119

Notre Dame Journal of Formal Logic
Volume XVI, Number 1, January 1975
NDJFAM

THE PRAGMATICS OF FIRST ORDER LANGUAGES. II

ALBERT SWEET

The purpose of the present paper is to extend the results of [3], and to
state and prove an assumption made tacitly therein. Section 6 of the
present paper has the latter purpose, and sections 7 and 8 the former (the
section-numbering of the present paper is consecutive with that of [3]). All
terms and special symbols introduced without definition are intended in the
sense of [3], and all theorems cited are those of [3] unless otherwise
indicated.

Two expressions of L are defined to be pragmatically synonymous,
relative to a polyadic interpretation II, if they are interchangeable in all
expressions of L, salvo valore re II. Two formulas of Ly are defined to be
model synonymous if they have the same image in every semantic interpre-
tation of Ly. Two predicates of Ly are defined to be model synonymous if
they have the same image under every interpretation of the theory
expressed by Ly in which the theory holds (in the customary model-
theoretic sense). Model synonymy of individual constants is defined
similarly. It is shown that if two formulas, or two predicates, of Ly are
pragmatically synonymous, then they are model synonymous. This result
is suggested as an explication of Peirce’s semiotic principle that if two
signs have the same entire general intended interpretant, then they signify
the same object, for the case of signs of the indicated type. But this result
does not hold for individual constants, as is also shown.

It is shown, finally, that there is a one-one correspondence between the
interpretations of Lp onto Boolean models, and the interpretations of the
theory expressed by Ly in models of that theory, such that models under
corresponding interpretations represent the same intuitive structure. This
result justifies application of the term ‘‘model synonymous’’ to formulas,
predicates, and individual constants of Ly in the above three senses.

6 Polyadic Interpretations and Their Cores If 11 is a polyadic interpreta-
tion, we shall refer to the polyadic algebra described in Theorem 1, as Ly.
In virtue of Theorems 1-3, we shall refer to Ly as a predicate calculus,
and to & = (P, K, I,{&, ~, 3}, S) as the (standard) syntax of Ly. Some
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conditions in the definition of a polyadic interpretation II determine the
syntax of Ly, and the remaining conditions characterize the distribution of
Ii-values over S. In[3] it is tacitly assumed that the latter conditions on IT
determine corresponding conditions on its core 7, which are required to
demonstrate the algebraic properties of L. In this section we shall give
an exact statement and proof of this assumption. Throughout this paper, we
let T (with or without subscripts) be a polyadic interpretation of the
expressions L in the valuing dispositions D, unless the contrary is
explicitly stated.

The conditions in the definition of II which characterize the distribution
of I1-values over the sentences of S are those of Definition 5, and conditions
IV and V of Definition 1. We first consider Definition 1. Throughout this
section, 7 is to be understood as the core of II. The condition on 7
corresponding to D1 (V) is:

If (s, c)=1=mn(s',c), thenn(s &s',c) = 1.

This proposition follows immediately from the definition of a core. We
next show: ’

(6.1) If s, s'eS, then for all ¢ C C the values of n(~s, ¢) and n(s & s', ¢)
are fixed by the values of w(s, c¢) and n(s', ¢) accovding to the tables of
D1 (IV).

Proof: That (6.1) holds for the ~-table follows immediately from (1.2).
Let n(s, ¢) = 0. Then for all s'e¢ S and some u¢ U, we W: TI(s)(x, w, c) =0 =
(s & s(u, w, ¢). Then n(s & s', ¢) =0. In this way the desired entries in
the &-table for 7(s, ¢) = 0 or w(s’, ¢) = 0 are obtained. ¥ s and s’ are both
valued 1 under ¢ by m, then sois s & s, by D1 (V). If n(s, ¢) = 2 = ©(s’, ¢),
then for all ue U, we W, TI(s)(u, w, c) = 2 = TI(s")(u, w, ¢), so that TI(s & s")
(w, w,c) #1 +7(s & s', c). ,

It remains to consider the case in which s is valued 1 and s’ is valued
2, by 7 under ¢ (the situation is the same when s is valued 2 and s’ is
valued 1). We require the following lemma.

(6.2) If1I(s)(u, w, c) =1 for some ue U, we W, and 11(s")(u, w, c) = 2 for all
uelU, weW, then TI(s & s")(u, w, c) #0, for all ue U, we W. -

Let subscripts indicate elements fixed throughout the proof of (6.2). Let
T(s)(uy, wy, ¢) = 1 and TI(s & $")(uy, Wy, ¢) = 0. Then I(~(s & ")) (g, w,, C) =
1, so that by D1 (V), II(s & ~(s & 8") (4, wy, ¢) = 1 = TI(S) (&, w,, C) =
H(~(s & s"))(uy, w,, ). Then II(s & s')(uy, w,, c) = 0, so that I(s')(ug, w,, €)=
0. It follows from the above that, if I1(s & s')(%, w, ¢) = 0 for some #e U,
we W, then either II(s)(u#, w, ¢) = 1 for all ue U, we W, or TI(s')(u, w, c) + 2
for some ue U, we W. Transposing this result gives (6.2).

Now let 7(s,c) = 1 and n(s',c) = 2. Then by (6.2), II(s & s')u, w, ¢) # 0,
for all ueU, we W. IfII(s & s')(u, w, ¢) = 1, then I1(s")(u, w, ¢) = 1, against
the hypothesis that n(s’, ¢) =2. Thus II(s & s")(u, w, ¢) =2 for all ue U,
we W, and the desired &-table for 7 is thereby established. The proof of
(6.1) is complete.
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It remains to show that the conditions of D5 on a polyadic interpreta-
tion II have appropriate analogues which are satisfied by the core of II.

(6.3) If m is the cove of a polyadic interpretation 11, then for all p, q, 7 € Q;
JC1;eel;c CC, 7satisfies all the conditions obtained from those of D5
by replacing expressions of the form “Ii(e)(u, w, ¢) = 0’ with ““zn(e, ¢) = 0,
by replacing expressions of the form ‘I(e) = I(e')”’ with “‘u(e, c) =
wle', c)”’, and by veplacing expressions of the form ‘Ii(e) =d,”’ with
“m(e, c) = 0.

Proof: (6.3) holds for D5 (III) and (IX) by (1.3). By (1.4), (6.3) holds for
D5 (IV)-(VD), (VII), (X)-(XII). That (6.3) holds for D5 (I) follows im-
mediately from (1.3). For D5 (II), let 7(3(p & ~¢q),c) =0 = 7(3(q & ~7), ¢).
Then for some fixed u,,w,, I(~3(p& ~q) & ~3(q & ~7))u,, w,,c) = 1=
7(~3(p & ~q)(uy, wy, ¢) = I(~3(g & ~7))(u,, wy, ¢), by D1 (IV), (V). Then
nE(p & ~q)) (uy, wy, ¢) = 0 = I(3(q & ~7)) (%, wy, ), so that by D5 (II),
N3 & ~7) (uy, wy, ) =0 =n(3(p & ~7), ¢). Thus (6.3) holds for D5 (II).

It remains to show that D5 (VII) satisfies (6.3), for which we require
the lemma:

(6.4) FII(3(p & @) (u, w, c) = 1, then N(3p)(u, w, ¢) = 1.

EE(p & q) & ~P))(u, w, c) =0, then IEBEW)® & q) & ~3NPN(u, w, c) =
0, by D5 (IX), where J is the set of free variables of p & ¢, and hence by
D5 (VII) and (IX), I(3(p & q))(w, w, ¢)=T1(I(p & q) & 3p)(u, w, ¢). By D5 (I),
(VI), and (V), II(3((p & q) & ~p))(u, w, ¢) = 0 for all ue U, we W. (6.4) is
thereby established.

To establish the m-analogue of D5 (VII), let I(3(p & ~ q)) (&0, Wy, ) = 0,
for fixed uge U, woe W. That D5 (VII) satisfies (6.3) is then evident, except
when I1(3p)(ug, o, €) = 2 = TI(I(p & q))(up, Wy, ). On this hypothesis we
distinguish three cases.

Case 1. w(3p, ¢) =0. Then #(3(p & q), c) = 0, by (3.9).

Case 2. n(3p, ¢) = 1. Then II(3p)(«, w, ¢) = 1 for some ue U, we W. Then
by D1 (V), H(BP & NE(p & Nq)) (uh W, C) = 1’ for fixed uleU’ w, € w, SO
that I(3(p & ~q)) (4y, wy, ¢) = 0. Then by D5 (VID), 1 = I(3p) (e, wy, ¢) =
o3 & Qw, wy, ).

Case 3. II(3p, c) = 2. Suppose M(I(p & 9))(u, w, ¢) # 2, for some ue U,
weW. IfTI(3(p & @))(u, w, ¢) =0 for some ue U, we W, then by D1 (V) and
(IV), H(E(P & 11)) (uu wl) C) = 0 = H(E(P & "’q)) (uh wl’ C), fOI‘ flxed U € Uy
w e W, so that TI(3p) (u,, wy, ¢) = N(3(p & q)) (u,, w,, c) = 0, against the
hypothesis of Case 3. On the other hand, if (3(p & q)) (%, w, ¢) = 1, for
fixed ue U, we W, then by (6.4), II(3p)(u, w, ¢) = 1, against the hypothesis of
Case 3. We have therefore shown that D5 (VII) satisfies (6.3). The proof of
(6.3) is complete.

We conclude this section with the observation that the conditions of D2
on a sentential interpretation have analogues in the sense of (6.3). For
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D2 (I) has the form of D5 (II); D2 (II) has the form of D5 (III); and
D2 (II)-(VI) have the form of D5 (IV). This fact about sentential inter-
pretations is required in the proof of (2.5).

T Some Foundations of Semiotic Theory The intuitive content of (5.1) is
that formulas of a predicate calculus Ljj which are interchangeable in all
their occurrences in expressions of Ly, preserving the valuations of those
expressions by the users of Lp, signify the same object, for II as
interpretant (in the sense of Peirce). As suggested in [3], the specification
of some distinguished semantic interpretation of Ly which could be said to
contain the objects signified by the formulas of Ly, for IT as interpretant,
is the fundamental problem of first order semiotic theory. In this section
we shall investigate various analogues of (5.1), which throw some light upon
the above problem. We shall also study more deeply the relation between
polyadic interpretations IT and predicate calculi Ly.

We first define a relation of pragmatic synonymy on the expressions of
L. Let IT1 be a pragmatic interpretation of L (in D) and let e and e’ be
expressions of L. We define Eyle, e') iff I(e""(e)) = II(e’’(e’)), for all
expressions e''(e) and e’(e') of L in the substitution notation (2.2). (We
continue to employ the convention of [3] that in an expression represented
as e(e') for (2.2), e' occurs at least once.) Ep(e, e') asserts, in an obvious
sense, that e and e’ are pragmatically synonymous, relative to IT: e and e’
are interchangeable in expressions of L, preserving the II-valuations of
those expressions.

Let m be the core of a polyadic interpretation II. We then define, for
predicates F and G of Ly, E,(F, G) iff F and G are of the same degree and
all formulas p(F) and p(G) of Ly related by substitution according to (2.2)
are E,-congruent in the sense of (4.1). Analogously we define, for
individual constants a and & of Ly, E,(a, b) iff all formulas p(a) and p(b)
related by (2.2) are E,-congruent. Finally we observe that, for formulas p
and q of Ly, E(p, q) iff E,(7(p), 7(¢g)) for all formulas »(p) and 7(q) related
by (2.2). If predicates, individual constants, or formulas are in the
appropriate E,-relation, we shall say that they are congruent.

From the above definitions it follows immediately that pragmatic
synonymy entails congruence, for predicates F and G, individual constants
a and b, and formulas p and q:

(7.1) If Ex(F, G), then E(F, G).
If Epla, b), then E.(a, b).
If En(p, @), then E.(p, q).

The following propositions are concerned with the relation between the

syntactic and algebraic structures of Ly. Let the predicate expressions F
and G be represented, respectively, by the algebraic predicates F and G.

(7.2) E.(F,G)iff F=0G.

Proof: Let F and G be of degree n, and let {i,,...,é,}=J C I and
{t . ot} CIUK. I EQ(Fiy .. 4y, Giy ... dy), then Eq(Fty . . . 1, Gty ... 1),
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so that E (p(Ft, ... ¢t), p(Gt,...t)) for all formulas p(Ft, . . . &),
p(Gty . . . t,) related by (2.2). Thus if E(Fi, ... i, Gi,.. .1, holds for
all iy, ..., #el, ie., if F =G, then E,(F, G). The converse is obvious.

(7.2) Corollary The representation of predicate expressions by algebraic
predicates, accovding fo Theorem 2, is one-one iff Ly contains no distinct
congruent predicate expressions.

Let the individual constants a and b be represented, respectively, by
the algebraic constants o and b.

(7.3) E.a, d) iff a =b.

Pyroof: If a and b are not congruent, then there are formulas p(a) and p(b)
such that it is not the case that E.(p(a), p(b)), where p(a) is of the form
play), for some variables J and formula p, from which p(a;) is got by
putting a for free ieJ in p, and from which p(d) = p(by) is got by putting b
for free ieJ in p (as in Definition (3.16)); then p(@) = a(J)p and p(b) = b(J)p
are not congruent, so that a # b. To show the converse, let a # b. Then it
is not the case that for all J C I, pe Q, E.(a(J)p, b(J)p); and hence for some
pla) = play) and p(b) = p(by), it is not the case that E.(p(a), p(b)).

(7.3) Corollary The vepresentation of individual constants by algebraic
constants, accorvding to Theorem 3, is one-one iff Ly contains no distinct
congruent individual constants.

If two polyadic interpretations have the same logical constants and
individual variables we shall say that they are similar interpretations. We
define |II|= PUK to be the parameters of T (or of Ly). If two similar
interpretations II, and II, have the same parameters, then they have the
same syntax. For if s is a sentence of II,, then by (2.1) s has one of the
forms of D4 (V). Then by hypothesis and D4 (I)-(IV), II,(s & ~S8) = do, SO
that s is a sentence of II,.

11, is defined to be a subinterpretation of T, (abbreviated IT, < II,) iff
II, and II, are similar and for alleel, ueU, weW, ¢ C C: I,(e)(u, w, c) =
M,(e)(u, w, c) whenever II,(e)(x, w, ¢) # 2. The subinterpretation relation is
a partial ordering of the polyadic interpretations of L in D. The following
propositions follow immediately from the relevant definitions. Let Q, and
Q; be the formulas of II, and II,, respectively.

(7.4) If 11, <1, then |II,| C |I,|and Q, C Q,.

We define the theory of a polyadic interpretation IT (or of Ly to be the
set Tg = T NS, where T is defined by (4.5) and S by (2.1). Let T, and T, be
theories of II, and II,, respectively.

(7.5) If 1, <M, then T, C T,.

(7.6) If 1, <1, aud 11, agrees with 1, on all sentences of 1, then Ly is a
polyadic subalgebra of Ly,.

Proof: By (71.4) and the hypothesis of (7.6), the domain Q, of Ly , is included
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in the domain Q, of an. Now let E,,z(p, q), where p, ge Q, and 7, is the core
of I,. Then m(V(p<>¢q), C) =1 = n(V(p<>q), C), where =, is the core of
II,, since V(p <>¢q) is a sentence of Ly, Then E. (0, @). Clearly E, C E,,,
so that E,, is the restriction to Q, of Eﬂz. Since II, and II, are similar, the
operations of Lp, on Q, are the restrictions to Q, of the operations of Ly,
on Q,. (7.6) is thereby established.

If II, and II, satisfy the antecedent of (7.6), then every semantic
interpretation of Ly, is an extension of a semantic interpretation of Ly,.
This fact is of semiotic importance, but we shall not in this paper pursue
its consequences. '

We define T to be a subtheory of the theory of Il iff there is a
non-empty subset A of the theory of II such that T is the set of sentences of
II over the parameters of A which are logical consequences of A.

(7.7 If T is a subtheory of 11, then T is the theory of a subinterpretation
of 1.

Proof: Let Pt be the set of all subinterpretations of II which agree with II
on T. Pt is not empty, since I1e Py. In terms of Py we define the mapping
I, from L into D:

(e)(u, w, c), if (e)(u, w, ¢) = M,(e)(u, w c) for all H_l'e Pr.

Ho(e)(u, w, ¢) = ‘{2 otherwise

It is straightforward to verify that II, is a polyadic interpretation similar
to II. Now let Io(e)(u, w, ¢) # 2. Then I(e)(u, w, ¢) = II(e)(u, w, ¢), so that
I, < II. Finally, let ee T. Then for some ueU, we W, and for all I, € Py,
m.(e)(u, w, C) =1 = (e)(u, w, C), so that e is in the theory of II,. Con-
versely, if I (e)(x, w, C) =1 =TII(e)(%, w, C) for some ueU, weW, then
ee T. Thus T is the theory of IT, < II. (7.7) is thereby established.

Let Py be the set of all polyadic interpretations of L in D with syntax
®. The set of all polyadic interpretations of L in D is partitioned into sets
of the form Pg. Let E be the intersection of all congruences E,, defined by
(4.1), where 7 is the core of some Il ¢ Pg. The least polyadic interpretation
in Pg (with respect to <) determines a predicate calculus with respect to E,
which is free in the family of predicate calculi Ly, for IT € Pg, and may be
regarded as the algebraic representation of the pure predicate calculus for
the standard syntax 6.

For & and E as above, let ITe Pg, and let ¢ = ~(s & ~s), for some
sentence s of . It follows from the definition of a polyadic interpretation
that E(s, ) if II(s) = d;. The E-congruence class Tg Of £ may then be
regarded as the set of logical truths of predicate calculi with syntax
®: seTg iff s is mapped on the unit element by every semantic interpreta-
tion of Ly, for every Il ¢ Pg

Now let M ={seS: II(s) = d;}. Then T¢C M C Tg, where Ts is the
theory of II. In the non-trivial case of proper inclusion, this result may be
understood to mean that (in the familiar terminology of Quine) the theory M
is more remote from the evidence C than Tg, but not as remote as Tg. The
status of M may perhaps be accorded to (first order) analytic theories:
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M may be invoked for establishing some particular theory Tg (under the
evidence C, relative to the rules of acceptance represented by II), but not
necessarily for establishing any theory whatever (in the syntax @& of M), as
is the set of logical truths Tg.

If I is a polyadic interpretation of L in D, then the interpreting
dispositions in D are clearly an idealization of the actual verbal behavior of
even the most careful scientific users of L. For example, as we have seen
above, every logical truth of Ly is accepted by every user at every time
under every condition. The condition V of D1 is also a manifest idealiza- .
tion of actual verbai,behavior. D1 (V) may be weakened to hold only for the
total evidence C, in which case (6.1) and (6.3) hold only for C; and this is
sufficient for the existence of the languages L. Moreover, if D1 (V) holds
only for C, then the above consequence about logical truths is not forth-
coming; but it reappears for condition C itself. We shall not pursue such
possibilities for diminishing the idealization of actual verbal behavior
represented by polyadic interpretations; we rather contemplate their
application to actual behavior by suitable approximation.

We shall conclude this section by considering analogues of (5.1), for
the case of interpretations of the theory Tgs of Ly, in models which are
relational structures. For this purpose we are led to understand the
concept of a (relational) model of a set of sentences of L in the following
way. By a 7elation of degree » on a set X we understand a mapping from X"
into the (domain of the) simple Boolean algebra. By a relational structure
we understand a pair ¥ = (X, R), where R is a non-empty set of relations on
the non-empty set X. Let A be a non-empty set of sentences of Ly and let
¥ = (X;R) be a relational structure. Let u be a mapping from predicates
of (sentences of) A to relations of like degree in R, and from individual
constants of A to elements of X. u may be called a semantic interpretation
of Ain X.

Let p be any formula of L over the parameters of A (i.e., each
predicate and individual constant of p is in some sentence of A). p may
then be said to be defined in ¥ under u. Let X! be the set of all functions
from the set | of variables of Lj into the domain X of ¥. Let xe X'. If
tel UK, we define x; = x(f) if tel, and x; = ut if e K. We then define x
satisfies p under y iff one of the following four conditions holds:

(1) p=Ft ...t,, where Fe P"and ¢,,..., t,e ] UK, and MF Qe oy %) = 1
(2) p = q & v, where g and » are formulas of Ly, and x satisfies both ¢ and
runder .

(3) p = ~q, where ¢ is a formula of Ly, and x does not satisfy ¢ under pu.
(4) p = iq, where ¢ is a formula of Ly, iel, and for some ye X' which
differs from x at most at x;, y satisfies g under pu.

Now we may define, for any sentence s of A: s holds in ¥ under p iff
all xe X! satisfy s under u. Finally, ¥ is defined to be a model of A under
u iff (every sentence of) A holds in ¥ under y, and u is onto the set of
relations of ¥.

The above definitions do not require that all elements of the domain of
¥ be named by individual constants of A under u, nor that Lj be a
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sublanguage of a language with sufficient constants for this property to hold
(as in Robinson’s [2]). If, however, the latter condition holds, the above
definition of x satisfies p under u may be restricted to one defining s holds
in X under u, for closed formulas s of L. We do not require that
interpretations be one-one from predicates and individual constants of A to
relations and individuals of ¥, since we wish to investigate analogues of
(5.1) for predicates and individual constants. If, however, interpretations p
are required to be one-one in this sense, the definition of s holds in X
under y obtainable by restricting the above definition of satisfaction to
closed sentences s, is essentially the same as Definition 1.4 of Robinson’s
[2], modified so that relations are regarded as mappings in the above
sense, and iterated quantification of formulas is allowed. We shall at the
end of this section consider the conditions under which an interpretation of
Tg is one-one on P and K.

For the case of interpretations of Tg in relational models, we have the
following analogue of (5.1). Let ¥ = (X, R) be a model of Tg under u. Let
x€ X!, Then for all formulas p and ¢ of Lp:

(7.8) If Eq(p, q), then x satisfies p under y iff x satisfies q under .

Proof: p and g are over the parameters of Ts, which is P U K, by (3.8).
By (7.1) and the hypothesis of (7.8), E.(p, ), so that V(p <>q)e Ts. Thus
V(p<>q) holds in ¥ under y; i.e., all xe X' satisfy V(p <>g) under p. The
consequent of (7.8) follows by expanding V(p <> q) in terms of 3, ~, and &.

We now introduce a semantical synonymy relation on the predicates,
individual constants, and formulas of Ly;. As observed in the proof of (7.8),
the set of parameters of Tg is P UK. For predicates F and G of Ly we
define Ey(F, G) iff uF = uG for all interpretations p of Tg under which Tg
holds. For individual constants a and b of L we define Epy(a,b) iff pa = pbd
for all interpretations p of Tg under which Tg holds. For formulas p and
q of Ly we define Ey(p, q) iff up = pg for all semantic interpretations p of
Ly (i.e., polyadic homomorphisms p of Ly in a Boolean model, in the sense
of [1]).

Em (p, g) may just as well be defined in terms of relational models, as
the consequent of (7.8) for all interpretations of Tg under which Tg holds.
For if up= ug, where u is a (semantic) interpretation of Lp, then
wp<>q) =1, so that if Ey(p, q) then p<«>qge T, which is the set of
formulas mapped on 1 by every interpretation of L. Thus if Ey (p, ¢) then
V(p<>q)eTs, and the consequent of (7.8) follows as in the proof of (7.8).
Conversely, assume the consequent of (7.8) for all interpretations pu of Tsg
under which Tg holds. Then for every such interpretation of Tg, all xe x!
satisfy p<>gq, and hence satisfy V(p <>q), so that V(p<>gq) holds. It
follows that V(p <>¢q) e T (¢f., Robinson 8.1.3). Thus for all interpretations

wof Ly, up = ug; i.e., Ey (p, ).
We shall refer to the relations Ey as model synonymies. From (5.1) it

follows that ‘if two formulas are pragmatically synonymous they are model
synonymous. The same is true for predicates F and G.
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(7.9) If Eg(F, G), then Ey(F, G).

Proof: By hypothesis and (7.1), for all 4, ..., iyel, E.(Fi, ... iy, Gi, ... ).
Then by (7.8), for all interpretations y of T, and all xe X! relative to u, x
satisfies Fi, ... i, under pu iff x satisfies Gi, ... i, under u, so that
uF(x,l, C e Xiy) = yG(x,l, ..., %i,). Now for each n-tuple (x,, ..., %) of
X", there are xe X' and dlstmct iy, - . -yinel such that X, = x;, . . ., % = X,
since X' contains all functions from | into X. Then for each such
(%1, . . ., %z), by choosing appropriate elements of X and I, we have
uF(xy, . . ., %) = pG(xy, . . ., x,), for all interpretations u of Tg; i.e.,
Em(F, G).

There is no analogue of (7.9) for individual constants. For if E,(a, b)
then Tg asserts only that ua and ub are indistinguishable by the predicates
of Ts.

We have shown that for predicates, individual constants, and formulas
of Ly, pragmatic synonymy implies congruence; and for predicates and
formulas of Lp, congruence implies model synonymy. It is also the case
that, for formulas, predicates, and individual constants, model synonymy
implies congruence. We conclude this section by observing that in order
for an interpretation of Tg to be one-one on the predicates P, it is
sufficient that Tg be maximal and P have no distinct congruent predicates.
Conversely, if an interpretation of Tg is one-one on P, then P has no
distinct congruent predicates. Finally, in order for an interpretation of Tg
to be one-one on the individual constants K, it is sufficient that Tg be
maximal and K have no distinct congruent constants. But if an interpreta-
tion of Tg is one-one on K, it does not follow that K has no distinct
congruent constants.

8 Boolean and- Relational Models Every interpretation of Ly into a Boolean
model is an interpretation of Ly onto its range (cf.,[1], p. 130). (5.1) is
stated for onto interpretations (though of course it holds in general) since
we assume on intuitive semiotic grounds that a calculus Lyj, regarded as a
sign, has only its onto interpretations as possible objects. On the same
intuitive grounds, we assume that the possible objects of the theory Tg of
Ly, regarded as a sign, are the interpretations of Tg in relational models
of Tg. Thus (7.8) is the semiotic equivalent of (5 1), and (7.9) is a semiotic
analogue of (5.1), provided that:

(8.1) There is a one-one corvespondence between the interpretations u of
Ly onto Boolean models and the interpretations p* of Tg in velational
models of Tg, such that models under corresponding intevpretations have
the same domain, and for all sequences of values xe X! and formulas p

of Lq:
up(x) = 1 iff x satisfies p under p*

where X is the common domain of models undev u and p*,and | is the set
of variables of Ly.
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We shall give a detailed proof of (8.1), reference to which will be
useful in subsequent investigations of the semiotics of first order lan-
guages. We first show:

(A) For every intevpretation u. of Ly onto a Boolean model, theve is an
interpretation u* of Tg such that y and u* ave velated according to (8.1).

Proof: Let the |-algebra B over X be a model of L under u. Let F be a
predicate of degree n of Ly. Let H={i,,...,i,} CI. Letx, yeX' We
first establish the proposition:

(8.2) If x(1 - H),y, then uFi, . ..ix(x) = uFi, .. .i,(y).

The antecedent of (8.2) is defined to mean that x; = y; if il - H. (8.2)
asserts that pFi, . . . i, is independent of | - H, a (necessary and) sufficient
condition for which is that pFi, ... i»=3(1 - H)uFi, . . . i, (cf., [1], p. 114).
By Definition (3.6),

3 - H)Fiy . . .3,=3(A)Fiy .. .dp=Fiy .. .ip,

Then since u is a polyadic homomorphism, uFi, ... i, = 3(F - H)uFi, ... i,;
(8.2) is thereby established.

With F, x, y, u as above, let H={i,, ..., 4.}, J=441, ..., 5, Cl,
where the variables in H and in J are distinct. We then have a lemma for
(A). - ‘

(8.3) If x;, = Vips « o o Xiy = Vi, then uFiy . . . in(x) = pFjy . . . ju(y).

For proof of (8.3) we observe that there exists a transformation 7 on | such
that 7j, = ¢,, . . ., Tjp = . For such 7, Fi, . .. i, = S(7)Fj, . . . j,, by Defini-
tion (3.2). Then since y is a polyadic homomorphism:

(8.3)" wFiy . .. du(x) = uS(MFjy . . . julx) = S(T)uFjy . . . jdx) = pFj, . .
T, %), where (1, %); = %,,, for iel.

By hypothesis, ('r,x),-1 =Xr =% = Vi o (1.%)j, = i, 1€, 7.x (1 - J).y.
Then by (8.2), uFj; . . . julT. x) = pFj; . . . j,(y). (8.3) then follows by (8.3)".

With each predicate F of degree n of Ly we may now associate a

relation f on X as follows. For all (x,,...,x,)e X" for any distinct
variables 4,, . . ., i€ |, and for all xe X! such that Xiy = X1,y o 0oy Xiy = X
(8.4) f(xl, oo ey x,,) = #Fil PPN i,,(x).

For each (x,, ..., x,)e X", such x, i, ..., i, will always exist, since x!

contains all mappings from I into X. And by (8.3), f(x,, , . ., %,) is uniquely
defined.

Now with the model 8 of Ly under u we associate the structure
Xg=(X,R), where R is the set of relations f on X defined by (8.4). We
wish to show that ¥y is a model of Tg under an appropriate interpretation
p*, which may be defined as follows. If F is a predicate of Tg we let
u*F = feR, defined by (8.4). In order to define p*az, where a is an
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individual constant of Tg, we reason as follows. Every constant b of Ly
corresponds to a unique element x, of X such that, forall JC I, x¢ X!, and
functions a of B:

(8.5) b()a(x) = a(x?),

where %] = xpified, and x,J = x; otherwise. The correspondence b — xy is

one-one. Moreover, constants of L are preserved under the (onto)
homomorphism p, in the sense that if o is a constant of Ly then there is a
unique constant b of ® such that:

(8.6) waW)p = b ) up

for all formulas p and sets J of variables of Ly (¢f., [1]: p. 155, Lemma
(15.3)). Then we define u*a = x,, where b is the constant of ® which
corresponds, according to (8.6), with the constant a of Ly which represents
a, and xp is in turn defined by (8.5).

In order to show that Ts holds in ¥y under u*, we shall require the

following lemmas (8.7) and (8.8). Let Fe P"; ¢,, .. ., t,e UK. Then for all
xe X"

(87) uFt, . .. tn(x) =f(xtla . -;xl,,)’

where f= p*F, and (for m =1, ..., n) %, = x(tn) if Inel, and x4, = p*tn if

tne K. We shall prove (8.7) for the case that only one ¢, is in K; the
general case follows by induction. Let #, =ae K. Then for some J =
{i1, . . ., i,y € | and for some H CJ, Ft, . . . t,= Fi, . . . i,lay), the formula
got from Fi, . . . i, by putting a for ieH (cf., (3.16)). Let a be represented
by the algebraic constant a, so that Fi, . . . i(ay) = a(H)F%, . . . i,. Then for
all xe X%

I.I,Ftl e t,,(x) = “,G(H)Fi]_ “ e in(x)

= b(H) uFi, . . . in(¥) (by (8.6))
= uFig . i"(’i.") (by (8.5))
= f(xi'ls L) x"n) (by (84))
=f(xl3 .« . ~’xﬂ)

where (for m =1, ..., n)%n = %i,, if infH, and %, = xp, if i,e H. Now if tn eI,

then #n ¢ H, so that x, =x =ux; =x, . And if #,¢1, then in¢H, so that
Xm =% = ¥, =%, . (8.7) is thereby proved.

Let p be a formula of Ly, with y, u*, and x as above.
(8.8) x satisfies p under u* iff up(x) = 1.

Proof: For atomic formulas F¢, .. .#, of Ly, by (8.7 and condition (1) in
the definition of satisfaction in section 7:

(I) x satisfies Ft, . . . t, under p* iff puFt, . . . t,(x) = 1.
Since u is a polyadic homomorphism, for all formulas ¢ and 7 of Ly:

(I ulg & 7)(x) = 1iff pglx) =1 = prx)
(m) u(~q)x) =1 iff yglx) =0
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(Iv)  u(3ig)(x) = 1 iff 3{i} uglx) = 1
iff V{ug(y): x{fi}.y}=1
iff ug(y) = 1 for some y which differs from
x at most at x;.

Thus by (2)-(4) in the definition of satisfaction, and by the above properties
(I)-(IV) of the homomorphism p, valuation of xe X! as 1 by up is fixed
exactly as is satisfaction of p by ¥ under u*. This proves (8.8).

From (8.8) it follows that, since all sentences of Ts are mapped by u
to the unit element of ¥ (the model of Ly under p), all sentences of Tg are
satisfied by all x¢ X! under y*. Then Ts holds in ¥4 under y*, and (A) is
thereby proved.

(B) The mapping p — u* defined in (A) is an onto mapping.

Proof: Let ¥ =(X,R) be a model of Tg under an interpretation y*. Then
each predicate F of Lp is associated with a relation u*F = fe R, and each
name a of Lyyis associated with an element y*a of X. Let B be the set of
all functions from X' into the ‘simple Boolean algebra. We then define a
mapping y from the formulas Q of Ly into B, such that for each atomic

formula Ft, . . . ¢, of Q and for each xe X!:
(8.9) uFty ... tux) = floyy, . . ., %z,),
where f= pu*F and (for m =1, ..., %) %, = 2(tn) if fnel, and x,, = p*, if

tm€ K. The mapping u may then be extended over Q, and polyadic opera-
tions defined on the range uQ of u, for all subsets J and transformations
7 of I, in the following natural way. For all p, ge Q:

u@ & q)(x) = pp(x) A ug(x) = (up » ug)(x).
p(~p)(x) = up(x)' = (up)'(x).

p3Wp(x) =v{up(®): 2.y} =3 pp(x).
uS(Mp(x) = up(Tex) = S(7) pp(x).

Since for all upe uQ, 3(J) up exists and belongs to uQ, and S(7)up belongs
to puQ, B={uQ, 1,S, 3) is a model of Ly under the polyadic homomorphism
u defined by (8.9) and (8.10). Moreover, by (8.9) (since u* is onto R) each
relation f = y*F of R satisfies (8.4), so that ¥ is of the form ¥gin the proof
of (A). In this case, (8.8) holds, and (B) is thereby established. It remains
to show:

(8.10)

(C) The mapping defined in (A) is one-one.

Proof: Let®, and B, be models of Ly, under distinct interpretations y,; and
U2, respectively, and let ¥, = £g and ¥, = &'g be the associated models of
Ts. If B, and B, have distinct domams (©) is evident. Let B, and B, have
domain X. It is required to find some f, = u,*F of ¥, distinct from
fo = u*F of ¥,. If the polyadic homomorphisms yu, and u, agree on atomic
formulas of Ly, then they agree on Q, which is constructed from atomic
formulas by operations of the polyadic ‘algebra Lp. In this case B, =%,,
against the hypothesis of (C). Then there must be an atomic formula
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p=Ft;...tnof Q such that uFt, ...t # uFt, ... ¢, If all terms of p
are in |, then by (8.4), f, #f,, so that ¥, # ¥,. If some term of p is in K,
then this case reduces to the previous one as follows.

We consider the case in which one term of p is in K; the general case
follows by induction. As shown in the proof of (8.7), u.Ff, ... t(x) =

Uiy . . . ig(M), for all xe X!, for some J = {i), . . ., i,} C I, and for some
H C J; similarly for yu,. By hypothesis u,Ft, . . . (%) # pFt, . . . tix), for
some x ¢ X'; then for such x, u,Fi, . .. in(x") # p,Fi . .. ix(x"), which is the

case already considered. (C) is thereby established. (8.1) follows from
(4), (B), and (C).
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