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A FORMAL THEORY OF SORTAL QUANTIFICATION

LESLIE STEVENSON

1 Introduction The standard quantification theory, first-order predicate
calculus with identity, (called QT hereinafter; see [2], §§30, 40, 48, and [9],
Ch. 2, §§1, 3, 8, for standard formulations) makes no distinctions between
different kinds of one-place predicate. But many philosophical logicians
have made a distinction between "sortal" predicates such as 'is a man' and
other predicates such as 'is white'. Aristotle introduced the notion of
"secondary substance"—the kind of substance a particular thing is, as
opposed to the qualities it has ([1], Ch. 5, see especially 2all, 2b29, 3b10).
Frege distinguished concepts which ''isolate in a definite manner what falls
under them" from those which do not ([3], §54, p. 66), although he did not
represent the distinction in his formal system of quantification. In recent
philosophical logic, Strawson has distinguished sortal universals from
characterizing ones ([18], Ch. 5, §8, p. 168ff), Quine has distinguished
terms with divided reference from mass terms ([10], Ch. 3, §19, p. 90ff),
and Geach has distinguished substantival countable terms from those which
are adjectival or non-countable ([4], Ch. 2, §31, p. 38ff).

We can distinguish between a sortal predicate, e.g., 'is a man', and the
corresponding sortal term, 'man'. Grammatical marks of sortal terms are
that they admit the definite and indefinite articles, they have plurals, they
can appear in the singular after 'every', 'some', 'no', 'this', etc., and in the
plural after 'all', 'some', 'most', 'at least two', 'those', etc., and in the
singular in phrases of the form 'is the same . . . as'. But words like
'object', 'individual', 'thing', 'entity', etc., pass these grammatical tests.
We shall say that a word is a sortal term iff it supplies a criterion of
numerical identity for whatever it applies to, that is, iff it can occur in true
or false sentences of the form 'There are n F's such that . . .', where n is
any integer. The fact that there are no determinate truth-conditions for
'There are three red things in this room' implies that 'red thing' is not a
sortal term (cf. [4], p. 38-9 and [3], p. 66). So 'man', 'tree', 'lump of coal',
'university', 'battle', 'real number', 'character in Shakespeare's plays' are
sortal terms, but 'white', 'new', 'coal', 'six feet tall', 'interesting', 'came
into existence in 1925', 'divisible by three', are not. Thus by the

Received November 1, 1971



186 LESLIE STEVENSON

countability test used here, the notion of sortal is not restricted to words
for material particulars, but applies wherever there is the possibility of
counting; it may thus be said to be ontologically or categorially neutral.
But no further analysis is offered here of the notion of countability or
numerical identity, so we have no answer to the question whether terms
such as'material object', 'institution', 'event', 'number', 'fictional entity'
should count as sortals. (Wiggins suggests the notion of "sortal-schema"
for such cases, [21], appendix, 5.4., p. 63.) We do not discuss the use of
sortals with demonstratives, nor with mass terms (e.g., forming 'lump of
coal' from the mass term 'coal'), because such uses seem essentially
peculiar to sortals for material particulars.

We concentrate here on three kinds of occurrences of sortal terms—in
"sortal predications" of the form ζx is an S9; after "quantifier" words,
e.g., in 'Every S is φ9; and in identity-statements of the form ζx is the same
S as y\ QT systematically treats all sortal terms as one-place predicates,
rendering 'Every S is φ9 as ((x)(Sx =) φ(x)Y, and ζx is the same S as y9 as
'x = y&Sx\ Such treatment is convenient, and no doubt legitimate for
certain purposes, but the distinction thus slurred over may be of im-
portance in other ways, so it is worth trying to construct a system of
formal logic in which sortal terms are distinguished from one-place
predicates, and the above three roles of sortals terms represented.

This is what is attempted here. We use ideas of Geach [4], Wallace
[19], and Wiggins [21], although we depart from each in certain respects.
We represent ζx is the same S as y9 by ζx = y9 (following [21], p. 2), and
(x is an S9 by (xS> (following [19], p. 12), introducing the latter into the
formal theory as an abbreviation for 'x = xf (following [4], p. 191). 'Every
S is φ' and 'Some S is φ' will be represented by formulas with sortally-
restricted quantifiers: '(VxS)φ(x)9 and ζ(3xS)φ(x)9 respectively.

The theory will allow quantifiers with different sortal restrictions in
one formula, e.g., 'Every boy loves some girP will be represented by
ζ(VxB)(3yG)Lxy9, so in this respect it will be analogous to standard
many-sorted theories ([13], [14], [20], [2] exercise 55.24, and [16]). But it
will differ from these theories in that there will be only one syntactic
category of individual variables; the range-restricting job is done by the
sortal terms in the quantifiers, leaving the variables to do only the cross-
referencing job of indicating which quantifier binds which position in the
formula. The variables will therefore be theoretically eliminable by
SchδnfinkeFs methods ([15], [ l l ]) . The theory will differ from Hailperin's
theory of restricted quantification ([6]) in that it will have a syntactic
category of sortal terms; and only sortal terms, not arbitrary formulas,
will be allowed to appear in the range-restricting position.

What is truly distinctive of sortal terms is not their range-restricting
role, for as Hailperin has shown, this can be done by any formula, but their
role in identity-statements; this would be expected from our definition of
sortals as terms which supply a criterion of identity. We shall follow
Wiggins ([21] Part One) in accepting Leibniz's law of the indiscernability of
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identicals, in the form: if x is the same S as y, then anything true of x is
true of y; we shall thus differ from Geach's views on "relative identity"
([4], p. 157, and [5]); see [17] for a defence of the position taken here. We
must take into account certain relations which may hold between sortals,
and hence between the criteria of identity they supply—e.g., 'fisherman' and
'man' can apply to one and the same individual man, so they may be said to
intersect; and one sortal 'S' may be subordinate to (a restriction of)
another 'T' in the sense that all S's are T's; in these cases the two sortals
must give the same criterion of identity. We shall develop our formal
theory on the following two assumptions: that if two sortals intersect then
there is a sortal to which they are both subordinate (cf. [21], p. 33), and
that every sortal is subordinate to some ultimate sortal, i.e., a sortal
which is subordinate to no other sortal (cf [21], p. 33 and note 40). An
ultimate sortal may be said to give the criterion of identity of everything it
applies to, and of all sortals subordinate to it. Accordingly we shall
introduce a primitive logical constant U and for any individual term t or
any sortal term S we shall construct the corresponding ultimate sortal
term \Jt or US.

We also make the following two simplifying assumptions, which could
possibly be dropped by amendments to the theory: that every individual
term and every sortal term is non-empty, and that every sortal term is
syntactically simple, apart from those resulting from the applications of
the U-function introduced above. These two assumptions are to some
extent unrealistic, for 'dragon' is an empty sortal term, and 'man who
habitually fishes' is presumably synonymous with the sortal term 'fisher-
man'. But if we count 'All dragons are 0' true just because there are no
dragons, 'dragon' will turn out to be subordinate to every sortal term, even
'real number', which is counter-intuitive; and if we allow the formation of
syntactically complex sortal terms from simple sortals plus predicates,
then any such complex may turn out to be empty. In matters of logical
style we generally follow Mendelson [9].

2 Syntax

2.1 Symbols, Wffs, and Abbreviations

Symbols

(i) Denumerably many individual variables x, y, z, xl9 x2, . . .
(ii) Denumerably many individual constants a, b, c, a1,a2,...
(iii) Denumerably many function constants f\,f\, . . . , /? , . . .
(iv) Denumerably many predicate constants P\, Pi, . . ., P", . . .

(The superscript of a function or predicate constant indicates the number of
arguments it requires.)
(v) Denumerably many sortal constants A, B, C, Aί9A2, . . .
(vi) Improper symbols (primitive) ~ , & , 3 , = , U , ( , ) .
(vii) Improper symbols (defined) v, D, =, V, c , u.
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Individual Terms

(i) Any individual variable is an individual term.
(ii) Any individual constant is an individual term.
(iii) Any w-plaee function constant followed by n individual terms (not
necessarily all different) is an individual term.
(iv) A string of symbols is an individual term only if it can be shown to be
one by (i)-(iii).

A closed individual term (cit) is an individual term which contains no
individual variables.

Sortal Terms

(i) Any sortal constant is a sortal term.
(ii) If t is an individual term then Ut is a sortal term.
(iii) If S is a sortal term then US is a sortal term.
(iv) A string of symbols is a sortal term only if it can be shown to be one
by(i)-(ϋi).

{\Jt and US will often be written Όt and Us, and can be read as "the ultimate
sortal of *t"9 and "the ultimate sortal of <S'" respectively.) A closed
sortal term is one with no individual variables.

WeII-formed formulas (Wffs)

(i) If F* is an w-place predicate constant, and tl9 . . ., tn are n individual
terms (not necessarily all different) then Fft1 . . . tn is an atomic wff.
(ii) If S is a sortal term, and tx and t2 are two individual terms (not
necessarily different) then tγ = St2 is an atomic wff.

(t1 = St2 will usually be written as tι = t2.)

(iii) If P and Q are wffs, then (~P) and (P & Q) are wffs.
(iv) If P is a wff, x an individual variable, and S a sortal term, then
((3xS)P) is a wff.
(v) A string of symbols is a wff only if it can be shown to be one by
(i)-(iv).

Definitions and Abbreviations An expression of the form (3xS), where S is
a sortal term, is called an S-restricted existential quantifier, and similarly
(VxS) is an S-restricted universal quantifier, and = is S-relative identity.
In an expression of the form ((3xS)P), P is called the scope of the
quantifier. An occurrence of an individual variable in a wff is bound if it
is in a quantifier in the wff or in the scope of a quantifier in the wff,
otherwise the occurrence is free. A closed wff is one in which no variable
occurs free. The outermost pair of brackets of a wff may be omitted, and
the primitive and defined connectives and quantifiers are ordered as
follows: =, 13, quantifiers, v, &, ~, so that brackets may be omitted
according to the rule that the symbol latest in the list forms the shortest
possible wff from the symbols surrounding it.
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For any wffs P and Q:

PvQ is defined as ~ ( ~ P & ~Q),
P D Q i s defined as ~ (P & ~Q),

P = Q is defined as (P D Q) & (Q 3 P).

For any wff P, any individual variable ΛΓ, and any sortal term S:

(VxS)P is defined as ~(3xS) ~ P .

For any sortal terms S and T, and any individual term t: tS is defined
as t = tf and can be read as "t is an S". S c T i s defined as (VxS)xT, and
can be read as "All S's are Γ's", or as <"S' is subordinate to ' T " \ S = T
is defined as ( S c T ) & ( T c S ) , and can be read as 6(iS' and 'T' are
coextensional". (We could use a new symbol, e.g., =, for this relation
between sortals, but since there will be no danger of confusion with
unrestricted individual identity, we do not need to.) u(S) is defined as
US = S, and can be read as "'S' is ultimate". SIT is defined as (3xS)xT,
and can be read as "Some S's are T's", or as ("Sy intersects *T"\

2.2 Axioms, Rules of Inference, and Proofs

Logical Axioms

If P, Q, and R are any wffs, x and y any individual variables, t, tly and ^
any individual terms, and S any sortal term, then the following are logical
axioms:

(1) P^(QOP).
(2) (P ^ (Q D R)) 3 ((P 3 Q ) ^ ( P =>Λ)).
(3) (~Q ^ ~P) D ((~Q D P) D Q).
(4) (VxS)(P D Q) D (P D (VΛΓS) Q) if x does not occur free in P.
(5) (VxS) 0 D (ίS^ D 0ί) where φ is any wff and φx

t is the result of replacing
all free occurrences of x in φ by t, and no variable occurring in t becomes
bound in φf by such replacement, and S* is the result of replacing any
occurrences of x in S by t.

(6) ίi = k => hS & US.
I x\ x

(7) x=y^>[φ^φ— 1 where φ is any wff and φ — is the result of replacing
s \ y) y

some, but not necessarily all, free occurrences of x in φ by y, and no such
replacement yields a bound occurrence of y.

(8) (3xS)xS.
(9) tUt.

(10) S C U S .
(11) tS^[Jt = U5.
Rules of Inference

Modus Ponens (MP): Q follows from P and P^> Q.
Generalization (Gen): (VxS)P follows from xS o P.

A particular formal system of sortal quantification theory is deter-
mined by:
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(a) a vocabulary, namely:

(i) any subset (possibly empty) of the individual constants,
(ii) any subset (possibly empty) of the function constants,
(iii) any non-empty subset of the predicate constants,
(iv) any non-empty subset of the sortal constants.

(b) a set of proper axioms, possibly empty.

Such a system will be called a {first-order) sortal quantification theory; if
there are no proper axioms it will be called a (first-order) sortal calculus.
The sortal calculus which has every constant in its vocabulary will be
called SQT.

A wff φ is said to be a consequence in a sortal quantification theory K
of a set Γ of wffs of K, and we write Γf^φ, iff there is a finite sequence
Pl9 P2, . . ., Pnoί wffs of K such that Pn is φ and for each i, either P, is an
axiom of K, or is in Γ, or follows from one or more previous wffs in the
sequence by one of the rules of inference. Such a sequence is said to be a
proof (or deduction) of φ from Γ in K. A wff φ of K is said to be a theorem
of K, and we write ^φ, iff there is a proof of φ from the empty set of wffs in
K. In what follows we often abbreviate Γ ^$QTΦ and I^QTΦ to Γhφ and \-φ.
If Γ U { P } H Q we write Γ, P h Q.

3 Elementary Metatheory

3.1 Consistency We shall say that a sortal quantification theory K is
consistent iff there is no wff P such that J^P and ^ ~ P . The consistency of
any sortal calculus can be proved easily by interpreting it, in effect, in a
domain consisting of only one element, to which every sortal applies:

Metatheorem 3.1 Any first-order sortal calculus K is consistent.

Proof: For each wff P of K we define a wff c(P) of the propositional
calculus as follows (c(P) will be called the c-transform of P):

(i) If P is an atomic wff Ffc . . . tn then c(P) is Ff.
(ii) If P is an atomic wff t1 = t2 then c(P) is F Ώ F .
(iii) If P is of the form - Q then c(P) is ~ c(Q).
(iv) If P is of the form Q & R then c(P) is c(Q) & c(Λ).
(v) If P is of the form (3*S)Q then c(P) is c(Q).

If we regard the letters F and F? as statement letters, then c(P) is a wff of
the propositional calculus. It is easily verified that if P is any axiom of a
sortal calculus, then c(P) is a tautology, and that the rules of inference, MP
and Gen, preserve the property of having the c-transform a tautology. It
follows that every theorem of a sortal calculus has a tautology as its
c-transform. So if there were a wff P such that ^ P and ^ ~ P , then c(P) and
~c(P) would both be tautologies, but this is impossible, so there can be no
such wff.

3.2 The Deduction Theorem If we have a deduction Pl9 . . ., Pn in a sortal
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quantification theory K from a set Γ of wffs which includes the wff P, with

a justification for each step in the deduction, we shall say that P t depends

upon P in this proof iff:

either (i) P t in P and the justification for P t is that it is in Γ;

or (ii) P{ is justified by its following by MP or Gen from previous wffs in

the proof, at least one of which depends upon P.

It follows easily that if Q does not depend upon P in a deduction Γ, P\-Q,

then Γ H Q . We also note here that any substitution instance of a tautology

is a theorem of SQT, since SQT includes axiom schema (l)-(3) and Modus

Ponens, which are known to make every tautology provable (see, e.g., [9],

Chapter 1, §4). Any use of propositional calculus in what follows is

indicated by Φ C \

Metatheorem 3.2 If Γ, P\-Q (where Γ is a set of wffs o/SQT) and in the

deduction no application of Gen to a wff which depends upon P has as its

quantified variable a free variable of P, then T\-P 3 Q.

Proof: Let Ru R2, . . .,Rn (Rn being Q) be such a deduction of Q from Γ

and P. We show by induction on i that Γ h P D ^ for each i < n. Suppose

then, as induction hypothesis, that Γ h P ^ ^ for 1 ^ j < i. We prove, as

induction step, that n - P D i ? ? , if R{ is an axiom or is in Γ, then Γ t-PD

Ri, since Ri 3 (P 3 R{) is an axiom, by (1). If R{ is P, then Γ \-P 3 Riy

since P 3 P is a theorem of PC. If Ri follows by MP from Rj and Rk,

where 1 ^ j, k<i and Rk is Rj 3 Ri9 then by induction hypothesis, Γ h P 3

RJ and Γ ί-P 3 (Rj D R.)9 hence by (2) and MP, Γ v-P 3 Rim Finally, suppose

Ri follows by Gen from Rj, where 1 < j < i, and Ri is (VxA)R and Rj is

xA 3 R. By hypothesis, T\-p Ώ (%A 3 R), and there is a proof Γ, P hxA 3

# such that either xA^> R does not depend upon P, or if it does, then x is

not free in P. If xA 3 # does not depend upon P, then T\-xA ^> R, hence by

Gen Γ h(VxA)jR, hence Γi-PD (VΛ:A)E, i.e., Γ h P D /?,. if * is not free in

P, by hypothesis, Γ h P D ^ D Λ ) , hence Γ h ΛΓA 3 (p D #) by PC, hence by

Gen Γ h(V#A)(P 3 R), hence by (4), since x is not free in P, Γh-P 3 (VxA)R,

i.e., Γ h P OR{. So in every possible case, T\-PDRiy and thus the

induction step is completed. The induction base is the case i = 1, in which

case Rλ either is an axiom, or is in Γ, or is P, and we have seen that in all

these three cases Π - P 3 # 1 . So it follows by induction that ThPZ)Rn,

i.e., Γ h P 3 Q.

The following corollaries are useful.

Metatheorem 3.2A If a deduction Γ, P HQ involves no application of Gen of

which the quantified variable is free in P, then Γ HP 3 Q.

Metatheorem 3.2B If P is a closed wff and Γ, P f- Q, then ΓhP D Q.

We see also, in the proof of Metatheorem 3.2, that the new proof of

Γ t- P 3 Q involves an application of Gen to a wff depending on a wff S of Γ

only if there is an application of Gen in the original proof of Γ, P i-Q which

involves the same quantified variable and is applied to a wff which depends
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on S. Therefore the Deduction Theorem can be applied repeatedly, e.g., to
get Γ h P D (Q D R) from Γ, P, Q hR.

3.3 Sortally-Restricted Quantification

Derived Rule 3.3.1 (Genf) If \-P then h(VxS)Pfor any sortal term S.

Proof: If HP then \-xS D P by (1) and MP, hence H(VXS)P b v Gen. (Gen' is
a slightly weaker rule than Gen; it is often sufficient, but there are certain
places where Gen is needed.)

Theorem 3.3.2 \-(VχS)P iff \-xS D P.

Proof: By (5) and MP, if h(VxS)P then hxS D P . Conversely, if hxS DP
then (VxS)P by Gen.

Theorem 3.3.3 If x does not occur free in P, then (-(VΛΓS)P D P .

Proof: h(VxS)P D (xS D P) by (5), hence hxS D ((VxS)P D p) by PC, hence
h~((VΛrS)P 3 P) 3 ~*S by PC, hence \-(VxS)(~((VxS)P D p) D ~xS) by Gen',
hence i—((VxS)P D P) D (VXS) ~ xS by (4), since AT is not free in P or in
(VΛΓS)P, hence h(3#S)#S D ((VΛΓS)P DP) by PC, hence K(VΛΓS)P 3 P by (8)

and MP.

Corollaries 3.3.4 If x does not occur free in P, then \-(VxS)P = P,
h(VΛrS)P = (VxT)P, \-P iff b-χS 3 P, and hxS ^ P iff hxT 3 P.

It is interesting that Theorem 3.3.3 is actually equivalent to axiom
schema (8), which states the non-emptiness of each sort. We have shown
that (8) makes 3.3.3 provable. To prove the converse, notice that
K(VΛ S) ~χS D (XS 3 ~χs) by (5), hence H(VXS) - xS D ~xS by PC, hence
I-Λ:5 3 (3ΛΓS)XS by PC, hence h(VxS)(3xS)xS by Gen; so if 3.3.3 is true, then
since x is not free in (3xS)xS we have h(3xS)xS. The independence of (8)
from (l)-(7) can easily be proved by interpreting in the empty domain
(counting everything of the form tΣ = t2 or (3xS)P as false).

Theorem 3.3.5 h(\fxS)(P D Q) D ((V^S)P => (V^S)Q).

Proof: From (VxS)(P D Q) and (VxS)P as hypotheses, we can deduce
ĵ S D (P D Q) and xS 3 P by (5), hence xS 3 Q by PC, hence (VAΓS)Q by Gen.
Then the Deduction Theorem (DT) applies.

Theorem 3.3.6 \-(VxS)(VyT)P 3 (VyT)(VxS)P.

Proof:

1. (VΛrS)(V3;r)P hypothesis
2. #S D (V3;T)P (5) and MP
3. (VyT)P 3 (yτ D P ) (5)
4. Λ:S D (3>T D P) by PC from 2 and 3
5. (VyS)(yT -DP) Gen
6. yT D (VΛΓS)P by (4) and MP, since x is not free in yT
7. (VyT)(VxS)P Gen

Then use DT.
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We can also prove in SQT derived rules which are the natural amendments
in sortal quantification of the usual rules of natural deduction versions of
orthodox quantification theory.

Derived Rule 3.3.7 (V-elimination) If Γ \-(VxS)φ and Γ \-txS
x

tι then Tv-φx

v

if 0^ is as stated in (5).

Proof: By (5), h(VxS)φ D (t.S^ D φx).

Derived Rule 3.3.8 (3-introduction) If Γ hφj^ and Γ htjS^ then Γ \-(3xS)φ,
if φx

tί is as stated in (5).

Proof: By (5), h(VxS) ~ 0 D (tβ^ 3 -0^) , hence ht.S^ D ((VxS) ~ 0 D -0,*)
by PC, hence h^S^ D (0*χ D (3XS)0) by PC.

Derived Rule 3.3.9 (V-introduction) If Γ hxS D 0 ί/ẑ n Γ h(VΛrS)φ.

Proof: By Gen.

Derived Rule 3.3.10 (3-elimination) Jjf ΓH(3Λ:S)0 and T v-cS? & φx

c ^ P,
where c is any individual constant which does not occur in Γ, then Γ h P ,

Proof: In the proof T\-cSx & φx^> P, replace every occurrence of c by a
variable y which does not occur anywhere in the proof, then we have a proof
T\-ySy & 0y D P, hence Γ, ^ P i - ySy D ~0yby PC, hence Γ, ~P\-(VySx) - 0y
by Gen, hence Γ I—P D (V̂ Sy) ~ 0y by the deduction theorem (DT) since 3;
is not in P, hence Γ \-~P D (VΛΓS) ~ 0 (by alphabetic change of bound
variable from y to #), hence T \-(3xS)φ 3 P b y PC, so if Γh(3ΛrS)0 then
Γ h P .

Theorem 3.3.11 h(VxS)P = (VxS)(xS D P).

Proo/: If (VΛΓS)P then xS D P by (5), hence (VΛΓS)(ΛΓS D P) by Genf. If
(VxS)(xS ^ P) then xS o (xS D P) by (5), hence Λ S => P by PC, hence (VxS)P
by Gen. DT applies in both directions.

Theorem 3.3.12 ^(3xS)P = (3xS)(xS & P).

Proof: Put ~ P for P in 3.3.11.

Theorem 3.3.13 h(VxS)P D (V^T)(ΛΓS D P).

Proo/; If (VxS)P then i S D P b y (5), hence (VxT)(xS D P) and DT applies.

Theorem 3.3.14 t-(3#T)(xS & P) D (3ΛΓS)P.

Proof: Put ~ P for P in 3.3.13.

Theorem 3.3.15 HS C T D ((VΛΓT)(Λ;S D P) D (VΛΓS)P).

Proo/; If (VΛ S)XT and (VxT)(xS D P) then ΛΓ5 D ̂ T and ΛΓT D (Λ S D P) by (5),
hence xS D P by PC, hence {VxS)P by Gen, and DT applies.

Theorem 3.3.16 \-S c T 3 ((3^S)P 3 (3*T)(xS & P)).

Proo/: Put ~ P for P i n 3.3.15.
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Theorems 3.3.13 and 3.3.14 show that the sortally-restricted quantifiers of
SQT have almost the effect of the unrestricted quantifiers of orthodox
quantification theory, for the sortal term T appearing in them can be any
arbitrary sortal term quite independent of the sortal term S. But the need
for the hypothesis S c T in the converses, 3.3.15 and 3.3.16, shows that the
effect is not exactly the same as that of unrestricted quantifiers.

Theorem 3.3.17 H(VΛ:S) ~ xT = (VxT) ~ xS.

Proof: If (VxS) ~ xT, then xS 3 ~xT by (5), hence xT 3 ~xS by PC, hence
(VxT) ~ xS by Gen, and DT applies.

Theorem 3.3.18 h(3xS)xT = (3xT)xS.

Proof: From 3.3.17. I— (VxS) ~xT= ~ (VxT) ~ xS.

The four formulas (VxS)xT, (3xS)xT, (VxS) ~ xT, and (3xS) ~ xT have all
the logical relations of the A, I, E, and O forms in the traditional square of
opposition, because of the non-emptiness of each sort ensured by axiom
schema (8); cf. [16].

3.4 Sortal-Relative Identity The axiom schemas (6) and (7) are formaliza-
tions of the notion of sortal-relative identity—(6) states that only an S can
be the same S as something, and (7) is a formulation of Leibniz's law of the
indiscernability of identicals. But since we have defined tS (t is an S) as
t = t (t is the same S as itself), and since sortal predications of the form tS
play a vital role in other axiom schemas such as (5), it is impossible to
have a sortal quantification theory without having sortal-relative identity
built into it. In this respect sortal quantification and identity is funda-
mentally different from orthodox quantification and identity. Of course, we
could take sortal predications of the form tS as primitive, but they would
then be not theoretically distinguishable from arbitrary one-place predica-
tions.

Theorem 3.4.1 \-(VxS)(x = x). (Reflexivity of sortal identity)

Proof: \-x = x^>x = xby PC, hence \-xS 3 X = x by definition of xS, hence

\-(VxS)(x = x) by Gen.

Theorem 3.4.2 \-{t1 = t2) 3 (t2 = tj) for any individual terms tl9 t2.
(Symmetry of sortal identity)

Proof: Putting x = x for φ in (7), we have \-x = y 3 {x = x D y = x)\ by (6)

\-x = y => xS, and by 3.4.1. \-xS 3 x = x, hence \-x = y 3 x •= x by PC; so

\-χ = 3; 3 y = x. By Gen' h(VxS)(VyS)(x = y 3 y = x)} hence by (5) and MP

and PC (provided x and y are not in S) \-tλS & t2S 3 (tx = t2 3 t2 = ίx), but by

(6) ι-ίi = t2 3 t±S & t2S, hence by PC, ι-ίχ = t2 3 t2 = ί1# If S is not closed we

can always find variables which do not occur in S—and this applies to all

the following proofs.

Theorem 3.4.3 H ^ j t2 3 (t2 = £33 t3 = tλ)) for any individual terms t u t2, t3.
(Transitivity of sortal identity)
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Proof: Putting x = z for φ in (7), we have Y-x = y 3 (x = z 3 y = z); \-y = x 3

x = y by 3.4.2, hence \-y = x 3 (x = z 3 y = z) by PC. By Genf h(V;yS)(V#S)

(V^S)(y = ΛΓ 3 (ΛΓ = ̂  3 y = z))9 hence by (5), MP and PC H^S & *2S &£3S 3

(*I =sk^ (*2 I *s D *i f ίs)), but by (6) tλ = t2^ tjβ & *2S and t2 = t3 o t2S & ί3S,

hence by PC, h ( ^ = t2 3 (f2 = t3 o t3 = tj).

Theorem 3.4.4 \-xS = (3yS)(x = y) (x is an S iff x is the same S as some S).

Proof: By (5) h{VyS) ~ x = y 3 (xS 3 ~χ = x), hence by PC \-xS &

ΛΓ = x 3 (3;yS)# = y; but \-xS 3 AT = AT, therefore HΛΓS 3 (3^S)(Λ: = y). Con-

versely, HΛΓ = 3; 3 xS by (6), hence I—xS 3 ~ΛΓ = y by PC, hence H(V3;S)

(~xS Zϊ ~x = y) by GenΓ, hence 1—xS 3 (VyS) ~ x = y by (4) since y is not

free in xS, hence h(3yS)(jc = y) 3 Λ S by PC.

Theorem 3.4.5 \-ti = t2 & t\T 3 tx = t2, for any individual terms tι and t2,

any sortal terms S and T.

Proof: Putting x = x for 0 in (7), we have \-x = 3; 3 (x = ΛΓ 3 x = y)? but by
3.4.1 h # r 3 ΛΓ = χ9 so by PC \-x = 3; & ΛΓT 3 ΛΓ = 3;. By Genf \-{VxS)(VyS)(x =
y bxT^xψy), hence by (5), MP, & PC, t±S & t2S 3 (^ = t2 & ί xT D ̂  = ί2),
but by (6), h ί i = t2 3 ^S & ̂ S, hence by PC H^ = t2 & ί xΓ 3 ^ = ί2. This is
a formal proof, from Leibniz's Law, that it is not possible for tλ to be the
same A as t2 and yet not the same B as t2y where ' £ ' is another sortal
which applies to tlβ Thus on this question we agree with [21], §1.2, and
differ from [4], p. 157; see [17]. There are several different ways in which
t1 = t2 may be false (cf. [21], §1.3): tx and t2 may both be S's and yet not the
same S; or one of them may be an S and the other not an S, in which case
they cannot of course be the same Sy or they may both not be S's, in which
case they may or may not be the same T (for some other sortal term <T9).
We may want to pick out the first case from the others, and to do this we
can use the following abbreviation:

tλ Φ t2 for tfi & t2S &~{tx = t2).

tx Φ t2 should be read 6tι is a different S from t2'; it implies, but is not

implied by, ~(£χ = t2), which means only that it is not the case that t1 is the

same S SLS t2.

3.5 Ultimate Sortals Our definition of the notion of sortal term, together
with our axiom schemas (9) and (10), formalize the principles that every
individual falls under an ultimate sortal and that every sortal is sub-
ordinate to some ultimate sortal. In the first case the ultimate sortal may
be said to give the criterion of identity of the individual, since t = t, and in
the second it may be said to give the criterion of identity given by the
subordinate sortal, since (VxS)(x = x). Axiom schema (11) adds the
principle that if t is an S, then the criterion of identity of t is that given by
(S\ These intuitively plausible principles are enough to generate all the
properties we expect of ultimate sortals.
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Theorem 3.5.1 \-S = T is an equivalence relation between sortal terms.

Proof: HS = T iff hxS = xT, from its definition, and the latter is an
equivalence relation, by PC.

Theorem 3.5.2 \-t1 = t2 D \jtl = Ut2for any individual terms tl9 t2.

(If t1 is the same S as ί2, then tx is of the same ultimate sort as t2.)

Proof: By (6), if tx = t2 then tjβ and t2S, hence by (11) Utι = U$ and U,2 = U5.
hence by 3.5.1. Uίχ = U,2.

Theorem 3.5.3 HSIT 3 Us = Uτ.
(Intersecting sortals have coextensional ultimate sortals)

Proof: If (3xS)xT, let c be an individual constant and suppose cS & cT, then
by (11), Uc = Us and Uc = Uτ> hence by 3.5.1. Us = Uτ. So by 3-elimination
(3.3.10), h(BxS)xT 3 Us = Uτ

Theorem 3.5.4 h-S = T D U5 = Uτ.

(Coextensional sortals have coextensional ultimate sortals)

Proof: If S = T, then SIT since (3xS)xS by (8). Hence by 3.5.3.

Theorem 3.5.5 Hu(S) & u(Γ) &-S = Γ 3 -SIT.
(Any two ultimate sortals which are not coextensional are disjoint)

Proof: Suppose u(S) & u(Γ) & SIT, then Us = Uτ by 3.5.3., but since u(S) and
u(T), Us =S and Uτ = T, hence S = T by 3.5.1.

Theorem 3.5.6 *-u(Uf) «nί? hu(Us).
(For any individual term t, and any sortal term S)

Proof: hίU, by (9), hence ι-U, = Uy, by (11), i.e., u(U,). H3xS)xS by (8);
suppose cS for some constant c, then cU$ since S c Us by (9), so Uc = Us
and Uc = UU5 by 3.5.1, i.e., u(Us). Hence Hu(Us) by 3-elimination (3.3.10).

Theorem 3.5.7 If S is any sortal term, then either S is a sortal constant,
or hS = UA for some sortal constant, or \-S - Ut for some individual
term t.

Proof: This follows immediately from the definition of sortal term and the
facts that hUUA = UA and hUUί = Ut by 3.5.6.

4 Semantics

4.1 S-Sets The essential part of any semantics for SQT must be a
representation of the distinctive properties of sorts—those sets which
consist of all the individuals to which a given sortal applies—as opposed to
the arbitrary sets which correspond to one-place predicates in the
Tarskian semantics for orthodox quantification theory. To represent sorts
in a set-theoretic semantics for SQT we introduce the purely set-theoretic
notion of an S-system. A set S of sets will be called an S-system iff the
following conditions are satisfied:
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(1) Every set in S is non-empty;
(2) If two sets in S have a non-empty intersection, then there is a set of S
of which they are both subsets;
(3) Every set in S is a subset of some set in S which is not itself a
proper subset of any set in S.

We shall call the sets in an S-system S-sets (intuitively, they will play
the role of srots). An S-set will be said to be a ΌS-set (intuitively, an
ultimate sort) iff it is not a proper subset of any S-set in the system. Two
S-sets will be said to be in the same family iff there is a US-set of which
they are both subsets. The union of all the sets in an S-system will be
called the domain of the system.

For the philosophical motivation behind these definitions see [21],
Part Two, but note that the notion of ultimate sort used there is slightly
different.

Theorem 4.1.1 Any two ΌS-sets in an S-system are disjoint.

Proof: If A and B are two US-sets with a non-empty intersection, then by
(2) there is an S-set C such that A c C and B c C; but if A and B are
different sets then one of them, say A, has an element, say a, which the
other lacks, so ae A, a^B, so ae C, so B Φ C, SO B is a proper subset of C,
contradicting the supposition that B i s a US-set.

Theorem 4.1.2 Each S-set in an S-system is included in one and only one
ΌS-set, and each element of the domain is a member of one and only one
US-set.

Proof: By (3) each S-set is included in one US-set, and by 4.1.1 it cannot
be included in more than one, since each S-set is non-empty by (1). Any
element of the domain is in at least one S-set, and hence in at least one
US-set, and by 4.1.1 it cannot be in more than one US-set.

Theorem 4.1.3 The relation Hn the same family' is an equivalence relation
over S-sets.

Proof: It is reflexive, for every S-set is a subset of a US-set by 4.1.2.
Clearly it is symmetric. And it is transitive, since each S-set is a subset
of only one US-set by 4.1.2, so if A and B have the same ultimate sort, and
B and C have, then A and C have the same ultimate sort.

The equivalence classes under this relation may be called families;
each such family is the set of all subsets of some US-set.

4.2 S-Interpretations Given the notion of an S-system, we can now define
that of S-interpretation.

An S-interpretation J of a first-order sortal quantification theory K
consists of:

(i) An S-system (call the domain of the S-system D);
(ii) For each sortal constant A in K, an S-set J(A) of the S-system;
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(iii) For each individual constant a in K, an element J(a) of D\
(iv) For each w-place function constant /fin K, an w-place operation J(/Jf)
on D, i.e., a function from Z)w, the set of all ordered zz-tuples of elements of
D, into D);
(v) For each w-place predicate constant Pf in if, a subset J(Pf) of Dw.

An evaluation, in a given S-interpretation, is an assignment of an element
of D to each individual variable. (The evaluation can therefore be identified
with an infinite sequence of elements of D, not necessarily all different,
arranged in the order of the individual variables to which they are
assigned.) For a given evaluation e in a given S-interpretation J, we
recursively define:

(a) a function e(t) which takes individual terms t as arguments and has
values in the domain D of J, as follows:

(i) If t is an individual variable x, then e(t) is the element of D assigned
to x by the evaluation e;
(ii) If t is an individual constant α, then e(t) is J(α);
(iii) If t is of the form fβλ . . . tn, then e(t) is the result of applying the
rc-place operation 3{ffj to the rc-tuple (e(tι), . . . ,e(£«)).

(b) a function e(S) which takes sortal terms S as arguments, and has S-sets
in the S-system of J as values, as follows:

(i) If S is a sortal constant A, then e(S) is J(A);
(ii) If S is a sortal term of the form Ut, where t is an individual term,
then e(S) is the unique US-set (in the S-system of J) which contains e(t);
(iii) If S is a sortal term of the form US', where Sf is a sortal term, then
e(S) is the unique US-set (in the S-system of J) which includes e(Sf).

Note that for a closed individual term ί, the value of e(t) is independent
of the evaluation e, and depends only on J, so it can be written J(t).
Similarly, for a closed sortal term S, e(S) can be written J(S).

We can now define what it is for an evaluation e in a given S-
interpretation J to satisfy a wff P of SQT:

(i) If P is an atomic wff of the form Pfa . . . tn, then e satisfies P iff the

w-tuple <e(ίj, . . ., e(tn)) is in the set J(PJ);
(ii) If P is an atomic wff of the form tx = t2, then e satisfies P iff e(/χ) and

e(t2) are the same element of the S-set e(S);

(iii) If P is of the form ~ Q, then e satisfies P iff e does not satisfy Q;
(iv) If P is of the form Q & R, then e satisfies P iff e satisfies Q and e
satisfies R;
(v) If P is of the form (3xS)Q, then e satisfies P iff some evaluation
which assigns an element of e(S) to the individual variable x, and is the
same as e for all other individual variables, satisfies Q.

A wff of SQT is said to be true in a given S-interpretation iff every
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evaluation in that S-interpretation satisfies it. An S-interpretation is said
to be an S-model for a given set of wffs of SQT iff every wff in the set is
true in that S-interpretation, and for a given sortal quantification theory K
iff every axiom of K is true in that S-interpretation. A wff of SQT is said
to be S-valid iff it is true in every S-interpretation.

5 Completeness Proof

Metatheorem 5.1 Every theorem of a sortal calculus is S-valid.

Proof: We show that every logical axiom is S-valid, and that the rules of
inference preserve S-validity. Any instance of axiom schemas (l)-(3) is an
instance of tautology, and hence S-valid; for (4), suppose an evaluation e
satisfies (VxS)(P D Q) and P, and let f be any evaluation which assigns a
member of e(S) to x and is otherwise like e, then f satisfies P 3 Q and also
satisfies P if x is not free in P, therefore f satisfies Q, so e satisfies
(VxS)Q for (5), suppose e satisfies (VxS)φ and tS*, then e(t) is in the set
e(S*), so e must satisfy φx

t; for (6), suppose e satisfies h = t2, then e^) and
e(t2) are the same element of e(S), so e satisfies ^S and t2S; for (7),
suppose e satisfies x = y, then e(x) is the same as e(y), so if e satisfies φ

x
then e satisfies φ ~; for (8), every S-set is non-empty, so for any evaluation

e and for any sortal term S, e(S) is non-empty, so e satisfies (3xS)xS; for
(9), e(U,) is by definition the US-set which contains e(t), so any evaluation e
satisfies t\Jt; for (10), e(U5) is by definition the US-set which includes e(S),
so any evaluation e satisfies (VxS)xΌs; for (11), if e satisfies tS then e(t) is
in e(S), so e(\Jt) is the same US-set as eίUs), so e satisfies (Vx\Jt)xUs and
(VΛΓUS)ΛTU/. Modus Ponens preserves S-validity, for if an evaluation e
satisfies P and P 3 Q it satisfies Q; and Generalization also preserves
S-validity, for if every evaluation satisfies xS D P, then every evaluation e
which assigns an element of e(S) to x satisfies P, so every evaluation
satisfies (VxS)P.

The other half of the completeness proof—that all S-valid wffs are
theorems—takes more effort to prove, as it does in most systems. But we
shall see that Henkin's method (see [8], [7], [9], Proposition 2.12) can be
adapted to sortal quantification theory. First some definitions:

a first-order sortal quantification theory K will be said to be negation-
complete iff for any closed wff P of K, either h-κP or f^~P. A theory Kr

with the same vocabulary as K will be said to be an extension of K iff every
theorem of K is a theorem of Kr. We need the following lemmas:

Lemma 5. 2 The set of wffs of any sortal quantification is denumerable.

Proof: The set of symbols is denumerable, and each wff is a finite string
of symbols, so a Gδdel numbering can be used to enumerate them, (cf [9],
Lemma 2.10).



200 LESLIE STEVENSON

Lemma 5.3 If K is a consistent sortal quantification theory, then there is a
consistent, negation-complete extension of K. (Lindenbaum's Lemma for
sortal quantification theories.)

Proof: The standard form of proof works without alteration (see [9],
Proposition 2.11). Enumerate all the closed wffs of K in a sequence
Pu P2, . . ., Pk, . . ., and add in turn (as a proper axiom) each one of them
which is not already provable.

Lemma 5.4 If^P(cι, . . ., cn) where cu . . ., cn are n individual constants
which do not occur among the proper axioms of K, then ^P(xu . . ., xn)
where xl9 . . ., xn are any n individual variables which do not occur free in
P{cl9 . . ., cn), and P(xί9 . . .9xn) is the result of substituting AΓ, for a
everywhere in P(cί9 . . ., cn) for 1 ̂  i ^ n.

Proof: Let Plf . . ., Pm be a proof of P(cl9 . . ., cn) in K, in which the
individual variables xlf . . ., xn do not occur. Replace every occurrence of
Cj in the proof by X{, for 1 ̂  i < n. This transforms logical axioms into
logical axioms, for the axiom schemas (l)-(ll) make no distinction
between constants and variables, it leaves proper axioms of K unchanged,
and it preserves the correctness of the applications of the rules of
inference. So we thus produce a proof of P(xl9 . . ., xn) in K.

Metatheorem 5.5 Every consistent sortal quantification theory K has an
S-model.

Proof: (i) Add to the symbols of K a denumerable set {bl9 b2, . . .} of new
individual constants. The resulting theory Ko has as its axioms all the
axioms of K plus all logical axioms which involve the new constants. Ko is
consistent. For if not, ^ P & ~ P for some wff P, and then by Lemma 5.4
we could replace every b{ in the proof by an individual variable and thus
produce a proof of a contradiction in K, but by hypothesis K is consistent.

(II) We now construct an extension J of Ko which will be instantiated, in the
sense that for every closed wff of the form (3xS)φ(x)9 if ^ (3xS)φ(x) then
there is some constant c such that ^φ(c). By Lemma 5.2, let Pί9 P2, . . .,
Pk, . . . be an enumeration of all the closed wffs of Ko of the form (3xS)φ9

and let Pk be (3XkSk)φk(Xk). We define a sequence δ 7 l , δ ; 2, . . ., bjk, . . . of
the new constants as follows: bf1 is the first one which does not occur in
Pi, and bjk is the first one which does not occur in Pu . . ., Pk and is
different from bjγ9 . . ., b^k_χ. For each k9 we define the wff S& to be
(3XkSk)φk(%k) D Φk(bjk). Let Kn be the theory obtained from if0 by adding
Si, . . ., Sn to its proper axioms, and let K^ be that obtained by thus adding
all the S*. To prove that K^ is consistent it is sufficient to prove that
every Kn is consistent, for any proof of a contradiction in K^ would use
only a finite number of axioms, and hence would be a proof of a contradic-
tion in some Kn. We proceed by induction. Ko is consistent, by (I).
Suppose that Kn is inconsistent. Then by PC any wff is provable in Kn, so in
particular ^Kn~Sn, hence Sn \γ ^Sn by definition of Kn, hence \γn Sn o ~Sn
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by the Deduction Theorem, since Sn is closed, hence by PC hτw-χ~S«> hence
by PC ^^OxnSniΦnixn) and hκn_1^φn(bjn). But by definition of bin and Kn_u

bjn does not occur among the proper axioms of Kn.u so by Lemma 5.4,
hr«-i~Φ»(*«)> s i n c e %n i s n o t f r e e i n ~Φn(bjn), hence by Genf ^ ^ V ^ S J ~
φnM, hence hw~(3#«Sn)0»(#»). But ^ _ (3ΛrnSw)0β(^), so Kn.x is incon-
sistent. So if Kn-χ is consistent, then Kn is. So by induction every Kn is
consistent, hence K is.

By Lemma 5.3, let J be a consistent negation-complete extension of ϋΓ.
Then J is consistent, negation-complete, and instantiated, for if P is a
closed wff of the form (3xS)φ, then for some k, P is Pfe, so P& 3 Φk(bjk) is a
proper axiom of J, so if f j P then ^jφk(bjk).

(III) We now proceed to construct an S-system. Consider the denumerable
set of closed individual terms (cits) of Ko, and consider the relation E which
holds between two of these terms tt and t2 iff, for some sortal term S,
^jtχ = t2. By 3.4.2 and 3.4.3 E is symmetric and transitive, and by axiom
schema (9) l-jt = t for any cίt t, so E is reflexive; thus E is an equivalence
relation. The set D of equivalence classes of cits of Ko under relation E is
to be the domain of our S-system. (We need to deal with these equivalence
classes of cits rather than the cits themselves, because in an S-interpreta-
tion any sortal-relative identity = must be interpreted as identity in that
sort.) Let [t] denote the equivalence class to which the cίt t belongs; we
note that as far as provability in J is concerned, it does not matter which
member of each an equivalence class we choose to represent it; i.e., if
lΛ] = [A], then ^}0(ίi) iff ^jφ(t2); this follows easily from Leibniz's law as
formulated in axiom schema (7).

For each closed sortal term (cst) S let [S] be the set of [t] such that
i-jtS. We show that the set of such sets [S] is an S-system with domain D.
By (9), \-j tUt for any cit t, so every member of D is in some [S], Each [S] is
non-empty, for by (8) \-J(3xS)xS, hence for some constant c \-jcS since J is
instantiated, so [c] is in [S]. Suppose [Sx] and [S2] have a non-empty
intersection, then for some cits tx and t2, ^^Si and ^jt2S2 and [tj] = [t2], so
for some 5, ^Jtι = t2; by (11) l^Uί1 = U51 and ^Uί2 = US2, and by 3.5.2
H) u*! = Uf2, so by 3.5.1 ^ USλ = US2, so [USJ = [US2], but from (10) [Sj c
[USj and [s2] c [US2], so we have a set, namely [USj, of which [Si] and [S2]
are both subsets. To demonstrate the existence of a US-set including any
S-set, by (10) we have [Sj c [USX]; suppose [USj is a proper subset of a set
[S2], then [USj is non-empty, so [U5χ] and [S2] have a non-empty inter-
section, so by the above [UUSJ = [US2], but by 3.5.6 [UUSj = [USj, so
[US,] = [U52], but [S2] c [US2], so [S2] c [USJ contrary to the hypothesis that
[USJ is a proper subset of [S2]; so for any [Sj, [USX] is a US-set including
[Si]. This completes our proof that the [S]'s form an S-system.

(IV) We now give an S-interpretation Jfor the wffs of J. The S-system of I
is that defined in (III) above. For a sortal constant A, J(A) is the set of [t]
such that t-jtA; for an individual constant a, J(a) is [a]; for an w-place
function constant /", J(/J) is the w-place operation which has for arguments
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[tι] . . . [tn] the value [fft1 . . . tn]; for an w-place predicate constant P",
J(P?) is the set of rc-tuples ( [ ί j . . . [tn]) such that hjPfo . . . tn.

(V) We now show that for each closed wff P of J, P is true in this
S-interpretation J iff ^ P . The proof is by induction on the number of
connectives and quantifiers in P. The induction base is therefore the case
in which P is an atomic wff. There are two subcases of this. Subcase 1:
P i s of the form P"tx . . . tn, where tl9 . . ., tn are cits. Then P is true in J
iff i-jPiti . . . tn, by the definition of J. Subcase 2: P is of the form tx = t2,
where t1 and t2 are cits and S is a cst. Then P is true in J iff [tt] and [t2] are
the same element of [S], i.e., iff t-jtβ and hjt2S and for some sortal term T
1-jtχψ t2, i.e., iff (-*! = t29 by 3.4.5 and (6).

For the induction step, suppose as induction hypothesis that for all
closed wffs Q with fewer than n connectives and quantifiers, \-j Q iff Q is
true in J. Let P be a closed wff with n connectives and quantifiers. There
are three cases.

Case 1: P is of the form ~Q. Then by induction hypothesis Q is false iff it
is not the case that HjQ, hence iff ^ ~ Q , since J is negation-complete, so P
is true iff h>~Q, i.e., iff \-3P.

Case 2: P is of the form Q &R. Then P is true iff Q and R are true, hence
iff ι-κQ and ^R, by induction hypothesis, hence iff ή^Q & R, by PC, i.e.,
iff fcP.

Case 3: P is of the form (Έ\xS)Q, where x is the only variable, if any, which
occurs free in Q (since P is closed). Suppose first that t jP, then by 3.3.12
}̂ (3ΛΓS)(Λ:S & Q), SO since J is instantiated there is some constant c such

that f jcS & Qc, then by induction hypothesis ^cS iff cS is true and f-Q? iff
Qc is true (for Q* is closed), so cS is true and Q* is true, so (3#S)Q is true,
since any evaluation which assigns [c] to x satisfies Q*, thus P is true.
Conversely, suppose that it is not the case that \~3 P, then since J is
negation-complete, ^ ~ P , hence H- (VΛΓS) ~ Q, hence by (5) ^tSΪ^> ~QΪ for
every cit t, hence for every cit t it is not the case that tjtSf and *jQf, since
J is consistent; now by induction hypothesis fj tS* iff ίSf is true (for S* is a
cst) and t-jQΪ iff QΪ is true (for (?f is closed), so for every cit t it is not the
case that tSf and Q? are true, so (3xS)Q is false. So in Case 3, ^ P iff P is
true, and our induction is completed.

(VI) We now show that every axiom of K is true in the S-interpretation J,
i.e., that J is an S-model for K. Let P be any axiom of K, then f^P,
therefore ^ P since J is an extension of K by (I) and (II). Therefore if P is
closed then P is true in J, by (V). If P is not closed, let xγ . . . xn be all the
individual variables occurring in it, then for any n individual constants
d . . . cn, Pcl'.Y.Z is closed, and ^ Px

c\.\Ίn

n, since by Genf from t-jP
*-j<yxiVCl) JVΛΓ«UCW)P, hence by (5) b c i u

C l & • & <*UC|I=> i ^ ϋ i S ,
hence by (9) ^Pci!.!^- So ^j Px

c\'.'.'.cl is true in J for any individual constants
cλ . . . cn, so P is true in J, since it will be satisfied by any evaluation in J.
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Metatheorem 5.6 Any S-valid wff of a first-order sortal quantification
theory K is a theorem of K.

Proof: Suppose first that P is a closed S-valid wff of K. Then if P is not a
theorem of K, then the theory Kr which is obtained from Kby adding ~ P a s
an extra axiom is consistent, hence by 5.5 it has an S-model, so ~ P is true
in this S-model, so P is false in it. But since P is S-valid this is
impossible, so P must be a theorem of K: If P is not closed, let x1 . . . xn

be all the individual variables occurring free in P, and let cx . . . cn be any
n individual constants which do not occur in P or in the proper axioms of K
then Pel'.'.'.*" i s closed and S-valid, so f"κ-P£J\ϊ.ί" by the above argument.
Hence ^κPbγ Lemma 5.4.

Metatheorem 5.7 In any first-order sortal calculus, a wff is a theorem iff
it is S-valid.

Proof: From 5.1 and 5.6.

6 Derivation of Unrestricted Quantification The bound individual variables
of sortal quantification theory are restricted in their range by the sortal
term which appears in the relevant quantifier, when that sortal term is a
closed one. But any individual variables which occur free are in effect
unrestricted, as are the individual constants, although for any individual
variable or constant t there is an ultimate sortal Ut which gives the
corresponding criterion of identity, by axiom schema (9). Consider a wff
of the form {Vxϋx)φ(x); it says, in effect, that any individual x, with its
corresponding criterion of identity given by its ultimate sortal U*, satisfies
the condition φ(x). So the variable here is really not restricted to any
particular sort, and we have a version of unrestricted quantification. If we
define {Vx)φ as (VxUx)φ, we then have every wff of ordinary unrestricted
quantification theory QT definable in SQT, and we shall now show that all
the theorems of QT are theorems of SQT, taking as our standard formula-
tion of QT that in [9], Chapter 1, section 3.

Metatheorem 6.1 If ^ P then ^ T P .

Proof: We show that the axioms and rules of QT ([9], p. 57) are theorems
and rules of SQT. The three schema for propositional calculus are
common to both. The schema (VΛ:)(P D Q) D (P D (VΛΓ)Q) if P is not free in
Q, is just the schema (VxUx)(P D Q) D (P D (VX\JX)Q) in SQT. The schema
(VΛΓ)0 => 0* is derivable from (5) in SQT, since (V#Ux)0 D (t\Jt D 0*) is a
special case of the latter, and t\Jt is axiom schema (9) of SQT, and the
restriction on t is the same in both cases. The rule of Modus Ponens is
common to QT and SQT, and the rule of Generalization (from P to (Vx)P) in
QT is just a special case of Gen' in SQT (from P to (VΛΓUJP).

A similar derivation of unrestricted identity can be made, if we define
f! = t2 as t1 j ^ t2 (there is no genuine asymmetry about this definition, for if
t1 =tί t2, then t2 ^ tλ by 3.4.1, and t2{Jh by (9), so t2 ^ tx by 3.4.5). All the
theorems of QT = with identity ([9], Ch. 2, §8) are then provable in SQT.
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Metatheorem 6.2 If V^JP then ̂ - P .

Proof: We need only show that the schemas (VΛΓ)(ΛΓ = x) and x = y 3

p 0 - j are derivable in SQT. The first is by definition (VΛΓUX)(ΛΓ = x),

which is provable by Gen' from the form x = x of (9). The second is by

definition x =y Ώ (φ Ώ φ-), which is a case of (7), with the same restric-

tion on substitutions.

We can also prove in SQT the standard equivalences relating unre-
stricted quantification and identity, as defined above, to sortally-restricted
quantification and sortal-relative identity.

Theorem 6.3 (VxS)φ = (VΛΓ)(Λ;S 3 φ).

Proof: If (VxS)0, then xS 3 φ by (5), hence (Vx\Jx)(xS D 0) by Gen', and DT
applies. If (Vχ\Jx)(xS 3 0) then xS 3 φ as in 6.1, hence (VxS)φ by Gen, and
DT applies.

Theorem 6.4 t1 = t2 = tλ = t2 & tfi.

Proof: If tx = t2, then txS, and ̂ U ^ by (9), hence t± j ^ t2 by 3.4.5. If tλ =^ t2

and tfi then ^ = t2 by 3.4.5.

7 Second-Order Sortal Quantification Theory We introduced ultimate
sortals into our formal theory SQT by use of a primitive symbol U, which
acts as a function from individual terms and sortal constants to ultimate
sortals. The same effect can be achieved by the use of variables ranging
over sortals, and appropriate axioms involving them. We define the theory
SQT 2 by the following amendments to SQT:

Symbols Add denumerably many sortal variables S, Sx, S2, . . . The symbol
U will be defined rather than primitive.

Sortal Terms A sortal term will now be simply either a sortal constant or
a sortal variable.

Wffs

Sortal terms are as above.
If P is a wff, and S is any sortal variable, then (3S)P is a wff.
(VS)P is defined as ~(3S) - P.
υ(S) is defined as (VSjiS c Si D S = SJ.

Logical Axioms Delete (9), (10), and (11), and add:

(9)' (BS)tS for any individual term t.

(10)' (VS)(3SX)(S c Sx & u(Sx)).

(11)' SX\S2 3 (3S3)(Si C S 3 & S 2 C S3).
(12)' (VS)(P 3 Q) D (P D (VS)Q), ifS is not free in P.
(13)' (VS)0 3 0 | , where T is any sortal term, and φj is the result of
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replacing S by T in φ, provided no such replacement yields a bound
occurrence of T.

Rules of Inference Add Gen-2; (VS)P follows from P, for any sortal
variable S. Axiom schema (12) and (13), and the Rule Gen-2, simply
introduce standard quantificational reasoning for the sortal variables.
Axiom schema (9)', (10'), and (ll) f embody the principles concerning
sortals and ultimate sortals which we have been representing in SQT and in
S-sets: that every individual falls under some sortal, that every sortal is
subordinate to an ultimate sortal, and that intersecting sortals are
subordinates of a common sortal. It is easy to prove from these axioms,
just as we did for S-sets in section 4.1, that any two ultimate sortals are
disjoint, and hence that each individual falls under one and only one
ultimate sortal and that each sortal is subordinate to one and only one
ultimate sortal. Hence we can define the function U, which gives the
ultimate sortal of each individual term and each sortal term, and thus
derive SQT within SQT 2.

In this second-order theory SQT 2 we can use an idea of Geach's ([4],
§93, p. 154) to define unrestricted quantification in terms of a double sortal
quantification of first and second order. We define (3x)φ as (3S) (3xS)φ,
where S is the first sortal variable which does not occur free in φ. We can
also use an idea of Wiggins' ([20], p. 27) to define unrestricted identity,
defining tλ = t2 as (3S)(ίi = t2). We can then show easily that SQT 2 contains
the whole of standard quantification theory with identity, by deriving the
standard axioms and rules in SQT 2 as we did in SQT in section 6. The
equivalences (VxS)φ = (Vx)(xS D 0) and t1 = t2 = tλ = t2 & ixS will be similarly
derivable. SQT 2 has the same semantics as SQT; it is just a less
economical way of expressing the same principles concerning sortals.

8 Concluding Remarks What then does all this formal development amount
to? Does the derivability of unrestricted quantification and identity, and the
provability of the equivalences (VΛΓS)0 = (Vx)(xS => φ) and (tί = t2) = (t±S &tx =
t2), show that sortal quantification theory SQT is a mere notational
alternative to orthodox quantification theory QT, and so is of no philo-
sophical importance? (This is the view that Quine takes of the standard
many-sorted theories, [12], pp. 92, 96.)

On our view, every individual has a criterion of identity, so every
individual falls under some sortal term; and the notion of criterion of
identity as given by ultimate sortals involves the structure represented in
SQT and in S-sets. QT is a calculus which deals with the unrestricted
notions of quantification, identity, and individual. If it is accepted
on philosophical grounds that the fundamental notions of quantification,
identity, and individual are sortal-relative or sortally-restricted, and that
the unrestricted notions are definable in terms of the restricted ones (just
as the property 'is loved' is definable as 'is loved by someone'—in terms of
the relation 'is loved by'), then the above equivalences will be taken as
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showing that QT is definable in terms of SQT, rather than the reverse. We
can thus offer a foundation for QT rather in the way that Frege and Russell
offered a foundation for arithmetic.

The motivation for investigating foundations is often onto logical, and
this case is no exception. Much philosophical controversy has centered
around the supposed ontological commitments of QT or theories expressed
in QT; light may be cast on this if we define the ontological commitment of
a sortal quantification theory as the ultimate sorts of the individual and
sortal terms in its theorems. But the philosophical defence of such a
definition lies beyond the scope of this paper.
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