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MANY-ONE DEGREES ASSOCIATED WITH PARTIAL
PROPOSITIONAL CALCULI

W. E. SINGLETARY

Introduction Throughout this paper we shall use PPC as an abbreviation
for partial propositional calculus and PI PC as an abbreviation for partial
implicational propositional calculus. At the Princeton Bicentennial in 1946,
Tarski raised the question as to whether certain problems associated with
PPC's were recursively unsolvable. This ultimately triggered a series of
papers concerned with these problems, central among which are Linial and
Post [4], Yntema [11], Gladstone [2], Ihrig [3], and Singletary [7], [8], [9],
and [10].

Here we shall be concerned with the nature of the sets represented by
decision problems for PPC's and PI PC's. In [3] Ihrig showed that every
recursively enumerable (r.e.) degree of unsolvability could be represented
by a PPC. In Gladstone [2] and Singletary [8] it is shown that every r.e.
degree of unsolvability can be represented by a PI PC (and hence also by a
PPC). In particular we now show that every many-one r.e. degree of
unsolvability may be represented by the decision problem for a PI PC
(PPC), and, furthermore, that this result is "best possible" in the sense
that not every one-one degree may be so represented.

This result seems somewhat surprising to us in view of the well-known
result that not every many-one degree may be represented by the decision
problem for a first order theory; see, e.g., Rogers [6]. The obvious
conclusion, of course, is that the class of sets represented by decision
problems for PIPC's (PPC's) is richer than the class of sets represented
by decision problems for first order theories.

Preliminary Definitions In order to expedite the exposition to follow, we
shall use the following somewhat non-standard formulation of a semi-Thue
system which is easily shown to be equivalent to the standard formulation.

A semi-Thue system shall consist of a finite alphabets and a finite set
of defining relations U where the members of U are pairs of words over A.

A : aί9 a2, . . .,an

U :A1-*B1,A2-*B2, . . .,Am -* Bm.
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A word is a finite (possibly empty) string of symbols over A, with possible
repetitions. We shall define C \- D, where C and D are words over A to be
the assertion that there exists a finite sequence of statements, d f- Du

C2 H ΰ 2 , . . . , Ce HDe such that d is C and De is D, D{ is d+i for 1 ^ i ^ e - 1,
such that each statement ,C, H D J is justified by one of the following rules:

1. Ci is WCj, Di is WDj, for some j , 1 ^ j < i, and for some word W.
2. Ci is Cj W, D{ is DjW, for some j , 1 ^ j < i, and for some word W.
3. d is Di.
4. Ci is Aj and Di is Bj for some j , 1 ^ j ^ m.
5. Ci is Cj, Di is Dki and Dj is Ckfor some j , k, 1 ^ j < i; 1 ^ k < i.

A possibly clearer, if less explicit, summary of these rules maybe
given as follows:

1. IfC\-D, then WCv-WD.
2. IfCv-D, then CWh-DW.

3. C\-C.
4. I/C-+ D, then C \-D.
5. If C \-E and E \-D, then C \-D.

A PIPC is a system having 3 , [ , ] and an infinite list of propositional
variables pi, qί,r1,s lyp2, q2, r2, s2, . . . as primitive symbols. Its well-
formed formulas (wffs) are (1) a propositional variable standing alone, and
(2) [A D B], where A and B are wffs. Its axioms are a finite set of
tautologies and its rules of inference are modus ponens and substitution.

A PPC is a system having as primitive symbols all of the primitive
symbols of a PIPC and, in addition, the primitive symbol ~ . Its wffs are
(1) a propositional variable standing alone, (2) ~A, where A is a wff, and
(3) [A^> B], where A and B are wffs. Its axioms are a finite set of
tautologies and its two rules of inference are modus ponens and substitu-
tion.

Clearly, the set of theorems of any PIPC is also the set of theorems of
some PPC and hence our results for PI PCs hold equally as well for PPCs.

Results and Proofs We shall establish the following result.

Theorem 1 For each r .e. many-one degree of unsolυability d there exists a
PIPC with decision problem of degree d.

This result is to be proved by exhibiting a uniformly effective proce-
dure P which, when applied to any semi-Thue system T, no word in a
defining relation of which is the empty word, will produce a PIPC, P j , such
that the word problem for T and the decision problem for Pj are of the
same many-one degree. We then appeal to a result of Overbeek [5] that
there exists such a semi-Thue (actually Thue) system of each r.e. many-
one degree.

Let T be a semi-Thue system defined by:

AT:l,b
Uj : Gi-^Gi,i = 1, 2, . . ., m.
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If W is a non-empty word over Aγ, define W* to be the wff of a PIPC
given by the following recursive definition.

I* is A => [p2^P2]
b* is p2 D 1*

(Wl)* is [PF*vl*]

and

(W>)*zs [W*vb*]

where W is any non-empty word over Aj and [A v B] is an abbreviation for
[A ^ B]^> B. If W is a non-empty word over AΊ, define W to be W*vβ,
where & is an abbreviation for the fixed wff p2 ^ b*. Note that here as well
as in the remainder of this paper abbreviations of wffs are made in
accordance with the conventions of Church [l].

If we let ψ be a variable which may be replaced by 1* or δ* we may
now define Pj to be the PIPC specified by the following set of axiom
schemes.

1. [φvh] z> [φvh]
2. [p,vh] o [q^h] 3 . [[/>lVφ] vΛ] => t^ivφ] vA]
3. |>iv/z]=> [q1yfh]Ώm[[φy,p1]vh]Ώ [[φv^JvA]
4. G/ ^ G yfori = 1,2, . . ., m
5. [ίiv/z] D [^ vΛ] =). [[rlV/z] 3 [Slvh]] D [[[pivrj vA] ^ [[^vsJvΛ]]
6. [[[ίiv^lvrJvA] D [[[ίiv^J vrJvA] DB [[[p^q^vr^vh]

^[[pιv[q1vr1]hh]
7. [[[ίivdvrjvfe] => [[[PivQihr^vh] ̂ m [[p v [q^r^vh]

^ [[[Pivqihr^vh]
8. [p.vh] -D [qlVh] 3 . [[q.vh] o [r.vh]] D [[/>χvΛ] D [n VΛ]]

We now prove a sequence of eight lemmas. Of these Lemmas 7 and 8
are sufficient to establish Theorem 1. Of the preliminary Lemmas 1
through 6 perhaps Lemma 2 and Lemma 6 are the most crucial as together
they completely characterize the theorems of Pj. -As we shall see, it is
almost an immediate consequence of these two lemmas that the decision
problem for Pj many-one reduces to the word problem for T. In the proofs
that follow the symbol D shall be used to designate the end of an argument.

Lemma 1 The following two propositions hold for wffs of Pj.

(a) A wff of the form [A1\ίB\^> [A2 vB] cannot take the form [X v Y], where
Al9 A2, B, X, and Y are wffs.
(b) A wff of the form [Axv B]^[A2v B] =>B [X^B] => [X2vB], where Al9 A2,
B, Xλ and X2 are wffs, cannot take the form [Yλv Y2], where Yλ and Y2 are
wffs.

Proof: Suppose (a) is false. Then Y must be identified with both B and
[A2vB]. This is impossible so (a) holds. Suppose (b) is false. Then Y2

must be identified with both [A2vB] and [XivB] z> [χ2vB]. By (a) this is
impossible, and hence (b) holds. D
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If A is a wff of Pj, then A is regular if and only if (1) A is 1*, or A is
2?*, or (2) A is of the form [A1 vA2] where A± and A2 are regular. It should
be noted that the only variable occurring in a regular wff is p2.

If A is a regular wff of P τ, then (A) is the word over Pj obtained by
replacing each occurrence of 1* and 6* in A by 1 or b, respectively, and
then removing all occurrences of [, ] and v. For any regular wff A, (A) is
unique.

Lemma 2 Every theorem of P j may be abbreviated into one of the following
forms.

Form 1. Substitution instances of Axioms 2, 3, 5, 6, 7, and 8.
Form 2. Substitution instances of [hv/i] 3 [s^/*]] ~3m [[^vrjvli] D
[[tfivSilv^L where [pivh] 3 [q1vh]is a theorem of Pj.
Form 3. Substitution instances of [qivh] D [r1 vh] ^>m[p± vh] ^>[rιwh\,
where [piv h] n> [#iv/z] is a theorem of ?j.
Form 4. Substitution instances of [W v̂ h] D [W^v^]? where Wx and W2 are
regular and {Wύ ^ (W2).

Proof: Lemma 2 is to be established by mathematical induction on n, the
number of lines in a given proof in Pj. Let B be a theorem of Pj and let
Bu B2, . . ., Bn, where Bn is B, be a proof of B in Pχ; i.e., each Bi for z =
1, 2, . . ., w is either a substitution instance of an axiom or is deduced by a
use of modus ponens with minor premiss Bq and major premiss Br, where
q, r <n. We first consider the following special case.

Case 0. Bn is a substitution instance of an axiom. Then if Bn is a substitu-
tion instance of Axiom 2, 3, 5, 6, 7 or 8 B is of Form 1 and the lemma
holds. If Bn is a substitution instance of Axiom 1, B is of Form 4 as is
apparent from rule 3 for semi-Thue systems. Finally, if Bn is a substitu-
tion instance of Axiom 4 then B is of Form 4 as is apparent from rule 4
for semi-Thue systems.
Case 1. Suppose n = 1. Then the conclusion follows from Case 0.
Case 2. Assume that n> 1 and that the conclusion holds for all positive
integers less than n.
Case 2a. Bn is a substitution instance of an axiom. Again the conclusion
follows from Case 0.
Case 2b. Assume Bq is of Form 4 and Br is of Form 1. If Br is a substitu-
tion instance of Axiom 2, 3, 6 or 7, then B is of Form 4 as is apparent. If
Br is a substitution instance of Axiom 5 or Axiom 7 then B is clearly of
Form 2 or Form 3, respectively.
Case 2c. Assume Bq is of Form 4 and Br is of Form 2. Then from the
conditions on Forms 4 and 2 and from the fact that if W1 hj. W2 and W3 *j ^4
then Ŵ PΓs tγ tt^ we see that B is of Form 4.
Case 2d. Assume Bq is of Form 4 and £ r is of Form 3. Then from the
conditions on Forms 4 and 3 and rule 5 for semi-Thue systems we see that
B is of Form 4.

This takes care of the operative cases. We argue that the other



MANY-ONE DEGREES 339

thirteen cases are vacuus as follows. If Bq is of Form 1, 2 or 3 and Br is
of Form 4 the conclusion follows by Lemma l(b). If Bq and Br are both of
Form 4, the conclusion follows by Lemma l(a). If Bq is of Form 1, 2 or 3
and Br is also of Form 1, 2 or 3 we consider the antecedent of the minor
premiss and the antecedent of the antecedent of the major premiss and the
conclusion again follows by Lemma l(a). •

Lemma 3 If A is a regular wff, then i-p [A vh] 3 [A vh].

Proof: The proof of Lemma 3 is by mathematical induction on n, the
number of occurrences of 1* and 6* in A.

Case 1. If n = 1, the conclusion follows by Axiom 1. If n = 2, the conclusion
follows by Axioms 1 and 2. If n = 3 the result may be obtained by using
Axioms 1, 2, and 5.
Case 2. Assume that n > 3 and that the lemma holds for all positive
integers less than n. Then A is of the form A1vA2 and the proof may be
outlined as follows:

[Axvh] o [Aιs/h] by hyp. ind.
[A2 vh] D [A2vh] by hyp. ind.

[[AivA2] vh] 3 [[A1 vΛ2] vh] by Axiom 5
i.e., [Avh] D [Avh] D

If A is a regular wff there are only finitely many ways in which the
occurrences of 1* and 6* in A may be grouped by brackets and v symbols to
form a regular wff. We shall write {A\i to represent the Γth such grouping
in some assumed canonical ordering.

Lemma 4 If A is a regular wff, then ϊp [{A}t v h] 3 [{A}j v h] for any positive
integers i and j such that {A}j and {Λ}; are defined.

Proof: The proof of Lemma 4 is by mathematical induction on n, the
number of occurrences of 1* and δ* in A. If n - 1 or n = 2, then {A}, is {A}/
and the result follows from Lemma 3 and Axiom 5 or Axiom 7. If X is a
regular wff, the length of X is the number of occurrences of 1* and 6* in X.
We shall write | | x | | for the length of X. Assume that n > 3 and the lemma
holds for all positive integers less than n. Let {A}i be [Aλ vA2] and let {A};

be [BιvB2]. We consider the following cases.

Case 1. Il-Ajl = HJBJI. Then | |A 2 | | = ||JB2II a n d t n e argument may be
outlined as follows:

[Aιvh] 3 [Bλv h] by hyp. ind.

[ A2 v h] ^ [B2 v h] by hyp. ind.
[[AlVA2]v/z] D [[BtvBzlvk] by Axiom 5
i .e , [ {4 v ^ ^ [ { 4 v^]

Case 2a. lUJI = HJBJI + k. Let Au be a disjunction of the first lUJI - k
occurrences of 1* and δ* in A1 and let A12 be a disjunction of the last k
occurrences of 1* and b* in B2 and let J522 be a disjunction of the last
| |J5 2 | | - k occurrences of 1* and 6* in B2. Then
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l l A u l l = H t f J I , | U 1 2 | | = | | J B 2 1 | | and I U 2 | | = | | 3 2 2 | | .

The argument can then be outlined as follows:

[[A l VA2]vA] D [ [ [ A 1 I V A 1 2 ] V A 2 ] V A ] by Case 1
U12 vA]3 [B21 v h] by Case 1
[An v h] D [A n v A] by Lemma 3
[UnvA 1 2 ]vA] => [[A n v5 2 1 ]vA] by Axiom 5
[A2 v A] D [A2 v A] by Lemma 3
[[[A11vA12]vA2]v/i] D [[[AnvB2 1]vA2]vfe] by Axiom 5
[ A 2 V A ] D [£2 2vA] by Case 1

[ [ A u v £ 2 1 ] vA] => [[Anv^zilv^l by Lemma 3
[[[A11vJB21]vA2]v/z] D [[[AnvJ52 1]v52 2]vA] by Axiom 5
[[[Anv.B21]vB22]vfc] D [[A l lv[B 2 1vB 2 2]]vA] by Axiom 6
[AuvA] =) [5ivA] by Case 1
[[B21 v £ 2 2 ] v A] ^ [[JB2i v £ 2 2 ] v h] by Lemma 3

[[An v [B2I v .622]] v A] => [[-Bi v [5 2i v £22]] v A] by Axiom 5
[[B1 v [B 2 1 v E2 2]] v A] 3 [[JBi v 5 2 ] V A] by Case 1
[[AxvA^vA] 3 [[BiV^jv A] by Axiom 8
i.e., [{A},vA]i>[{A}7.vA]

Case 2b. H A J I + ^ = H ^ H . By the symmetry of the axioms for P τ it
should be clear that this case follows from an argument similar to that for
Case 2a. We omit the proof. •

The following lemma is the converse of Lemma 2 in the sense that it,
together with one of the clauses of 2, shows that the word problem for T is
one-one reducible to the decision problem for P j .

Lemma 5 If W± and W2 are words over A j and Wγ \j W2, then ip W[ z> W2.

Proof: The proof is by mathematical induction on n, the number of lines in
a given proof of W1 \j W2. Let X1 ^ γu X2 ^ γ29 . . ., Xn ^ Yn, where χλ is
W1 and Yn is W2 be a proof in T.

Case 1. n = 1. Then Xn hj. Yn is justified by rule 3 or rule 4 for semi-Thue
systems; i.e., Wλ is W2 or W1 —» PF2 is a defining relation of ί/γ If ^1 i s ^2
the lemma holds by Lemma 3, if W1 —> W2 it follows from Axiom 4.
Case 2. Assume w> 1 and the result holds for all positive integers less
than n.
Case 2a. Xn \j Yn is justified by rule 1. Then Xn is AXj and Yn is AY, for
some j <n, and some word A. The proof is easily outlined as follows:

[Xf v A] 3 [Ff v A] by hyp. ind.
[A*vA] => [A*vA] by Lemma 3
[[A* vXf] v A] 3 [[A* v FΫ] v A] by Axiom 5
[(A^/)*vA] D [[A*vX^]vA] by Lemma 4
[[A* v Ff ] v A] =) [(A Y )* v A] by Lemma 4

[(AX; )*vA] 3 [(AYy)*vA] by Axiom 8

i.e., W[ 3 Wί



MANY-ONE DEGREES 341

Case 2b. Xn hj. Yn is justified by rule 2. Then Xn is XjA and Yn is YfA for
some j < n, and some word A. The proof is analogous to that for Case 2a
and is therefore omitted.
Case 2c. Xn hj- Yn is justified by rule 3 or rule 4. Then the result follows
from Case 1.
Case 2d. Xn fj Yn is justified by rule 5. Then Xn is Xh Yn is Yk, and Yj is
^ for some j and &, 1 ̂ j < « , 1 <& <??. The result follows from the
induction hypothesis, Axiom 8 and modus ponens. D

Lemma 6 Every wff A of Pj which can be abbreviated into a formula of
Form 1, 2, 3 or 4 of Lemma 2 is a theorem of P τ .

Proof: We shall consider the forms separately.

Form 1. Clearly the result holds in this case as all substitution instances
of the axioms are theorems.
Form 2 and Form 3. The result holds here by the conditions on these
forms and the presence of Axiom 5 and Axiom 8, respectively.
Form 4. The restriction on Form 4 requires that Wι and W2 be regular and
that (Wι) \j(W2). Now by Lemma 5 if W1 \jW2 then ^ W[ 3 W*2 and the
result follows from Lemma 4. D

Lemma 7 For any two words X and WonAj, X ^W if and only if ^>ΊX
f ^

Wr hence the word problem for T is one-one reducible to the decision
problem for Pτ.

Proof: This is an easy consequence of Lemma 2 and Lemma 5. D

Lemma 8 The decision problem for Pj is many-one reducible to the word
problem for T.

Proof: Assume that we have a decision procedure R for solving the word
problem for T. Let A be a wff of P τ . Test whether A can be abbreviated
into a formula of Form 1. If so A is a theorem of P τ. If not test whether A
can be abbreviated into a wff of Form 2 or Form 3. This will require
testing whether or not the well defined formula specified in the condition of
Form 2 or 3 as the case may be is of Form 4. Assume, for the moment,
this can be done by a well specified appeal to <R. Then if A is of Form 2 or
Form 3 it is a theorem of P j . If not test whether or not A is of Form 4.
By the condition on Form 4 this requires one precisely defined appeal to <%.
If A is of Form 4 then it is a theorem of P τ. If not A is not a theorem
of P τ . D

Lemmas 7 and 8, along with the result of Overbeek cited above, are
sufficient to complete the proof of Theorem 1. For completeness we state
the following corollary.

Corollary There exists a uniformly effective procedure P such that the
result of applying P to any semi-Thue system T is a PI PC (PPC) Pj such
that the decision problem for Pj is of the same many-one r.e. degree of
unsolvability as the word problem for T.
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In order to show that Theorem 1 is "best possible" we need only prove

that there exists a one-one r.e. degree of unsolvability which is not

representable by the decision problem for a PI PC (PPC). This is accom-

plished by the following theorem.

Theorem 2 There is no PIPC (PPC) which is of the same one-one r.e.

degree of unsolvability as a simple set.

Proof: In order to establish the result we need only show that given any

PIPC (PPC), P, with an unsolvable decision problem there exists an infinite

recursively enumerable set of wffs of P which are non-theorems. This is

easy, for, since the decision problem for P is unsolvable, there exists a

tautology A which is not a theorem of P. Let φl9 φ2, . . ., φn be the set of

distinct variables occurring in A. Then for any set of n distinct variables

of P say ψl9 ψ2, - •> Ψn the substitution instance of A gotten by substituting

ψi for φl9 ψ2 f° r 02? •> Ψn for φn is not a theorem of P. D
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