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ORDERED PAIRS AND CARDINALITY IN NEW FOUNDATIONS

JOHN LAKE

In any set theory, two sets are said to have the same cardinality if
there is a bijection between them. Thus the notion of having the same
cardinality (which we shall call ‘being equipollent’) is dependent on that of
function and hence on that of ordered pair. We shall show that in Quine’s
set theory NF (as formulated in [3], for instance) the definition of ordered
pair which is used affects whether, or not, two sets are equipollent, and we
make some further considerations based on this fact.* The following
definitions are made to aid our discussion, and we hope that it is obvious
how they could be made precise.

Definition 1 A formula Y/(x, y, z) with exactly three free variables is said to
represent an ordered pair relation in a set theory T if

(i) Trvx,y3lzyk,y,z),
and
(i) THVx, x', 9, 9" 2[(Wx,9,2) apx’, ', 2) = (x = x" 2y = y"].

Definition 2 If  represents an ordered pair in a set theory T, then x =y y
is a formula which, in a natural way, says that there is a function,
represented as a set of ordered pairs which are defined using i, which is a
bijection from x to y.

We will always assume that 2z = (x, ») is a formula which says that z is
the Kuratowski ordered pair (i.e., {{x}, {x,»}}) and then in both ZF and NF
this represents an ordered pair relation. Also, x = y will always be x =4 y,
where ¢ is z = {x, ).

The next theorem shows that, in a certain sense, the notion of being
equipollent is independent of the representation of ordered pairs in ZF set
theory.

*The author acknowledges the support of the Science Research Council during
this work.

Received June 22, 1973



482 JOHN LAKE

Theorem 1 If Y vepresents an ovdeved paiv velation in ZF, then
ZF=Vu, v(u = v<es>u =y v).

The proof of this result is completely straightforward. For instance,
to prove it one way round, suppose that # ~v. Then let f be a bijection
from u to v, put f' = {z|3x, yY(x, v, 2) A {x, y) € f} and then verify that u ~y v,
using f'.

From a mathematical point of view Theorem 1 is highly desirable as
the actual structure of the ordered pair does not seem to be important for
two sets being equipollent. However, provided that NF is consistent, the
analogous form of Theorem 1 is not true for NF, even if we restrict ¥ to
being a stratified formula (see [3] for a definition of stratified). This can
be seen as follows.

If y(¥,9,2) is the formula z = {{x}, {x, {y}}}, then Y represents an
ordered pair relation in NF. By considering Cantor’s theorem for NF in
[3], Quine shows that if V = {¥|x = x} and S = {x|3y x = {y}}, then 1(V =S),
but it is straightforward to show that S =y V in NF and hence the analogous
form of Theorem 1 cannot hold.

The key point here, of course, is that we have represented an ordered
pair relation using a formula Y (¥, y,2z) in which the stratification can only
be achieved by attaching different numerals to x and y. It might be argued
that this is not desirable in NF, but then one must explain the process of
stratification in such a way that this becomes highly unreasonable as from
a mathematical viewpoint there is no significance in how ordered pairs are
represented. The following weak form of Theorem 1 can be proved for NF.

Theorem 2 If Y(x,y,z) and Y'(x",y",2") are formulae which represent
ovdered paiv velations in NF and can be shown to be stratified in such a
way that one numeval can be attached to both x and x' and another to both
yandy', then NF-Vu, vlu =yv<>u =y'v).

Theorem 2 shows that for considering sets being equipollent in NF, it
is only the way in which the ordered pair relation can be shown to be
stratified (we restrict our attention to stratified definitions from now on)
that is important. Thus the following definition of ~; is independent of
which ¢ we choose.

Definition 3 If Y(x,y, z) represents an ordered pair relation in NF and can
be shown to be stratified by attaching a numeral z to x and a numeral m to
v, and ¢ = m - n then we write u =~; v for u =~yv. For definiteness we could
take z=(x, {....{y}....}) for Yy wheni>0andz=({....{&}....},, »

e —
¢ brackets z brackets
for ¢ when i < 0.

We can now reformulate the results which we noted earlier as
1(V =S) and S = V, and another result of [3] shows that 1(V = V)
although, of course, V ~ V. Our next theorem notes some properties of
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being i-equipollent (i.e., =;) and it is obvious how these are generalizations
of properties of being 0-equipollent, which is the usual definition of being
equipollent in NF.

Definition 4 x™ ={y|3texy ={. ... {}....}}
T
m brackets
Theorem 3 The universal closures of the following ave provable in NF

(i) x=ox (ie., x =x),

(i) x=iy—yp=ix,

(iii) ¥ = YAy 55 2 = X =iy 2,
(iv) %™ =, x.

The proof of Theorem 3 is straightforward and it might be interesting
to investigate further properties of i-equipollence, but we now consider a
method of extending NF. It is reasonable to suggest that if # ~; v, for any 7,
then # and v are equipollent in an intuitive sense and thus we let ENF be NF
extended by adding a new symbol = together with the axiom

u 2 v <> for some integer i, u =; v. (*)

We shall not consider methods for formalizing this axiom in first
order terms but will continue to treat it in the intuitive sense. Theorem 3
shows that = has the properties

(i) «x =x,

(i) x=zy —y =x,

(iil) x =yry =2z - x =2,
(iv) x™ = x,

and thus ® seems a more reasonable formulation of being equipollent than
~in NF as # also possesses the intuitively true property (iv). To actually
work with ENF we would probably also have to add axioms asserting the
existence of cardinals, as equivalence classes under %, and other com-
prehension principles, but we shall leave these problems and we shall
finally consider the interpretations, when ~ is replaced by %, of two of the

results which have been proved for NF.

In [2] it is shown that if NF is consistent then the axiom of counting is
not provable in NF. This axiom is the intuitively true statement

V7 (Nn(n) — {mINn(m) » m < n}e n),

b

where Nn(n) is a formula saying ‘z is a natural number,’ in which = is used
for sets being equipollent. Hence the axiom of counting says that if Nn(»)
then for some /e n,

{mINn(m) am < n} =t (**)

To consider this axiom in ENF we should really consider natural
numbers defined using 2, but for comparison we will use Nn. Intuitively,
the reason why (**) is not derivable in NF is that the objects on the left and
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the right are of different ‘‘types,’”’ but it is straightforward to show that
the following form of the axiom of counting is provable in NF.

If Nn(n) then for some te n, {m|Nn(m)rm < n} ~, ¢,

so that in ENF {m|Nn(m)am < n} =t and this again suggests that = is a
better notion of being equipollent than =.

Henson shows in [1] that it is relatively consistent with NF that for
finite sets x, if Nc(x) is the cardinal of x and P(x) is the power set of ¥,
then we can have Nc(P(x)) < Nc(x) or Nc(P(x)) > Nc(x). He also shows that
we can have Nc(x(l))<, = or > Nc(x). We have already noted that in
ENF x x® and hence the latter pathologies are eliminated. In ENF
x xx™We P(x) so that P(x) will probably be at least as big as x, but we do
not seem to get an immediate answer to this.

There are a number of problems which could be investigated con-
cerning natural extensions of ENF, but it could also prove worthwhile to
consider other properties which depend on the definition of ordered pairs
in NF.
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