ie/. Now {i\ N{ \= Pt ^ Q^Wi)} = / and so ττiV;./X|=ψ(P) ^
ψ(Q)(iϊJ). That is zF is an isomorphism between ψ(P) and ψ(Q). It is now
required to show that w restricted to ψ(P) is an isomorphism between ψ(P)
and ψ(Q). For this it is sufficient to show that if w(f) = g, (as (f,g)ew will
be now written), and/eι//(P) thengeψ(Q).
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Take fa, such that a e P. Let F = {ί \fa(i) = a} and so FeX. Let k be
some member of F and put F* = {z'liV,- D A^ a n c * z e ^} Thus Fτ eX. Now,
for all ie Fr, if ^-(α) = 6, then 6t e Q&, as JV̂  is normal in JVt and Wi is an
inner automorphism of iV,-. Let the individuals of Q^ be fr1? . ., bn> and let
F 7 = {i\wi(a) = bj and ie Fr}, 1 < j ^ n. Now JFΊ u . . U Fn = F f and so one,
and only one, of the F ;

 ? s, say Fm, belongs to X. Therefore g = /^ and so

Finally, it is required to show that w restricted to an isomorphism
between ψ(P) and ψ(Q) is locally an inner automorphism. Take fa9..,
faneψ(P), that is al9 . ., β«eP. Let w{faj) =fbf, bj e Q, 1 *zj ^n. It is re-
quired to find some faeψ(M) such th^tfa1ofa.ofa=fb.9l^j^n. Let
Gf = {ί\faj(i) = aj\ 1 ^j <w, and /fy = {i | ^ . = 6 ; }, 1 < j < w. Let Dj =

{i \wi(aj) = 6/}, 1 ^ .; < ». Thus GeX, where G = f]{Gj Π tf; Π Z); 11 ^ j ^^}.
Take some me G and let D = {i\Ni D ΛΓW}. Therefore D ί l G e l . Now ^ m is
an inner automorphism of Nm taking Pm to Qm. Therefore there exists some
aeNm s u c h t h a t wm(aj) = a"ιoaj o α , a l l l ^ j ^ n . But f o r a l l ίeDDG,

Wi(cij) = bj = wm(cij)9 1 *ζj ^n. T h a t i s {i\wi(aj) = a~1ocij oa} e X, 1 ^ j ^n.

Therefore fa~
1ofa. ofa = fy., all 1 ^j ^n. Hence the required result. Q.E.D.

Footnote added at proof stage: It was initially thought by the author that the
formula Sop(y°) was {uN^/X) allowable. This is not so. Thus Theorem 4.2,
part c) must be restricted to the 'if statement alone. Counter-examples
exist for the 'only i f portion.
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