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SET-VALUED SET THEORY: PART ONE

E. WILLIAM CHAPIN, Jr.

1 The Informal Systems  In this section, we will consider the original
exposition of Zadeh [3] and one of the more recent versions of the theory by
Brown [1], both for the purpose of introducing the reader to the intuitive
ideas to be formalized and so that the reader may see first hand some of
the difficulties involved in the earlier formulations of the theory.

The Original System of Zadeh In [3], Zadeh defines fuzzy sets to be
functions from some ordinary set X to the unit interval [0, 1]. (Strictly
speaking, Zadeh says that fuzzy sets are characterized by these functions,
but for our purposes, we may identify the set and the function that
characterizes it.) Thus these functions are generalizations of the ordinary
characteristic functions of the subsets of X. Zadeh tells us that such fuzzy
sets are to represent classes of elements ‘“‘with a continuum of grades of
membership” ([3], p. 339), ‘“‘classes of objects encountered in the real
physical world [which] do not have precisely defined criteria of member-
ship’’ ([3], p. 338). Among his examples is the ‘‘class of all real numbers
which are much greater than one’’; he indicates that such classes ‘‘play an
important role in human thinking, particularly in the domains of pattern
recognition, communication of information, and abstraction’’ ([3], p. 338).
He further notes that ‘‘the notion of a fuzzy set is completely nonstatistical
in nature” ([3], p. 340) and that the concept of fuzzy set ‘‘provides a natural
way of dealing with problems in which the source of imprecision is the
absence of sharply defined criteria of class membership rather than the
presence of random variables’’ ([3], p. 339).
Zadeh continues ([3], pp. 340-341) with the following definitions:

A fuzzy set is empty if it is the constant function zero.

Two fuzzy sets are equal if they are equal as functions.

The complement of a fuzzy set f is the function defined by: f'(x) = 1 - f(x).
The fuzzy set f is a subset of the fuzzy set g if and only if, for all ¥ in X,
flx) = g(x).

The union of the fuzzy sets f and g is the function f'U g defined by (fug)(x) =
max[ f(x), g(x)] (equivalently, the smallest fuzzy set having both fand g as
subsets).
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The intersection of the fuzzy sets f and g is the function fN g given by
(f N &)(*) =min[f(x), g£(*)] (equivalently, the largest fuzzy set which is a
subset of both f and g).

Using these definitions, both DeMorgan’s laws and the usual distribu-
tive laws hold:

(fug)y=rng,(fng' =rfug,
fngun=(fngu(fnh),
fU(gnh)=(fug)N(fuUh)

([3], pp. 342-343)

However, although the fuzzy sets constitute a distributive lattice with 0 (the
empty set) and 1 (the constant function 1) ([3], p. 343), the operation of
complementation does not make this lattice into a complemented lattice.
While it is true that such pleasant properties as DeMorgan’s laws and the
law f"" =f hold, it is certainly not always the case that fUf' =1 or that
fNf' =0. For example if f(x) = a and a is neither 0 nor 1, then, as can be
verified from the definitions (fU f")(x) =max[a, 1 -a]# 1 and (fNf)(x) =
min[a, 1 - a] # 0. Exactly how this situation is to be interpreted is not
totally clear. Evidently, the three seemingly natural definitions of union,
intersection, and complement do not mesh in the usual manner. Since the
usual laws for union and intersection are obeyed, the problem would seem
to lie with the complementation process.

In fact, Zadeh implicitly speaks to this situation by defining the
following further operations ([3], pp. 344-345).

The algebraic product of fuzzy sets f and g is the fuzzy set fg defined by
fex) = f(x) g(x).

The algebraic sum of fuzzy sets f and g is the fuzzy set f + g defined by
(f + g)(x) = flx) + glx) provided that this sum is less than or equal to 1 for
all x in X. Otherwise, f + g is not defined.

The absolute diffevence of fuzzy sets f and g is the fuzzy set | f - g} defined
by |f-gl() = |f(x) - gx)|. (This corresponds to the operation of sym-
metric difference in classical set theory.)

The convex combination of the fuzzy sets f, g, and k is the fuzzy set
(f, g; k) given by kf + k'g. (This is to correspond to a linear combination
Af+(1-2)g,0=x=1.) Zadeh observes that, for all %,

fngc(f,gs k) Ccfug
and that any set % lying between f N g and f U g can be obtained as a convex
combination (f, g; k') by choosing
h(x) - g(x)
fx) - glx)

using a suitable interpretation when the denominator is 0 (the value of k(x)
at such points can in fact be chosen at will in the interval [0, 1]).

R'(x) =
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The sum of two fuzzy sets f and g is the fuzzy set f @ g given by
(f ® g)x) = flx) +g(x) - flx) gx).

For ordinary sets (functions that take on values 0 and 1 at most), algebraic
product and intersection are identical, as are sum and union ([3], p. 344).
Zadeh uses some of these definitions in his theory of convex fuzzy sets (see
below), but from our point of view, the simple fact that alternate definitions
are possible (that coincide with the usual ones in the case of ordinary sets)
is important, together with the interesting observation that f+f' = 1. We
still, however, do not have an operation ° that is well-behaved in other
respects and satisfies f°f' =0. At this point Zadeh continues with the
following definitions ([3], pp. 345-346) which we shall certainly have to take
into account in our axiomatized theory.

A fuzzy velation is a fuzzy subset of X x X.
The composition of two fuzzy relations f(x, y) and g(x, y) is the fuzzy
relation

h(x, ) = sup,ex min[ fx, v), glv, ¥)].

Thus for any particular pairs (x, v) in fand (v, y) in £ indicating that (x, )
should belong to % to some degree, we assign (x, y) the minimum of the
corresponding degrees of (x, v) and (v, y) and then assign as a final value to
(x, y) supremum of these minima. This maximum of the minima concept
will prove quite useful in the axiomatized theory.

If T is an (ordinary) mapping from fuzzy set d to fuzzy set 7, and fis a
fuzzy subset of 7, the inverse image T ' (f) is given by the fuzzy set
(T™ YN (x) = f(y) for all x in d that T maps onto y. (If d = 1, i.e., the domain
of the relation is the ordinary set X (the only case that Zadeh mentions),
this definition is reasonable, assigning to an x in the inverse image the
same degree of membership that T(x) has in f. However, if d is an
arbitrary fuzzy set, it need not be the case that 7" '(f) C d since there may
be elements that belong to f to a higher degree than their inverse x images
belong to d.)

If T is an (ordinary) mapping from fuzzy set d to fuzzy set » (Zadeh takes
the case 7 an ordinary set only), and f is a fuzzy subset of d, then T(f) is
the fuzzy set given by (T(f))(y) = Max f(x) where the maximum is taken over
all x mapped by T to y. The intuitive interpretation here is again clear, but
unless 7 is an ordinary set, it need not be the case that T'(f) C 7.

The difficulties here seem to be associated with the mixture of ordinary
functions, fuzzy sets and relations, ordinary domains and ranges, and fuzzy
domains and ranges. A theory having all of the objects involved of some
uniform kind would seem profitable (c¢f., section 2 ff.).

The rest of the Zadeh paper [3] will be discussed here in less detail,
since, although it is quite interesting and presents several useful results,
an understanding of those results is not necessarily germain for the
purpose at hand. Zadeh wishes to study the idea of convex fuzzy sets and in
particular, the question of separating such sets in some sense by
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hyperplanes. For this purpose, he restricts himself to the case that the
original ordinary space X is a real Euclidean space E” for some n. Typical
of his definitions and theorems are the following ([3], pp. 347-353).

A fuzzy set f is convex if and only if the sets I', defined by
T, = {xlflx) 2a}
are convex for all @ in the interval, [0, 1] (equivalently if and only if

Oy + (1 = N)xz) Zminl f(xy), flx2)]

for all x, and ¥, in X and all x in [0, 1]).

A fuzzy set f is bounded if and only if the sets I', defined above are all
bounded. Thus if we define f to be 1 on all points x within the unit circle
and the reciprocal of the distance from x to the origin for points on or
outside the unit circle, we have f as a sort of bounded plane.

If £ and g are bounded fuzzy sets and H is a hyperplane in E” defined by
h(x) = 0, by the two sides of H, we mean, as usual, the set of all x such that
h(x) = 0 and the set of all ¥ such that 2(x) 2 0. Let M(H) be the infimum of
all & such that f(x) = %2 on one side of H and g(x) = %k on the other side of H.
(Clearly, 1 is an example of such a k, and all such %k are greater than or
equal to 0.) Then 1 - M(H) is the degree of separation of f and g by H and
1 - infyM(H) (where the infimum is over all hyperplanes) is the degree of
separation of f and g.

Theorem: Let M be supex(f N 2)(x) for f and g two fuzzy functions. Then M
is also the degree of sepavation of f and g.

This theorem is in some sense the best possible, for it would seem unlikely
that we could separate two sets to a greater degree than the degree some
one element belonged to their intersection. For details about this proof and
other facts about the convexity of fuzzy sets, the reader is referred to the
original paper [3].

The System of Brown In [1], Brown defines fuzzy sets as mappings
from sets into a Boolean lattice. For this reason, his theory must be
considered as a modification of the theory of Zadeh rather than as a
generalization of that theory, since there are theorems of each version
which are false in the other. Let the operations in the Boolean lattice in
question be v, A, ', and = (sup, inf, complement, order relation). Then
Brown makes the following definitions ([1], pp. 33-34) parallel to those of
Zadeh.

A fuzzy set is empty if and only if it is the zero function.

Two fuzzy sets are equal if they are identical as functions.

The complement of a fuzzy set A is the fuzzy set A’ given by A'(x) = (A(x))'.
The union of two fuzzy sets A and B is the fuzzy set (A U B)(x) = A(x) v B(x).
The intersection of two fuzzy sets A and B is the fuzzy set (A N B)(x) =
A(x) AB(x).

Fuzzy set A is a subset of fuzzy set B provided that A(x) = B(x), for all x.
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These definitions allow Brown to prove the various theorems of elementary
set theory that Zadeh does. In particular, union and intersection are both
commutative, both associative, each distributes over the other, and
DeMorgan’s law holds ([1], p. 34-5). However, in addition, both of the
following are true.

AUA'=U,ANA" =9

where ¢ is the empty set and U is the constant function 1. As we noted
above, such theorems need not be true in the theory of Zadeh. From this
point of view, the theory of Brown seems more natural or at least closer
to the classical theory. However, although the theory of Brown is well-
behaved with respect to complement, one should carefully observe the way
that Brown’s intersection words. Suppose, for example, that A(x) = a and
B(x) = b with neither a nor b the 0 element of the lattice of values, but such
that aa b = 0. Then, although x is an element of A to some positive degree
and element of B to some positive degree, x is an element of A N B to the
degree 0. This cannot happen in the theory of Zadeh, since all of the values
are comparable so that x would belong to the intersection to the minimum
of the two degrees a and b (and so to a non-zero degree). The correspond-
ing situation for unions is not quite so disturbing, but still it should be
noted. If, in the above example neither g nor b is 1, but avd =1, then
(A U B)(x) = 1. This happens classically in the case that B is the comple-
ment of A, for example, (or when the complement of A is a subset of B), but
the possibility of this sort of thing happening in other cases can seem
mildly strange.

Having developed this elementary set theory, Brown goes on to discuss
the general elementary properties of convexity; he does not prove most of
the theorems that Zadeh does concerning convexity, since the theorem
mentioned above on separation does not hold ([1], p. 33). He does observe,
however ([1], pp. 38-39), that many properties of fuzzy sets can be defined in
terms of the corresponding classical properties of the associated sets I,
Among these properties are that of being simply connected, that of being
star-shaped with respect to a point, and that of ‘‘having a hole’’ in an
elementary sense. For the details, the reader is referred to the above-
mentioned paper of Brown.

At this point, the reader should have a reasonable grasp of the intuitive
idea of Zadeh’s fuzzy set theory. In particular, he should note the
difficulties that arose in connection with the definitions of complementation
and intersection, and the complications that arose in the consideration of
direct and inverse images of sets under functions. Further, it should be
noted that there has been very little mention of the membership relation
(€). Zadeh ([3], pp. 341-342) observes that this relation ‘‘does not have the
same role in the case of fuzzy sets’’ that it has in the classical theory. in
the following sections, a Zermelo-Fraenkel-like theory based on a
membership relation will be developed. This unified theory in which sets,
function, etc. all are ‘“fuzzy’’ helps to obviate some of the above difficulties
and to clarify the nature of the others. Further, it eliminates the necessity
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of having a predetermined theory of ordinary sets on top of which the
“fuzzy’’ sets are built as a superstructure by starting out axiomatically
ab initio, as it were, assuming only elementary logic. Further, by
developing the theory in a manner parallel to the usual development of
other set theories, comparisons between this new theory and the more
usual ones are facilitated.

2 The Axioms In this section we list all of the axioms (with the exception
of the continuum hypotheses) for the various versions of Zadeh set theory.
Certain basic definitions are also included. Those axioms whose numbers
are preceded by an S are the ones to be added to the usual theory Za to
obtain the stronger theory Za*. For the convenience of the reader, the
parallel axioms of classical Zermelo-Fraenkel theory, in the form that
they are given in [2], will be listed in pairs with the new axioms where this
listing is helpful for purposes of comparison.

Our theory will be formulated in ordinary first order logic with
equality (=), the usual connectives a (and), v (or), ~ (not), D (implies), = (if
and only if), the usual quantifiers V (for all), 3 (there exists), lower case
Latin letters with or without primes as variables (to be thought of as
representing sets), the usual collection of Latin upper case letters, Greek
letters, and combinations of various sorts of letters to be symbols for
functions and relations. For certain sets, functions, and relations that have
classically determined symbols associated with them, we shall use these
symbols when it seems perspicacious to do so. We assume that there is in
fact a denumerably infinite number of variables, but our only primitive
relation will be the membership relation (¢). All other relations and
functions will be defined. Constants will be considered as zero-ary
relations.

The membership relation € is a ternary relation; e(x, y, z) should be
intuitively interpreted as saying ‘‘x is an element of y with degree of
membership at least z.”’ Thus the third argument of ¢ corresponds to the
value that the function f,(x) of [3] or y(x) of [1] took. The correspondence is
not exact since the membership relation in those papers could be viewed as
a binary function whereas our ¢ is a ternary relation. It is helpful to view
e(x, v, 2) as being true precisely in those cases in which 0 = z = f,(x) in the
sense of [3]. Thus e accepts the degree of membership of x in y, but also
accepts all ‘‘smaller’’ values. The utility of this device will become
apparent as the axioms are stated. Note, however, that the actual values of
the third argument are simply arbitrary sets, so that care must be taken in
considering their ordering which certainly need not be linear.

The Axiom of Extensionality The classical formulation of this axiom
states:

(V) (YY) [(V2)(zex = z€e y) D x = y] ([2], p. 51)

Thus two sets are to be considered equal classically if they have precisely
the same elements. Hence the determination of the suitable parallel axioms
for Za-set theory is not difficult:
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Ax.1: (V(Vy) [(V2)(Yw)(e(z, x, w) = €(2, ¥, w)) Dx =y].

Two sets are equal if every set belongs to the first with precisely the same
degree(s) of membership as it does to the second. At this point it is
convenient to make the following definition.

Def.1: x Cy = (Vz)(Vw)(e(z, ¥, w) D e(z, vy, w)). (Subset)

So, using the suggested interpretation, to say that x is a subset of y means
that if any z belongs to x at least to the degree w, then z also belongs to y
at least to that degree. It is here that the non-functional nature of ¢ first
proves itself useful. We are certainly in no position to define a suitable
ordering relation and require that x be a subset of y if any arbitrary z
belongs to x to a lesser or equal degree than it does to y, but we can state
this axiom about the relation €, an axiom that seems to have the correct
intuitive interpretation and which is at the same time one half of the
hypothesis of the Axiom of Extensionality, as is true in the classical case.
Hence we obtain the usual classical theorem:

Thm.1: (Vx)(Vy)[(x CyAay C %) D (v = y)].

The Relational Axiom This axiom has no classical counterpart. Its
purpose is to indicate that the relation e¢ does behave in the manner
suggested in the first paragraph before the beginning of the axioms.

Ax.2: (VX)(Vy)(V2)(Yw) [(e(x, y, 2) aw C 2) D e(x, v, w)].

If x is an element of y at least to the degree z and w is ‘‘smaller’’ than z
(with respect to C), then x is also an element of y at least to the degree w.

The Axiom of the Null Set Classically this axiom simply says

@x)(Vy) [~ (yex)] ({2], p. 51)

There exists a set with no elements. It would be convenient to say that
there exists a set to which all elements belong only to the degree zero. But
we have no zero (or null set) yet. So we say instead

Ax.3: (3x)[(V)(V2)(e(y, x, 2) D x = z) A (Vo)(Yw)(e (v, w, x))].

Think of the x whose existence this theorem insures as the null set and as
the ““minimal’’ degree to which any set may belong to any other set. Then
the axiom says that if y belongs to the empty set at least to the degree z,
then that degree is the minimal degree (the null set) and further that any
set v belongs to any set w at least to the minimal degree (the null set).

Thm.2: The set x whose existence is assevted by Axiom 3 is unique.

Proof: Consider any two sets satisfying the axiom, x and x'. By the
second part of the axiom applied to x', we obtain, in particular, e(x, x, x').
But from this, together with the first part of the axiom applied to x, we
obtain x = x'. QED

Def.2: ¢ is the x whose existence and uniqueness are given by Axiom 3 and
Theorem 2. (Null Set)
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Note that the Axiom of Extensionality was not used in the proof of the
uniqueness of the null set, but rather just the Axiom of the Null Set itself.

The Axiom of Non-Triviality At this stage of the development, it is
conceivable that @ is the only set accepted as a third argument of €.

Def.3: D(x) = (3y)(32)(e(y, 2, x)). (Degree)

D(x) holds (read ‘‘x is a degree’’) if and only if x is the third element of
some triple in €.

Ax.4: Ex)[DE)A~(x = B)].

This axiom stating that ¢ is not the only possible degree has, of course, no
classical counterpart.

The Axiom of Pairs The classical version of this axiom insures us that if
x and y are sets, then there is a set z whose elements are precisely x
and y.

(vVx)(VY)(32)(Vw) [we z = (w = xvw = y)] ([2], p. 51)

Our situation is somewhat more complicated, since we must also decide to
what degree x and y are to belong to z. The situation is further complicated
by the fact that, although we now have a minimal degree (@) of sorts, there
is no particular ‘“‘maximal’’ degree. For this reason, we introduce two
axioms about pairs.

Ax.5: (VA)(V))(22) [(Vo)(Vw) [(e(w, 2, ) a~ (v =0)) D (w= x.v.w = Y)]
AV [D@" D (e(x, 2, v") ne(y, 2, v))]].

Thus, for every x and y, there is a 2z whose only elements to a degree
different from ¢ are x and y. Further, if v' is a degree, then bothx and y
belong to z at least to the degree v'. This is a way of creating a pair
containing ¥ and y to the ‘‘maximal’’ degree, at least in the sense they
belong to the pair to every available degree.

Ax.6: (VX)(Vy) (Vo) (Yw') [(D(@") A D(w") 2 ((32)(Vv)(Vw) [(e(w, 2, v)
Am@=@) D (w=x.v.w=]rlelx, 2, v)rel, 2, w')]
A[(Eiv")(Elw")(e (x, z, l)")/\ e(y, 2, wn)) ) (’0" C VAW C wl)])]

Thus, if x and y are any two sets and v’ and w' any two degrees, there is a
set z satisfying the following three properties:

a) x and y are the only elements of z on non-@® degree;

b) x belongs to z at least to the degree v’ and y belongs to z at least to the
degree w';

c) if also x belongs to z at least td the degree ¢v'' and y belongs to z at least
to the degree w'', then v'" is ‘‘smaller’’ than or equal to v' (v"" C v') and '
is ‘“smaller’’ than or equal to w' (w'' C w').

Hence, for every pair of sets and every pair of degrees, we get a new
set that contains each of the original sets as an element ‘‘precisely to the
corresponding degree.’’
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Thm.3: For each x and y (respectively x, v, v', w') the set whose existence
is assured by Axiom 5 (respectively Axiom 8) is unique.

Proof: This follows immediately from the Axiom of Extensionality, using
the appropriate axiom (5 or 6) together with the Relational Axiom and the

second part of the Axiom of the Null Set. QED
Def.4: The sets whose existence and uniqueness are given by Axiom 5 and
Theorem 3 are designated by {x, y}. (Strong Pair)
Def.5: The sets whose existence and uniqueness are given by Axiom 6 and
Theorem 3 are designated by {x, v}, (Weak Pair)
Def.6: {x}is {x, «}. (Strong Unit Set of x)
Def.7: {x}, is {x, x},10. (Weak Unit Set of x)

Thus the presence of both Axiom 5 and Axiom 6 gives us pairs whose
elements belong with quite varying degrees of membership. The necessity
of both axioms, rather than just one or the other becomes apparent if the
degrees are imagined to correspond to the natural numbers with their
natural ordering.

Def.8: (x, y) is {{x}, {x, y}}. (Ordered Pair)

One could also define Weak Ordered Pairs of various sorts, but such pairs
do not seem to be of immediate use. Functions will consist of sets of
ordered pairs, but their ‘‘fuzzyness’’ will consist in the degree to which the
pairs belong to the function, not in the degree to which the pairs are
“fuzzy.’”’ Because the sets mentioned in the definition of (x, y) are strong,
it is easy to use the Axiom of Extensionality together with Definition 8 and
its predecessors to prove (in the usual manner)

Thm.4: {x, y) = {(z, w) if and only if x = z and y = w. QED

Def.9: Funct(x) = [(V3)(V2) [(e(y, %, 2) a ~(z = 0)) 2 (Fu)(Bv)(y = ', v")]
A (V) (Vo) (Vo ) (Yw) (V') [(e (@, ), %, w) ae(@, v), %, w') A~ (w = D)
A ~w'=@)) Do =v"]]. (Function)

Thus, the only elements of a function to non-@ degrees are ordered pairs
and any two ordered pairs to belong to non-¢ degrees and have the same
first elements have the same second elements. This sort of definition
corresponds to the situation in which you have a function whose domain and
range are unclear, but for any element that might be in the domain, there is
no confusion as to what element in the range (if any) it would correspond to.
To handle the situation in which for each element of the domain, there are
several possible elements of the range that might correspond, perhaps with
different degrees of certitude, the most satisfactory solution is to require
that the function be redefined so that its range consists of sets of the
previous range values, the elements of the new range set that corresponds
to any x in the domain being the values that x might take, each belonging to
the set ‘‘f(x)’’ to the appropriate degree.
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Note that, using our relatively strong definition of function, if f is a
function and {x, y) ef, it makes sense to say such things as y = f(x) which
would not have been meaningful had we allowed f to be multivalued even in
the weak sense that it was allowed to contain pairs of the form (x, y),
{x, y", with y not equal to ', provided the degree of membership of these
pairs was different.

Def.10: Dom(x, f) = [Funct(f) a (V2)(YW) ~ (w = @) [e(z, x, w)
= (3o)(ez, v), f, w)]]. (Domain)

The domain is the usual set of first elements of pairs from a function; each
such element belongs to the domain of f precisely to the degree that the
corresponding pair belongs to f.

Def.11: Ran(x, f) = [Funct(f) a (V2)(VY) ~(w = D) [e (2, x, w)
= (Jv)(e((v, 2), 1, w)]]. (Range)

Although Definitions 10 and 11 seem rather similar, note the difference in
results: the range is the collection of second members of pairs from the
function f; each such z belongs to the range to all the degrees that any pair
with second element z belongs to f. Thus with our interpretation, x belongs
to the range with the ‘“maximal’’ degree among the degrees of the cor-
responding pairs in f. The following definitions are standard.

Def.12: A function f maps into a set x means that Ran(f) C «. (Into)

Def.13: A function f maps onto a set x means that Ran(f) = «. (Onto)

The Axiom of Unions A common classical form of this axiom is
(Vx)(3y)(Vz)[zey = (3t)(zetntex)] ([2], p. 52)

Here y is the union of all of the sets in x, i.e., the set of the elements of the
elements of x. Our situation here is slightly complicated by the possibility
that an element z of x might belong to x to one degree and, at the same
time, z might itself have elements that belonged to z to other degrees.

Def.14: Std(x) = (V¥) [(32)(e (2, x, w)a ~ (@ = w)) D (V2)(D(2") D €(z, x, 2'))].
(Standard)

A standard set x is one having the property that if any z belongs to x at
least to a non-p degree, then z belongs to x to every degree (‘‘maximally’’).
For standard sets we could state the following axiom of unions.

(Vx) [Std(x) 2 (3N(V2)(Vw)(elz, v, w)
= (F)E e, t, wynelt, x, t)a~(t' = )))]

For standard x, a y satisfying this axiom would contain the elements of the
elements of x, each to all degrees (thus ‘‘maximally’’) that it was an
element of some set y which was an element of x at least to some non-¢
degree t'. Since all elements of x that are elements of some non-p degree
at least are elements of x of every degree, we can safely ignore ¢'. The
usual extensionality proof shows that for each standard x, the y postulated
above is unique.
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Def.15: The set y of the above axiom will be designated as st.
(Standard Union)

Ax.T: (Vx)(3y)(Vz)(Vw) [e(z, ¥, w) = (3)(3")(3")(e(z, ¢, t") nelt, x, ')
aw C HawC ],

Thus if z belongs to ¢ at least to the degree ¢' and ¢ belongs to x at least to
the degree {'", then z belongs to the union of x (y) to every degree
‘“‘smaller’’ than both ¢' and #''. Thus we might say that the degree of
membership of z iny is the ‘‘smaller’’ of the degrees of membership of z
in Z and £ in x. However, observe that if z in several different £ which are
in z, the degrees assigned to z in the union of x are all of those assigned by
the above process for the different £. Thus we take ‘“the maximum of the
minimal degrees’’ in defining the union. Again the set y postulated to exist
by Axiom 7 is unique by extensionality.

Def.16: The sety of Axiom 7 will be designated Ux (Union)

If ¥ is standard, in Axiom 7, if there is one non-@ #'" for a particular #, then
all degrees are available to serve as #'', so that Axiom 7 can easily be
reduced to the axiom above asserting the existence of the standard union of
a standard set. Hence we have the following theorem.

Thm.5: Std(x) D <st = Ux). QED
The following is the usual definition.
Def.17: x Uy is U{x, yh

The Axiom of Infinity = The purpose of this axiom is to insure that we have
an infinite number of sets and possibly a collection of sets looking rather
like the natural numbers. A classical formulation is as follows.

Gx) [@exa(vy)yex Dy U {ylex)] ([2], p. 52)

Using the fact that null set @ is standard and that x Uy is defined as the
union of a standard set {x, y}, one may apply the Axiom of Non-Triviality to
verify, for example, that ¢ and @ U {#f} are distinct. Note that the converse
of the Axiom of Extensionality follows from our first order logic with
equality.

Ax.88: (3x)[Std(x) a (FE)(~(t = D) ne(D, %, 1)) A (VY)(e(, %, )
D e(yu{y} %, 1)].

This strong axiom simply gives us a standard infinite set of the usual kind.
The following axiom is weaker, since although it gives us an infinite set,
that set may not be standard.

Ax.8: (3%)[(3Ft)(e(D, x, )a ~ = D) A (V) (VE) [(e(y, ¥, ) A~ (' = P))
2 (3" ey u {y}, t)a~@" = PNl
Using this axiom, the different members of the infinite set x may all belong

to x to different degrees. Thus, although we are assured that the elements
that are supposed to belong to x do belong to some non-¢ degrees, it is
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conceivable, for example, that as we go out further in the sequence, the
degrees ‘‘decrease’’ toward @. Axiom 8 seems to be the weakest useful
version of the Axiom of Infinity for our system. Axioms of the type below,
asserting the existence of an infinite set whose elements all belong at least
(or precisely) to some fixed non-@® degree, could be added to strengthen the
theory Za, if this were desired. Note that even the third and fourth of these
axioms which state that the first (respectively, second) of these possible
additions is available for each degree ¢, need not imply the truth of
Axiom S8. Again, if one imagines the degrees as natural numbers with
their usual ordering, this becomes clear.

(1) E)E)[e@, x, )a~(t = D) a(vY)eW, %, 1) D e(y Uy}, %, 1))]

(2) ENEY)[e@, x, )~ =D) A (YY), ¥, 2) D e (yU P}, %, 1)
AMV2)VE)e(z, x, t') Dt C )]

(3) (v)[D() D 3x)[e(@, », &) A (VY)(e, x, £) D e(y U P}, %, 1))]]

4) (vO[D@) > 3x)[e@, x, ) A (YY)D, %, ) D e(y U {¥}, ¥, )
A(VE)(VE)(e(z, x, £') D t' C t)]]

Note that, in (3) and (4), it is not necessary to assume that ~ (¢ = @): the
case that ¢ = @ is true by the Axiom of the Null Set; we are sure that there
are other values of ¢ by the Axiom of Non-Triviality.

The Axiom of Replacement To state this axiom, we must first enumerate
the countably many formulae of our language which have at least two free
variables. Call the »’th of these A,(x, y, £, ¢, . . ., ;) (Where k£ may depend
on 7). Then the classical ‘““‘Axiom’’ of Replacement consists of the following
infinite collection as sentences.

(VO)(VEs) . . . (VR [(VX)(31Y) Aul, 35 81, bay - - o, ) D (VU)(BO)(VP)[7 e
= (3 S)(S € u"An(s; 75 tl; tz, 0 tk))]] ([2]7 p. 52)

If, for fixed values of the ¢’s, A, defines y as a function F of x, then if « is a
set, the range of the function obtained by restricting the domain of F to « is
also a set. (As usual, 3!y means ‘‘there exists a unique y,”’ i.e., there is a
y and any two are identical.)

Ax.9: (VE)(VE) . . . (Vi) [(VX)(21Y) Aulx, ¥; Ey, s . . 5 ) D (VU)(30)[(V)
vr [N(w = ¢)3 [G (7, v, w) = (3s)(e(s, u, w)a A,(S, 75 ty, bay . o, tk))]]]]~

This axiom closely parallels the classical one above, giving the same range
set v corresponding to the domain set ». However, we also had to specify
the degree that any element 7 belongs to v: if A,(s, 7; ¢y, &5, . . . £;) holds
true for s in u, then we put 7 into all of those degrees that s was inu.
Thus, if 7 is the image of several different s, we put # in the range set v to
all of the appropriate degrees (to the ‘‘maximal’’ degree). This axiom
takes into account the ‘‘fuzzyness’’ of the domain set # and transfers it to
the corresponding range set v, but it ignores the ‘‘fuzzyness’’ of the sets
that may be involved in the construction of A,. Hence we add the following
axiom.
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Ax.10: (Vf) [Funct(f) D (Vu)(3)(V7)(Yw) [~ (w = D) D e(r, v, w)
= (3s)(Fw") (3w )e(s, u, w)ae (s, V), f, w)aw Cw' aw C w]].

Thus, if f is a function and we restrict its domain to «, the set v is the range
of f. If s belongs to u at least to the degree w' and (s, #) belongs to the
function f at least to the degree w'’, then we put 7 into the range set v with
all degrees ‘‘smaller’’ than both w' and w'. Since, if » occurs as the
second element of more than one appropriate pair, we put it into the range
with all of the suitable degrees, Axiom 10 may be viewed as constructing
the range with degrees arranged as ‘‘maxima of minima.”’ It takes into
account both the ‘‘fuzzyness’ of the domain set » and of the function f.

A common weakening of the classical Axiom of Replacement is the
Axiom of Separation (Aussonderungsaxiom). For this axiom, we need a
listing of all of the formulae of our language with at least one free variable.
Let the »’th such formula be B, (x; ¢y, £, . . . £;) where again 2 may depend
on 7,

(VE)(VE) . .. (YB)(VX)(3)(VZ)[2€y = (zexAB,(2; 1y, by . . ., &)]. ([2], p. 55)

A suitable parallel collection of axioms for our theory would be the
following:

(VE)(VE) ... (VE)(Y2)(3y)(V2)(Vw) ([e(2, ¥, w)
= (e(z, x, W) AB,(2; t1, tay . . . 1))l vw =®). (Separation)
This axiom is a consequence of the Axioms of Replacement in the usual
way, by defining the proper function (cf., [2], p. 55).

The Axiom of the Power Set The classical form of this axiom is very
simple.

(Vx)(3y)(V2)(zey = 2 C x). ([2], p. 53)

This tells us that y, the power set of x is the set of all subsets of x. The
question that arises in creating a power set in Za-set theory is that of the
degrees of membership of the various elements of the power set.

Ax.S11: (Vx)(3y)(V2)(Yw)(e(z, y, w) = (D) rz C x) v w = D).

This very strong power set has all of the subsets of x as elements to every
degree. Proving its uniqueness (for fixed x) by extensionality, we may give
the following definition.

Def.18: The set y whose existence is assured by Axiom S11 will be denoted
P(x). (Strong Power Set)

The following weaker axiom simply guarantees the existence of a power
set, i.e., a set containing as elements the subsets of x, each to some non-@
degree.

Ax.11: (Vx)(3)(V2) [(Bw)(e(z, ¥, w)r~(w = D)) = z C x].

In the strong system Za*, which includes Axiom S11, Axiom 11 becomes
redundant, being a consequence of Axiom S11 and the Axiom of Non-
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Triviality. A set whose existence in guaranteed by Axiom 11 will be called
a power set of x; we cannot conveniently assign it a symbol for regular use,
since there is no guarantee that a power set is unique.

The Axiom of Products Classically, no axiom is needed to assert the
existence of Cartesian Products since, for Zermelo-Fraenkel-like set
theories, the Cartesian Product of x and y is a subset of £ £(xU y) and
there is a sentence of the language that allows us to specify precisely just
which such subset we want by the Axiom of Replacement. This is not the
case in our theory Za. Here, since the pairs involved in the definition of
the ordered pair (x',y') are all standard, we cannot expect that the
Cartesian Product be a subset of ##(x U y) (or even of P Ps(x U y)). The
possibility of defining weaker ordered pairs in a manner that the pairs in
question would form a Cartesian Product that is a subset of ££(x U y)
seems promising at first glance, but then the statement A, necessary to
apply the Axiom of Separation becomes the difficulty: in most cases, there
are several collections of ‘‘weak’ ordered pairs which could serve as a
‘‘weak’’ Cartesian Product of ¥ and y, and quite often, many of these
collections are subsets of ##(xU y). The obvious device that comes to
mind is the application of the Axiom of Choice, but this depends on the
construction of a function the proof of whose existence seems possible to
prove only if we can already construct Cartesian Products.

Ax.S12: (Va)(V)(32)(Vw)(Vw') [(e(w, z, w') a ~(w' = P)) = (3x")(3y")(Iv")
(BN e(x", x, v)re(¥, 9, V" )a~ @ =D)A~ @ =D)r w
={x", yNa D(w) A ~ @’ = D))].

This strong axiom gives us a sort of standard Cartesian Product, each of
the suitable ordered pairs belonging to the product to all degrees. The
uniqueness of the set z whose existence the axiom asserts is assured by
extensionality.

Def.19: The set z of Axiom S12 will be denoted x xs y.
(Strong Cartesian Product)

Ax.12: (V2)(V9)(B2) (V) [Gw') (e (w, 2, w') a ~ ' = @) = (3x")(3y)(3v')
G et’, x,0) (¥, 9, 0") a~ (@ =@)a~@" = @) aw=(x", PH]I.

This weaker sort of Cartesian Product (which need not be unique) contains
each of the ordered pairs in question to some non-@® degree, but not
necessarily to all degrees.

Def.20: Any set z asserted to exist by Axiom 12 will be denoted by x x 3.
(Cartesian Product)

Note carefully that notations such as x x y cannot be used in quite the same
manner as x Xy, since the set that the former denotes is not unique.

The Axiom of Regularity This axiom appears in Zermelo-Fraenkel set
theory chiefly because of its convenience in writing proofs. Unlike the
other axioms, it is sometimes used to exclude certain types and classes of
sets.
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VX)) Fy)[x =D v(yexaVz(zex D ~(zey)))]. ([2], p. 53)

If x is not @, then y is an element of x which is disjoint from x, an element
of x which is minimal with respect to €.

Ax.13: (Vx)(3y)[x = @v (Bw)(~@ = D) ae(y, ¥, w)a (V2)(Vw") [(e(2, X, w")
A~ (' =) D (V') ez, v, w") D w'" = P)D].

The reader will recognize this axiom as a direct translation of the cor-
responding classical axiom. The usual consideration of {x} assures us, by
means of Axiom 13, that x is an element of itself only to the degree . The
other usual results on descending epsilon chains, epsilon loops, etc., also
hold.

The Axiom of Choice Classically, this axiom takes many forms, not all
equivalent. As usual we follow the example of [2] for the traditional
statement.

If a — Aa) # @ is a function defined fov all a e x, then theve exists another
Sfunction f(a) for aex, and f(a) e Aa). ([2], p. 53)

The function f is the choice function for the collection of sets A(a). It is
rather tempting to declare the existence of a strong choice function in the
following manner.

(v2)(Vf) [[Funct(f) A ¥ € Dom (f) A (VY)(V2) (VW) (V') (e(y, ¥, 2) A ~(2 = ©)
ne((y, w), f, w A~ =) 2 ~(w=p)] > (3g)[Funct(g)a x € Dom ()
A (V) (VE) (V) [(€ (¥, %, V) A ~ (v = @) 2 (D) 2 e(glx),f(x), x"N]]].

The choice function g in this proposed axiom selects a member g(x) of each
set f(x) and requires that g(x) belongs to f(x) to every degree. This would
be a pleasant ideal situation, but unfortunately, even though we know that
f(x) is not @, we do not know that it has any member belonging to it of every
degree. Even modifications of this idea requiring that the element picked
be of as ‘‘high’’ a degree as possible are not particularly satisfactory,
because of their quasi-constructive nature: in some sense all such axioms
do not pick an arbitrary point from each of the non-empty sets, but rather
one that is already designated to some extent. Hence we adopt the following
rather weak axiom which gives us an element of each non-empty set in
question, but an element about whose membership we can only say that it is
of some degree other than ¢, perhaps a different degree for each set in
question.

Ax.14: (Vx)(Yf) [[Funct(F) a x C Dom (f) A (V9)(V2)(Vw)(vYw)[e(y, %, 2)
r(z =) ae(y, w), f, w)a~@' = P)] 2 ~w = )] > [(3g)Funct(g)
ax C Dom(g)a (V") (Vx")(V0 ) (VO")(VO(VEN (e(x', x, ) A~ (0 = D))
A e((x', x">yf: Z)”) A e((x', t>7 P t')A N(U” = @)A N(t = ¢)] 2 (at”)
(~ (" =P)nelt, x", )]

Here, g is the choice function: assuming that f is a function with x as a

subset of its domain and such that the range of f restricted to # consists of
non-empty sets w, then g is a function with domain including x, such that if
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x' is an element of x, then the g-image of x' (f) is an element of the f-image
of x' (x'") to some non-@ degree (¢'').

Def.21: Za is the first order theory with equality whose only non-logical
axioms are Axioms 1 through 13. (Za)

Def.22: Za™ is the extension of Za by the addition of the Axioms S8, S11,
and S12.

Def.23: ZaCh is the extension of Za by the addition of the single Axiom 14.
Def.24: Za'Ch is the extension of Za* by the addition of single Axiom 14.

In the next section, the above theories are developed to the point
(natural numbers, ordinals, cardinals, etc.) that it becomes clear that
classical mathematics can be done on the basis of such a theory. The
differences as well as similarities with the usual Zermelo-Fraenkel theory
will be indicated.
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