Notre Dame Journal of Formal Logic Volume XV, Number 2, April 1974
NDJFAM

MANY-ONE DEGREES ASSOCIATED WITH PARTIAL PROPOSITIONAL CALCULI

W. E. SINGLETARY

Introduction Throughout this paper we shall use PPC as an abbreviation for partial propositional calculus and PIPC as an abbreviation for partial implicational propositional calculus. At the Princeton Bicentennial in 1946, Tarski raised the question as to whether certain problems associated with PPC's were recursively unsolvable. This ultimately triggered a series of papers concerned with these problems, central among which are Linial and Post [4], Yntema [11], Gladstone [2], Ihrig [3], and Singletary [7], [8], [9], and [10].

Here we shall be concerned with the nature of the sets represented by decision problems for PPC's and PIPC's. In [3] Ihrig showed that every recursively enumerable (r.e.) degree of unsolvability could be representer. by a PPC. In Gladstone [2] and Singletary [8] it is shown that every r.e. degree of unsolvability can be represented by a PIPC (and hence also by a PPC). In particular we now show that every many-one r.e. degree of unsolvability may be represented by the decision problem for a PIPC (PPC), and, furthermore, that this result is "best possible" in the sense that not every one-one degree may be so represented.

This result seems somewhat surprising to us in view of the well-known result that not every many-one degree may be represented by the decision problem for a first order theory; see, e.g., Rogers [6]. The obvious conclusion, of course, is that the class of sets represented by decision problems for PIPC's (PPC's) is richer than the class of sets represented by decision problems for first order theories.

Preliminary Definitions In order to expedite the exposition to follow, we shall use the following somewhat non-standard formulation of a semi-Thue system which is easily shown to be equivalent to the standard formulation.

A semi-Thue system shall consist of a finite alphabet A and a finite set of defining relations U where the members of U are pairs of words over A.

$$
\begin{aligned}
& A: a_{1}, a_{2}, \ldots, a_{n} \\
& U: A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}, \ldots, A_{m} \rightarrow B_{m} .
\end{aligned}
$$

A word is a finite (possibly empty) string of symbols over A, with possible repetitions. We shall define $C \vdash D$, where C and D are words over A to be the assertion that there exists a finite sequence of statements, $C_{1} \vdash D_{1}$, $C_{2} \vdash D_{2}, \ldots, C_{e} \vdash D_{e}$ such that C_{1} is C and D_{e} is D, D_{i} is C_{i+1} for $1 \leqslant i \leqslant e-1$, such that each statement,$C_{i} \vdash D_{i}$ is justified by one of the following rules:

1. C_{i} is $W C_{j}, D_{i}$ is $W D_{j}$, for some $j, 1 \leqslant j<i$, and for some word W.
2. C_{i} is $C_{j} W, D_{i}$ is $D_{j} W$, for some $j, 1 \leqslant j<i$, and for some word W.
3. C_{i} is D_{i}.
4. C_{i} is A_{j} and D_{i} is B_{j} for some $j, 1 \leqslant j \leqslant m$.
5. C_{i} is C_{j}, D_{i} is D_{k}, and D_{j} is C_{k} for some $j, k, 1 \leqslant j<i ; 1 \leqslant k<i$.

A possibly clearer, if less explicit, summary of these rules may be given as follows:

1. If $C \vdash D$, then $W C \vdash W D$.
2. If $C \vdash D$, then $C W \vdash D W$.
3. $C \vdash C$.
4. If $C \rightarrow D$, then $C \vdash D$.
5. If $C \vdash E$ and $E \vdash D$, then $C \vdash D$.

A PIPC is a system having $\supset,[$,$] and an infinite list of propositional$ variables $p_{1}, q_{1}, r_{1}, s_{1}, p_{2}, q_{2}, r_{2}, s_{2}, \ldots$ as primitive symbols. Its wellformed formulas (wffs) are (1) a propositional variable standing alone, and (2) $[A \supset B]$, where A and B are wffs. Its axioms are a finite set of tautologies and its rules of inference are modus ponens and substitution.

A PPC is a system having as primitive symbols all of the primitive symbols of a PIPC and, in addition, the primitive symbol \sim. Its wffs are (1) a propositional variable standing alone, (2) $\sim A$, where A is a wff, and (3) $[A \supset B]$, where A and B are wffs. Its axioms are a finite set of tautologies and its two rules of inference are modus ponens and substitution.

Clearly, the set of theorems of any PIPC is also the set of theorems of some PPC and hence our results for PIPCs hold equally as well for PPCs.

Results and Proofs We shall establish the following result.
Theorem 1 For each r.e. many-one degree of unsolvability d there exists a PIPC with decision problem of degree d.

This result is to be proved by exhibiting a uniformly effective procedure P which, when applied to any semi-Thue system T, no word in a defining relation of which is the empty word, will produce a PIPC, P_{T}, such that the word problem for T and the decision problem for P_{T} are of the same many-one degree. We then appeal to a result of Overbeek [5] that there exists such a semi-Thue (actually Thue) system of each r.e. manyone degree.

Let T be a semi-Thue system defined by:

$$
\begin{aligned}
& A_{\mathrm{T}}: 1, b \\
& U_{\mathrm{T}}: G_{i} \rightarrow \bar{G}_{i}, i=1,2, \ldots, m .
\end{aligned}
$$

If W is a non-empty word over A_{T}, define W^{*} to be the wff of a PIPC given by the following recursive definition.

$$
\begin{gathered}
1^{*} \text { is } p_{2} \supset\left[p_{2} \supset p_{2}\right] \\
b^{*} \text { is } p_{2} \supset 1^{*} \\
(W 1)^{*} \text { is }\left[W^{*}{ }^{*} 1^{*}\right]
\end{gathered}
$$

and

$$
(W b) * i s\left[W *{ }_{\vee} b *\right]
$$

where W is any non-empty word over A_{T} and $[A \vee B]$ is an abbreviation for $[A \supset B] \supset B$. If W is a non-empty word over A_{T}, define W^{\prime} to be $W^{*} \vee h$, where h is an abbreviation for the fixed wff $p_{2} \supset b *$. Note that here as well as in the remainder of this paper abbreviations of wffs are made in accordance with the conventions of Church [1].

If we let ϕ be a variable which may be replaced by 1^{*} or b^{*} we may now define P_{T} to be the PIPC specified by the following set of axiom schemes.

1. $[\phi \vee h] \supset[\phi \vee h]$
2. $\left[p_{1} \vee h\right] \supset\left[q_{1} \vee h\right] \supset \square\left[\left[p_{1} \vee \phi\right] \vee h\right] \supset\left[\left[q_{1} \vee \phi\right] \vee h\right]$
3. $\left[p_{1} \vee h\right] \supset\left[q_{1} \vee h\right] \supset \square\left[\left[\phi \vee p_{1}\right] \vee h\right] \supset\left[\left[\phi \vee q_{1}\right] \vee h\right]$
4. $G_{i}^{\prime} \supset \bar{G}_{i}^{\prime}$, for $i=1,2, \ldots, m$
5. $\left[p_{1} \vee h\right] \supset\left[q_{1} \vee h\right] \supset\left[\left[r_{1} \vee h\right] \supset\left[s_{1} \vee h\right]\right] \supset\left[\left[\left[p_{1} \vee r_{1}\right] \vee h\right] \supset\left[\left[q_{1} \vee s_{1}\right] \vee h\right]\right]$
6. $\left[\left[\left[p_{1} \vee q_{1}\right] \vee r_{1}\right] \vee h\right] \supset\left[\left[\left[p_{1} \vee q_{1}\right] \vee r_{1}\right] \vee h\right] \supset \vee\left[\left[\left[p_{1} \vee q_{1}\right] \vee r_{1}\right] \vee h\right]$ $\supset\left[\left[p_{1} \vee\left[q_{1} \vee r_{1}\right]\right] \vee h\right]$
7. $\left[\left[\left[p_{1} \vee q_{1}\right] \vee r_{1}\right] \vee h\right] \supset\left[\left[\left[p_{1} \vee q_{1}\right] \vee r_{1}\right] \vee h\right] \supset 口\left[\left[p \vee\left[q_{1} \vee r_{1}\right]\right] \vee h\right]$ $\supset\left[\left[\left[p_{1} \vee q_{1}\right] \vee r_{1}\right] \vee h\right]$
8. $\left[p_{1} \vee h\right] \supset\left[q_{1} \vee h\right] \supset\left[\left[q_{1} \vee h\right] \supset\left[r_{1} \vee h\right]\right] \supset\left[\left[p_{1} \vee h\right] \supset\left[r_{1} \vee h\right]\right]$

We now prove a sequence of eight lemmas. Of these Lemmas 7 and 8 are sufficient to establish Theorem 1. Of the preliminary Lemmas 1 through 6 perhaps Lemma 2 and Lemma 6 are the most crucial as together they completely characterize the theorems of P_{T}. As we shall see, it is almost an immediate consequence of these two lemmas that the decision problem for P_{T} many-one reduces to the word problem for T. In the proofs that follow the symbol \square shall be used to designate the end of an argument.

Lemma 1 The following two propositions hold for wffs of P_{T}.
(a) A wff of the form $\left[A_{1} \vee B\right] \supset\left[A_{2} \vee B\right]$ cannot take the form $[X \vee Y]$, where A_{1}, A_{2}, B, X, and Y are wffs.
(b) A wff of the form $\left[A_{1} \vee B\right] \supset\left[A_{2} \vee B\right] \supset\left[X_{1} \vee B\right] \supset\left[X_{2} \vee B\right]$, where A_{1}, A_{2}, B, X_{1} and X_{2} are wffs, cannot take the form $\left[Y_{1} \vee Y_{2}\right]$, where Y_{1} and Y_{2} are wffs.
Proof: Suppose (a) is false. Then Y must be identified with both B and $\left[A_{2} \vee B\right]$. This is impossible so (a) holds. Suppose (b) is false. Then Y_{2} must be identified with both $\left[A_{2} \vee B\right]$ and $\left[X_{1} \vee B\right] \supset\left[X_{2} \vee B\right]$. By (a) this is impossible, and hence (b) holds.

If A is a wff of P_{T}, then A is regular if and only if (1) A is 1^{*}, or A is B^{*}, or (2) A is of the form [$A_{1} \vee A_{2}$] where A_{1} and A_{2} are regular. It should be noted that the only variable occurring in a regular wff is p_{2}.

If A is a regular wff of P_{T}, then $\langle A\rangle$ is the word over P_{T} obtained by replacing each occurrence of 1^{*} and b^{*} in A by 1 or b, respectively, and then removing all occurrences of [,] and v. For any regular wff $A,\langle A\rangle$ is unique.

Lemma 2 Every theorem of P_{T} may be abbreviated into one of the following. forms.

Form 1. Substitution instances of Axioms 2, 3, 5, 6, 7, and 8.
Form 2. Substitution instances of $\left[\left[r_{1} \vee h\right] \supset\left[s_{1} \vee h\right]\right] \supset \square\left[\left[p_{1} \vee r_{1}\right] \vee h\right] \supset$ $\left[\left[q_{1} \vee s_{1}\right] \vee h\right]$, where $\left[p_{1} \vee h\right] \supset\left[q_{1} \vee h\right]$ is a theorem of P_{T}.
Form 3. Substitution instances of $\left[q_{1} \vee h\right] \supset\left[r_{1} \vee h\right] \supset \square\left[p_{1} \vee h\right] \supset\left[r_{1} \vee h\right]$, where $\left[p_{1} \vee h\right] \supset\left[q_{1} \vee h\right]$ is a theorem of P_{T}.
Form 4. Substitution instances of $\left[W_{1} \vee h\right] \supset\left[W_{2} \vee h\right]$, where W_{1} and W_{2} are regular and $\left\langle W_{1}\right\rangle \vdash_{\top}\left\langle W_{2}\right\rangle$.
Proof: Lemma 2 is to be established by mathematical induction on n, the number of lines in a given proof in P_{T}. Let B be a theorem of P_{T} and let $B_{1}, B_{2}, \ldots, B_{n}$, where B_{n} is B, be a proof of B in P_{T}; i.e., each B_{i} for $i=$ $1,2, \ldots, n$ is either a substitution instance of an axiom or is deduced by a use of modus ponens with minor premiss B_{q} and major premiss B_{r}, where $q, r<n$. We first consider the following special case.

Case $0 . B_{n}$ is a substitution instance of an axiom. Then if B_{n} is a substitution instance of Axiom 2, 3, 5, 6, 7 or $8 B$ is of Form 1 and the lemma holds. If B_{n} is a substitution instance of Axiom 1, B is of Form 4 as is apparent from rule 3 for semi-Thue systems. Finally, if B_{n} is a substitution instance of Axiom 4 then B is of Form 4 as is apparent from rule 4 for semi-Thue systems.
Case 1. Suppose $n=1$. Then the conclusion follows from Case 0 .
Case 2. Assume that $n>1$ and that the conclusion holds for all positive integers less than n.
Case 2 a . B_{n} is a substitution instance of an axiom. Again the conclusion follows from Case 0 .
Case 2b. Assume B_{q} is of Form 4 and B_{r} is of Form 1. If B_{r} is a substitution instance of Axiom 2, 3, 6 or 7, then B is of Form 4 as is apparent. If B_{r} is a substitution instance of Axiom 5 or Axiom 7 then B is clearly of Form 2 or Form 3, respectively.
Case 2c. Assume B_{q} is of Form 4 and B_{r} is of Form 2. Then from the conditions on Forms 4 and 2 and from the fact that if $W_{1} \vdash_{\mathrm{T}} W_{2}$ and $W_{3} \vdash_{\top} W_{4}$ then $W_{1} W_{3} \uparrow_{\uparrow} W_{3} W_{4}$ we see that B is of Form 4.
Case 2d. Assume B_{q} is of Form 4 and B_{r} is of Form 3. Then from the conditions on Forms 4 and 3 and rule 5 for semi-Thue systems we see that B is of Form 4.

This takes care of the operative cases. We argue that the other
thirteen cases are vacuus as follows. If B_{q} is of Form 1,2 or 3 and B_{r} is of Form 4 the conclusion follows by Lemma $1(\mathrm{~b})$. If B_{q} and B_{r} are both of Form 4, the conclusion follows by Lemma 1(a). If B_{q} is of Form 1, 2 or 3 and B_{r} is also of Form 1, 2 or 3 we consider the antecedent of the minor premiss and the antecedent of the antecedent of the major premiss and the conclusion again follows by Lemma 1(a).

Lemma 3 If A is a regular $w f f$, then $\vdash_{P_{\top}}[A \vee h] \supset[A \vee h]$.
Proof: The proof of Lemma 3 is by mathematical induction on n, the number of occurrences of 1^{*} and $b *$ in A.

Case 1. If $n=1$, the conclusion follows by Axiom 1. If $n=2$, the conclusion follows by Axioms 1 and 2. If $n=3$ the result may be obtained by using Axioms 1, 2, and 5.
Case 2. Assume that $n>3$ and that the lemma holds for all positive integers less than n. Then A is of the form $A_{1} \vee A_{2}$ and the proof may be outlined as follows:

$$
\left[A_{1} \vee h\right] \supset\left[A_{1} \vee h\right] \quad \text { by hyp. ind. }
$$

$$
\left[A_{2} \vee h\right] \supset\left[A_{2} \vee h\right] \quad \text { by hyp. ind. }
$$

$$
\left[\left[A_{1} \vee A_{2}\right] \vee h\right] \supset\left[\left[A_{1} \vee A_{2}\right] \vee h\right] \quad \text { by Axiom } 5
$$

$$
\text { i.e., }[A \vee h] \supset[A \vee h][
$$

If A is a regular wff there are only finitely many ways in which the occurrences of 1^{*} and b^{*} in A may be grouped by brackets and v symbols to form a regular wff. We shall write $\{A\}_{i}$ to represent the i 'th such grouping in some assumed canonical ordering.
Lemma 4 If A is a regular wff, then $\vdash_{P_{T}}\left[\{A\}_{i} \vee h\right] \supset\left[\{A\}_{j} \vee h\right]$ for any positive integers i and j such that $\{A\}_{i}$ and $\{A\}_{j}$ are defined.
Proof: The proof of Lemma 4 is by mathematical induction on n, the number of occurrences of 1^{*} and b^{*} in A. If $n=1$ or $n=2$, then $\{A\}_{i}$ is $\{A\}_{j}$ and the result follows from Lemma 3 and Axiom 5 or Axiom 7. If X is a regular wff, the length of X is the number of occurrences of 1^{*} and b^{*} in X. We shall write $\|X\|$ for the length of X. Assume that $n>3$ and the lemma holds for all positive integers less than n. Let $\{A\}_{i}$ be $\left[A_{1} \vee A_{2}\right]$ and let $\{A\}_{j}$ be $\left[B_{1} \vee B_{2}\right]$. We consider the following cases.
Case 1. $\left\|A_{1}\right\|=\left\|B_{1}\right\|$. Then $\left\|A_{2}\right\|=\left\|B_{2}\right\|$ and the argument may be outlined as follows:

$$
\begin{aligned}
{\left[A_{1} \vee h\right] } & \supset\left[B_{1} \vee h\right] & & \text { by hyp. ind. } \\
{\left[A_{2} \vee h\right] } & \supset\left[B_{2} \vee h\right] & & \text { by hyp. ind. } \\
{\left[\left[A_{1} \vee A_{2}\right] \vee h\right] } & \supset\left[\left[B_{1} \vee B_{2}\right] \vee h\right] & & \text { by Axiom } 5 \\
\text { i.e., }\left[\{A\}_{i} \vee h\right] & \supset\left[\{A\}_{j} \vee h\right] & &
\end{aligned}
$$

Case 2a. $\left\|A_{1}\right\|=\left\|B_{1}\right\|+k$. Let A_{11} be a disjunction of the first $\left\|A_{1}\right\|-k$ occurrences of 1^{*} and b^{*} in A_{1} and let A_{12} be a disjunction of the last k occurrences of 1^{*} and b^{*} in B_{2} and let B_{22} be a disjunction of the last $\left\|B_{2}\right\|-k$ occurrences of 1^{*} and b^{*} in B_{2}. Then

$$
\left\|A_{11}\right\|=\left\|B_{1}\right\|,\left\|A_{12}\right\|=\left\|B_{21}\right\| \text { and }\left\|A_{2}\right\|=\left\|B_{22}\right\| .
$$

The argument can then be outlined as follows:

$$
\begin{array}{lr}
{\left[\left[A_{1} \vee A_{2}\right] \vee h\right] \supset\left[\left[\left[A_{11} \vee A_{12}\right] \vee A_{2}\right] \vee h\right]} & \text { by Case } 1 \\
{\left[A_{12} \vee h\right] \supset\left[B_{21} \vee h\right]} & \text { by Case } 1 \\
{\left[A_{11} \vee h\right] \supset\left[A_{11} \vee h\right]} & \text { by Lemma } 3 \\
{\left[\left[A_{11} \vee A_{12}\right] \vee h\right] \supset\left[\left[A_{11} \vee B_{21}\right] \vee h\right]} & \text { by Axiom } 5 \\
{\left[A_{2} \vee h\right] \supset\left[A_{2} \vee h\right]} & \text { by Lemma } 3 \\
{\left[\left[\left[A_{11} \vee A_{12}\right] \vee A_{2}\right] \vee h\right] \supset\left[\left[\left[A_{11} \vee B_{21}\right] \vee A_{2}\right] \vee h\right]} & \text { by Axiom } 5 \\
{\left[A_{2} \vee h\right] \supset\left[B_{22} \vee h\right]} & \text { by Case } 1 \\
{\left[\left[A_{11} \vee B_{21}\right] \vee h\right] \supset\left[\left[A_{11} \vee B_{21}\right] \vee h\right]} & \text { by Lemma } 3 \\
{\left[\left[\left[A_{11} \vee B_{21}\right] \vee A_{2}\right] \vee h\right] \supset\left[\left[\left[A_{11} \vee B_{21}\right] \vee B_{22}\right] \vee h\right]} & \text { by Axiom } 5 \\
{\left[\left[\left[A_{11} \vee B_{21}\right] \vee B_{22}\right] \vee h\right] \supset\left[\left[A_{11} \vee\left[B_{21} \vee B_{22}\right] \vee \vee\right]\right.} & \text { by Axiom } 6 \\
{\left[A_{11} \vee h\right] \supset\left[B_{1} \vee h\right]} & \text { by Case } 1 \\
{\left[\left[B_{21} \vee B_{22}\right] \vee h\right] \supset\left[\left[B_{21} \vee B_{22}\right] \vee h\right]} & \text { by Lemma } 3 \\
{\left[\left[A_{11} \vee\left[B_{21} \vee B_{22}\right]\right] \vee h\right] \supset\left[\left[B_{1} \vee\left[B_{21} \vee B_{22}\right]\right] \vee h\right]} & \text { by Axiom } 5 \\
{\left[\left[B_{1} \vee\left[B_{21} \vee B_{22}\right]\right] \vee h\right] \supset\left[\left[B_{1} \vee B_{2}\right] \vee h\right]} & \text { by Case } 1 \\
{\left[\left[A_{1} \vee A_{2}\right] \vee h\right] \supset\left[\left[B_{1} \vee B_{2}\right] \vee h\right]} & \text { by Axiom } 8 \\
\text { i.e., }\left[\{A\}_{i} \vee h\right] \supset\left[\{A\}_{j} \vee h\right] &
\end{array}
$$

Case 2 b . $\left\|A_{1}\right\|+k=\left\|B_{1}\right\|$. By the symmetry of the axioms for P_{T} it should be clear that this case follows from an argument similar to that for Case 2a. We omit the proof.

The following lemma is the converse of Lemma 2 in the sense that it, together with one of the clauses of 2 , shows that the word problem for T is one-one reducible to the decision problem for P_{T}.

Lemma 5 If W_{1} and W_{2} are words over A_{\top} and $W_{1}{ }_{\top} W_{2}$, then ${ }_{\stackrel{P}{\top}_{\top}} W_{1}^{\prime} \supset W_{2}^{\prime}$.
Proof: The proof is by mathematical induction on n, the number of lines in a given proof of $W_{1} \upharpoonright_{\top} W_{2}$. Let $X_{1} \upharpoonright_{\uparrow} Y_{1}, X_{2} \upharpoonright_{\uparrow} Y_{2}, \ldots, X_{n} \upharpoonright_{\top} Y_{n}$, where X_{1} is W_{1} and Y_{n} is W_{2} be a proof in T.
Case 1. $n=1$. Then $X_{n} \vdash_{\top} Y_{n}$ is justified by rule 3 or rule 4 for semi-Thue systems; i.e., W_{1} is W_{2} or $W_{1} \rightarrow W_{2}$ is a defining relation of U_{T}. If W_{1} is W_{2} the lemma holds by Lemma 3, if $W_{1} \rightarrow W_{2}$ it follows from Axiom 4.
Case 2. Assume $n>1$ and the result holds for all positive integers less than n.
Case 2a. $X_{n} \vdash_{\top} Y_{n}$ is justified by rule 1. Then X_{n} is $A X_{j}$ and Y_{n} is $A Y_{j}$ for some $j<n$, and some word A. The proof is easily outlined as follows:

$$
\begin{aligned}
& {\left[X_{j}^{*} \vee h\right] \supset\left[Y_{j}^{*} \vee h\right]} \\
& {\left[A^{*} \vee h\right] \supset[A * \vee \vee]} \\
& {\left[\left[A^{*} \vee X_{j}^{*}\right] \vee h\right] \supset\left[\left[A^{*} \vee Y_{j}^{*}\right] \vee h\right]} \\
& {\left[\left(A X_{j}\right)^{*} \vee h\right] \supset\left[\left[A^{*} \vee X_{j}^{*}\right] \vee h\right]} \\
& {\left[\left[A^{*} \vee Y_{j}^{*}\right] \vee h\right] \supset\left[\left(A Y_{j}\right)^{*} \vee h\right]} \\
& {\left[\left(A X_{j}\right) * \vee h\right] \supset\left[\left(A Y_{j}\right) * \vee h\right]} \\
& \text { i.e., } W_{1}^{\prime} \supset W_{2}^{\prime}
\end{aligned}
$$

by hyp. ind.

$$
\left[A^{*} \vee h\right] \supset\left[A^{*} \vee h\right] \quad \text { by Lemma } 3
$$

by Axiom 5 by Lemma 4 by Lemma 4 by Axiom 8

Case 2b. $X_{n} \upharpoonright_{\uparrow} Y_{n}$ is justified by rule 2. Then X_{n} is $X_{j} A$ and Y_{n} is $Y_{j} A$ for some $j<n$, and some word A. The proof is analogous to that for Case 2a and is therefore omitted.
Case 2c. $X_{n} \vdash_{\top} Y_{n}$ is justified by rule 3 or rule 4. Then the result follows from Case 1.
Case 2d. $X_{n} \vdash_{\top} Y_{n}$ is justified by rule 5. Then X_{n} is X_{j}, Y_{n} is Y_{k}, and Y_{j} is X_{k} for some j and $k, 1 \leqslant j<n, 1 \leqslant k<n$. The result follows from the induction hypothesis, Axiom 8 and modus ponens.

Lemma 6 Every wff A of P_{T} which can be abbreviated into a formula of Form 1, 2, 3 or 4 of Lemma 2 is a theorem of P_{T}.

Proof: We shall consider the forms separately.
Form 1. Clearly the result holds in this case as all substitution instances of the axioms are theorems.
Form 2 and Form 3. The result holds here by the conditions on these forms and the presence of Axiom 5 and Axiom 8, respectively.
Form 4. The restriction on Form 4 requires that W_{1} and W_{2} be regular and that $\left\langle W_{1}\right\rangle \vdash_{\top}\left\langle W_{2}\right\rangle$. Now by Lemma 5 if $W_{1} \varsigma_{\top} W_{2}$ then ${ }_{\mathrm{P}_{\mathrm{T}}} W_{1}^{\prime} \supset W_{2}^{\prime}$ and the result follows from Lemma 4.

Lemma 7 For any two words X and W on $A_{\top}, X \vdash_{\top} W$ if and only if ${ }^{\mathrm{p}_{\mathrm{T}}} X^{\prime} \supset$ W^{\prime}; hence the word problem for T is one-one reducible to the decision problem for P_{T}.

Proof: This is an easy consequence of Lemma 2 and Lemma 5.
Lemma 8 The decision problem for P_{T} is many-one reducible to the word problem for T .

Proof: Assume that we have a decision procedure \mathbb{R} for solving the word problem for T . Let A be a wff of P_{T}. Test whether A can be abbreviated into a formula of Form 1. If so A is a theorem of P_{T}. If not test whether A can be abbreviated into a wff of Form 2 or Form 3. This will require testing whether or not the well defined formula specified in the condition of Form 2 or 3 as the case may be is of Form 4. Assume, for the moment, this can be done by a well specified appeal to R. Then if A is of Form 2 or Form 3 it is a theorem of P_{T}. If not test whether or not A is of Form 4. By the condition on Form 4 this requires one precisely defined appeal to \mathbb{R}. If A is of Form 4 then it is a theorem of P_{T}. If not A is not a theorem of P_{T}.

Lemmas 7 and 8, along with the result of Overbeek cited above, are sufficient to complete the proof of Theorem 1. For completeness we state the following corollary.

Corollary There exists a uniformly effective procedure P such that the result of applying P to any semi-Thue system T is a PIPC (PPC) P_{T} such that the decision problem for P_{T} is of the same many-one r.e. degree of unsolvability as the word problem for T .

In order to show that Theorem 1 is "best possible" we need only prove that there exists a one-one r.e. degree of unsolvability which is not representable by the decision problem for a PIPC (PPC). This is accomplished by the following theorem.

Theorem 2 There is no PIPC (PPC) which is of the same one-one r.e. degree of unsolvability as a simple set.
Proof: In order to establish the result we need only show that given any PIPC (PPC), P, with an unsolvable decision problem there exists an infinite recursively enumerable set of wffs of P which are non-theorems. This is easy, for, since the decision problem for P is unsolvable, there exists a tautology A which is not a theorem of P . Let $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ be the set of distinct variables occurring in A. Then for any set of n distinct variables of P say $\psi_{1}, \psi_{2}, \ldots, \psi_{n}$ the substitution instance of A gotten by substituting ψ_{1} for ϕ_{1}, ψ_{2} for $\phi_{2}, \ldots, \psi_{n}$ for ϕ_{n} is not a theorem of P.

REFERENCES

[1] Church, A., Introduction to Formal Logic, vol. 1, Princeton University Press (1956).
[2] Gladstone, M. D., 'Some ways of constructing a propositional calculus of any required degree of unsolvability," Transactions of the American Mathematical Society, vol. 118 (1965), pp. 195-210.
[3] Ihrig, A. H., "The Post-Lineal theorems for arbitrary recursively enumerable degrees of unsolvability," Notre Dame Journal of Formal Logic, vol. IV (1965), pp. 54-71.
[4] Lineal, S., and E. L. Post, 'Recursive unsolvability of the deducibility, Tarski's completeness and independence of axioms problems of the propositional calculus," Bulletin of the American Mathematical Society, vol. 55 (1949), p. 50 (Abstract).
[5] Overbeek, Ross, "The representation of many-one degrees by the word problem for Thue systems," Proceedings of the London Mathematical Society, vol. XXVI (1973), pp. 184-192.
[6] Rogers, H., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New Jersey (1967).
[7] Singletary, W. E., "A complex of problems proposed by Post," Bulletin of the American Mathematical Society, vol. 70 (1964), pp. 105-109.
[8] Singletary, W. E., "Recursive unsolvability of a complex of problems proposed by Post," Journal of the Faculty of Science, University of Tokyo, vol. 14 (1967), pp. 25-58.
[9] Singletary, W. E., "Results regarding the axiomatization of partial propositional calculi,', Notre Dame Journal of Formal Logic, vol. IX (1968), pp. 193211.
[10] Singletary, W. E., "The equivalence of some general combinatorial decision problems," Bulletin of the American Mathematical Society, vol. 73 (1967), pp. 446-451.
[11] Yntema, M. K., "A detailed argument for the Post-Lineal theorems," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 37-50.

Northern Illinois University
Dekalb, Illinois

