Notre Dame Journal of Formal Logic
Volume XVI, Number 3, July 1975
NDJFAM

$$
S 1 \neq S 0.9
$$

RODERIC A. GIRLE

In both [1] and [3] it was conjectured that S 0.9 is weaker than S 1 , but there was no proof that this is so. In what follows we see that this is so using Hintikka's model set model system semantics (see [2]).

Consider the systems defined in terms of the following axiom schemata and rules as in [4].
A1: $A \supset(B \supset A)$
A2: $(A \supset(B \supset C)) \supset((A \supset B) \supset(A \supset C))$
A3: $(\sim A \supset \sim B) \supset(B \supset A)$
A4: $\square A \supset A$
A5: $\square(A \supset B) \supset(\square(B \supset C) \supset \square(A \supset C))$
A : $\square(A \supset B) \supset(\square A \supset \square B)$
$\mathrm{R} 1: \frac{A, A \supset B}{B} \quad \mathrm{R} 2: \frac{\square(A \supset B) \& \square(B \supset A)}{\square(\square A \supset \square B) \& \square(\square B \supset \square A)} \quad \mathrm{R} 3: \frac{\square(A \supset B)}{\square(\square A \supset \square B)}$
We use the standard definitions of $\diamond, \&, v$, and \equiv, and we use $\square \mathrm{A} i(1 \leqslant i \leqslant 6)$ for schema resulting from schema $\mathrm{A} i$ by prefixing the symbol \square before the whole of A i in brackets.

We define four modal systems:

$$
\begin{aligned}
& \mathrm{S} 0.5=\{\mathrm{A} 4, \mathrm{~A} 6, \square \mathrm{~A} 1-\square \mathrm{A} 3 ; \mathrm{R} 1\} \\
& \mathrm{S} 0.9=\{\mathrm{A} 4, \square \mathrm{~A} 1-\square \mathrm{A} 4, \square \mathrm{~A} 6 ; \mathrm{R} 1, \mathrm{R} 2\} \\
& \mathrm{S} 1=\{\mathrm{A} 4, \square \mathrm{~A} 1-\square \mathrm{A} 5 ; \mathrm{R} 1, \mathrm{R} 2\} \\
& \mathrm{S} 2=\{\mathrm{A} 4, \square \mathrm{~A} 1-\square \mathrm{A} 4, \square \mathrm{~A} 6 ; \mathrm{R} 1, \mathrm{R} 3\}
\end{aligned}
$$

It has been shown that S 0.5 is included in S 0.9 , and S 0.9 is included in S1, and both S0.9 and S1 are included in S2 (see [3]).

We now construct a Hintikka type model $\left\langle\Omega, C_{\mathrm{S}}\right\rangle$ where Ω is a model system of model sets $\Omega=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{n}, \ldots\right\}(n \geqslant 1)$, and where C_{S} is a set of consistency conditions, for some system S, for deciding which formulae of the system S can be included (or imbedded) in any μ_{n}. The membership of C_{S} is drawn from:

1. If μ_{n} contains an atomic formula it does not contain its negation.
2. If $(A \supset B) \in \mu_{n}$ then $\sim A \in \mu_{n}$ or $B \in \mu_{n}$ or both.
3. If $\sim(A \supset B) \in \mu_{n}$ then $A \in \mu_{n}$ and $\sim B \in \mu_{n}$.
4. If $\square A \in \mu_{n}$ then $A \in \mu_{n}$.
5. If $\diamond A \in \mu_{n}$ then there is in Ω at least one alternative to μ_{n} (such as μ_{j}) which contains A, provided that μ_{n} is not an alternative (is non-alternate) to any member of Ω or that there is at least one formula of the form $\square B$ in μ_{n} (cf. [2], p. 124n).
6. If $\square A \in \mu_{n}$ then there is in Ω at least one alternative to μ_{n} (such as μ_{j}) which contains A, provided that μ_{n} is not an alternative (is non-alternate) to any member of Ω.
7. If $\diamond A \epsilon \mu_{n}$, then provided that μ_{n} is not an alternative (non-alternate) to any member of Ω, there is in Ω at least one alternative to μ_{n} (such as μ_{j}) which contains A; but if μ_{n} is an alternative to some member of Ω, either $A \in \mu_{n}$ or there is in Ω at least one alternative to μ_{n} (such as μ_{k}) which contains $\sim A$, and μ_{k} cannot be an alternative to more than one set.
8. If $\diamond A \in \mu_{n}$, then provided that μ_{n} is not an alternative (non-alternate) to any member of Ω, there is in Ω at least one alternative to μ_{n} (such as μ_{j}) which contains A; but if μ_{n} is an alternative to some member of Ω, and contains a formula of the form $\square B$ such that either all the atomic parts of A are atomic parts of B, or C is a well-formed part of B and $A \equiv C \epsilon \mu_{n}$, then either $A \in \mu_{n}$ or there is in Ω at least one alternative to μ_{n} (such as μ_{k}) which contains $\sim A$ and μ_{k} cannot be an alternative to more than one set.
9. If $\square A \epsilon \mu_{n}$ and if μ_{j} is an alternative to μ_{n} in Ω then $A \in \mu_{j}$.
10. If $\square A \epsilon \mu_{n}$ and μ_{n} is non-alternate to any member of Ω and if μ_{j} is an alternative to μ_{n} in Ω then $\square A \in \mu_{j}$.
11. If $\square A \in \mu_{n}$ and μ_{n} is non-alternate to any member of Ω and if μ_{j} is an alternative to μ_{n} in Ω, then $A \in \mu_{j}$; but if μ_{n} is an alternative to some member of Ω, then if μ_{k} is an alternative to μ_{n} in Ω, then $\sim A \epsilon \mu_{k}$.
12. If $\square A \in \mu_{n}$ and μ_{n} is non-alternate to any member of Ω, then $A \in \mu_{n}$.

We assume:

$$
\begin{aligned}
& C_{\mathrm{S} 0.5}=\{1-3,12,6,9\} \\
& C_{\mathrm{S} 0.9}=\{1-4,8,10,11\} \\
& C_{\mathrm{S} 1}=\{1-4,7,11\} \\
& C_{\mathrm{S} 2}=\{1-4,5,9,10\}
\end{aligned}
$$

The satisfiability (consistency) of a set of formulae, λ, is defined as its imbeddability in a non-alternate member of Ω, i.e.,

$$
\text { Satisfiable }(A) . \equiv(\exists \Omega)(\exists n)\left(A \in \mu_{n} \& \mu_{n} \in \Omega \& \text { non-alternate } \mu_{n}\right)
$$

A formula is said to be valid or self-sustaining if the unit set of its negation is not satisfiable, i.e.,

$$
\left.\operatorname{Valid}(A) . \equiv(n) \text { (non-alternate } \mu_{n} \supset \sim A \notin \mu_{n}\right)
$$

For S 0.5 we have the model $\left\langle\Omega, C_{\mathrm{S} 0.5}\right\rangle$. Using the conditions in $C_{\mathrm{S} 0.5}$ for reductio ad absurdum proofs in accordance with our definitions of validity, and as set out below, we see that all the axioms of S 0.5 are valid.
$\square \mathrm{A} 1$ is valid:
i. $\sim \square(A \supset(B \supset A))$
$\epsilon \mu_{1}$ assumption
ii. $\sim(A \supset(B \supset A)) \quad \epsilon \mu_{2}$ condition 6 from i
iii. A and $\sim A \quad \epsilon \mu_{2}$ conditions $1-3$ from ii
so by reductio $\square \mathrm{A} 1$ is valid.
Similarly for $\square \mathrm{A} 2$ and $\square \mathrm{A} 3$. A4 is valid:
i. $\sim(\square A \supset A) \quad \in \mu_{1}$ assumption
ii. $\square A$ and $\sim A \quad \in \mu_{1}$ conditions 1-3 from i
iii. $A \quad \in \mu_{1}$ condition 12 from ii
so by reductio A 4 is valid.
Similarly for A6. But $\square \mathrm{A} 4$ is not valid:
i. $\quad \sim \square(\square A \supset A)$
$\epsilon \mu_{1}$ assumption
ii. $\sim A$ and $\square A$
$\epsilon \mu_{2}$ condition 6 from i
resulting in no contradiction, since condition 12 does not allow for $A \in \mu_{2}$ from ii. Similarly $\square A 6$ is not valid.

Using the condition in $C_{\text {S0.9 }}$ in an $S 0.9$ model in the manner of the above proofs we can show that all the axioms of S 0.9 are valid. In particular:
$\square \mathrm{A} 4$ is valid:
i. $\quad \sim \square(\square A \supset A)$
$\epsilon \mu_{1}$ assumption
ii. $\square A$ and $\sim A$
$\epsilon \mu_{2}$ condition 8 from i
iii. A
$\epsilon \mu_{2}$ condition 4 from ii
so by reductio $\square \mathrm{A} 4$ is valid.
$\square \mathrm{A} 6$ is valid:
i. $\sim \square(\square(A \supset B) \supset(\square A \supset \square B)) \quad \in \mu_{1}$ assumption
ii. $\square(A \supset B)$ and $\square A$ and $\diamond \sim B \quad \in \mu_{2}$ condition 8 from i
iii. $A \supset B$ and $A \quad \epsilon \mu_{2}$ condition 4 from ii
iv. $B \quad \in \mu_{2}$ from iii
and then either (a):
v. $\sim B \quad \in \mu_{2}$ from ii by condition 8 since the atomic parts of $\sim B$ will be in $\square(A \supset B)$ and μ_{2} is an alternative to μ_{1}
or (b):
vi. B
$\epsilon \mu_{3}$ from ii by rule 8
vii. $\sim(A \supset B)$
$\epsilon \mu_{3}$ from ii by rule 11
viii. A and $\sim B$
$\epsilon \mu_{3}$ from vii by rules $1-3$
so, as there is a contradiction in both (a) and (b), by reductio $\square \mathrm{A} 6$ is valid.
But $\square \mathrm{A} 5$ is not valid:
i. $\quad \sim \square(\square(A \supset B) \supset(\square(B \supset C) \supset \square(A \supset C)))$
$\epsilon \mu_{1}$ assumption
ii. $\square(A \supset B)$ and $\square(B \supset C)$ and $\diamond \sim(A \supset C)$
$\epsilon \mu_{2}$ from i by condition 8
iii. $A \supset B \quad \epsilon \mu_{2}$ from ii by condition 4
iv. $B \supset C \quad \epsilon \mu_{2}$ from ii by condition 4
but since there is no formula in μ_{2} of the form $\square D$ such that either (a)
both A and C are well-formed parts of D,
or (b)
there are in μ_{2} formulae which show that A and C are materially equivalent to well-formed parts of D, there is no further alternate set of μ_{2} under condition 8, and no contradiction follows.

Nevertheless A5 is valid:
i. $\quad \sim(\square(A \supset B) \supset(\square(B \supset C) \supset \square(A \supset C)))$
$\epsilon \mu_{1}$ assumption
ii. $A \supset B$ and $B \supset C$ and A and $\sim C \in \mu_{2}$ from i by condition 8
iii. C
$\epsilon \mu_{2}$ from ii
so by reductio A5 is valid (cf. [3]).
Using the conditions for the $S 1$ model we can show that all the axioms of $S 1$ are valid. In particular:
$\square \mathrm{A} 5$ is valid:
i. $\quad \sim \square(\square(A \supset B) \supset(\square(B \supset C) \supset \square(A \supset C)))$
$\epsilon \mu_{1}$ assumption
ii. $\square(A \supset B)$ and $\square(B \supset C)$ and $\diamond \sim(A \supset C)$
$\epsilon \mu_{2}$ from i by condition 7
iii. $A \supset B \quad \epsilon \mu_{2}$ from ii by condition 4
iv. $B \supset C \quad \epsilon \mu_{2}$ from ii by condition 4
and then either (a):
v. A and $\sim C \quad \epsilon \mu_{2}$ from ii by condition 7
vi. $C \quad \in \mu_{2}$ from v , iv, and iii
or (b):
$\begin{array}{ll}\text { vii. } A \supset C & \epsilon \mu_{3} \text { from ii by condition } 7 \\ \text { viii. } A \text { and } \sim B \text { and } B \text { and } \sim C & \epsilon \mu_{3} \text { from ii by condition } 11\end{array}$
vii. A and $\sim B$ and B and $\in \mu_{3}$ from io by condition 11
so, as there is a contradiction in both (a) and (b), by reductio $\square \mathrm{A} 5$ is valid.
Also $\square \mathrm{A} 6$ is valid and $\square \mathrm{A} 6$ is a thesis of S 1 (cf. [3]).
Using the conditions for the $S 2$ model we can also show that all the axioms of S2 are valid.

Since we can show that the axioms of each system are valid in the models constructed for each, and that the sets of axioms are independent in the appropriate sense, we now turn to the rules of inference. Clearly, from conditions 1 to 3 , R1 holds in all four models. It can be shown that R2
holds in the models for S 0.9 , S1 and S2, and that R3 holds in the model for S 2 . Our main interest will be to show that R 2 holds for the S 0.9 model. In order to show that R2 holds in $\left\langle\Omega, C_{\mathrm{s} 0.9}\right\rangle$ we show that if $\square(A \supset B) \& \square(B \supset$ A) is valid then $\square(\square A \supset \square B) \& \square(\square B \supset \square A)$ is valid.

First we define $\Omega^{N}, \Omega^{A}, \Omega^{A A}$.

$$
\mu_{n} \in \Omega^{\mathrm{N}} \equiv \mu_{n} \in \Omega \& \text { non-alternate } \mu_{n} .
$$

so $\Omega^{N} \subseteq \Omega$, and is the set of non-alternate model sets in a model system Ω.

$$
\mu_{n} \in \Omega^{A} . \equiv . \mu_{n} \in \Omega \& \mu_{m} \in \Omega^{N} \& \mu_{n} \text { is alternate to } \mu_{m} .
$$

So $\Omega^{A} \subseteq \Omega$, and is the set of alternate model sets in a model system Ω which are alternate to non-alternate sets.

$$
\mu_{n} \in \Omega^{\mathrm{AA}} . \equiv \mu_{n} \in \Omega \& \mu_{n} \text { is alternate to } \mu_{m} \& \mu_{m} \in \Omega-\Omega^{\mathrm{N}}
$$

So $\Omega^{A A} \subseteq \Omega$, and is the set of alternate model sets in a model system Ω which are alternate to alternate sets.

Secondly, let us consider under what conditions $\{\sim \square(A \supset B) \vee \sim \square(B \supset$ $A)\}$ is imbeddable in μ_{1} where $\mu_{1} \in \Omega^{\mathrm{N}}$. By definition of v and condition 2, either $\sim \square(A \supset B)$ and $\sim \square(B \supset A) \in \mu_{1}$, or $\sim \square(A \supset B) \in \mu_{1}$, or $\sim \square(B \supset A) \epsilon$ μ_{1}. Hence by condition $8, \mu_{2} \in \Omega^{A}$ and either $\{A, \sim B\} \subseteq \mu_{2}$ or $\{B, \sim A\} \subseteq \mu_{2}$. But if we had assumed that $(n)\left(\mu_{n} \in \Omega^{A} . \supset . ~ A \equiv B \in \mu_{n}\right)$ then $A \equiv B \in \mu_{2}$, then it would have followed that $\square(A \supset B) \& \square(B \supset A)$ would be valid. Conversely, if we had assumed that $\sim(n)\left(\mu_{n} \in \Omega^{A} . \supset . A \equiv B \in \mu_{n}\right)$, then $\{\sim \square(A \supset B) \vee$ $\sim \square(B \supset A)\}$ is imbeddable in some non-alternate set. From this it follows that $\square(A \supset B) \& \square(B \supset A)$ would not be valid. So, we can conclude that $\square(A \supset B) \& \square(B \supset A)$ is valid iff $(n)\left(\mu_{n} \in \Omega^{\mathrm{A}} . \supset . A \equiv B \in \mu_{n}\right)$.

Finally, to prove our hypothesis we assume that $\square(A \supset B) \& \square(B \supset A)$ is valid but that $\square(\square A \supset \square B) \& \square(\square B \supset \square A)$ is not valid. I.e., $\sim(\square(\square A \supset$ $\square B) \& \square(\square B \supset \square A))$ is satisfiable. Let $\sim(\square(\square A \supset \square B) \& \square(\square B \supset \square A)) \epsilon$ μ_{1} and $\mu_{1} \in \Omega^{\mathrm{N}}$ so, by condition $8, \mu_{2} \in \Omega^{\mathrm{A}}$ and either

$$
\text { i) }\{\square A, \sim \square B\} \subseteq \mu_{2}, \quad \text { or } \quad \text { ii) }\{\square B, \sim \square A\} \subseteq \mu_{2} \text {, }
$$

so, since $\square(A \supset B) \& \square(B \supset A)$ is valid, $A \equiv B \in \mu_{2}$ and therefore, by condition 8, either

$$
\text { iii) }\{A \equiv B, \square A, \sim \square B\} \subseteq \mu_{2}, \quad \text { or } \quad \text { iv) }\{A \equiv B, \sim \square A, \square B\} \subseteq \mu_{2}
$$

and so for iii) either

$$
\{A \equiv B, \square A, A, \sim B\} \subseteq \mu_{2} \text {, or } \mu_{3} \in \Omega^{A A} \text { and }\{A, \sim A, B, \sim B\} \subseteq \mu_{3} ;
$$

(and similarly for iv)), all of which are contradictory, so by reductio our hypothesis is proved.

We show that R3 holds in $\left\langle\Omega, C_{\mathrm{S} 2}\right\rangle$ by showing that if $\square(\square A \supset \square B)$ is not valid then $\square(A \supset B)$ is not valid.

Proof: If we can construct an S 2 model system in which $\{\sim \square(\square A \supset \square B)\}$ is
imbedded in a non-alternate set, then we can construct an $\mathbf{S} 2$ model system in which $\{\sim \square(A \supset B)\}$ is imbedded in a non-alternate set also. Let Ω_{1} be an S2 model system such that

$$
\Omega_{1}=\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}
$$

where $\mu_{1}=\{\sim \square(\square A \supset \square B)\}$, so it will follow that:
$\mu_{2}=\{\square A, \sim \square B\} \quad$ (by condition $5, \mu_{2}$ is an alternative to μ_{1})
and $\quad \mu_{3}=\{A, \sim B\} \quad$ (by condition $5, \mu_{3}$ is an alternative to μ_{2}).
Now, although $\left\{\mu_{3}\right\}=\Omega_{1}^{A}$ there is nothing in any of the conditions in $C_{S 2}$ to prevent $\Omega_{1}^{A A}=\Omega_{2}^{A}$ where Ω_{2} is an S 2 model system such that

$$
\Omega_{2}=\left\{\mu_{4}, \mu_{3}\right\} \quad \text { and } \quad \mu_{4}=\{\sim \square(A \supset B)\}
$$

so that μ_{3} is an alternative to μ_{4} in terms of condition 5 . Since, if $\sim \square(\square A \supset \square B)$ is satisfiable then $\sim \square(A \supset B)$ is also satisfiable, then if $\square(A \supset B)$ is valid then $\square(\square A \supset \square B)$ is valid.

REFERENCES

[1] Cresswell, M. J., "The completeness of S1 and some related systems,'" Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 485-496.
[2] Hintikka, J., '"Modality and quantification,'" Theoria, vol. 27 (1961), pp. 119-128.
[3] Lemmon, E. J., "New foundations for Lewis modal systems," The Journal of Symbolic Logic, vol. 22 (1957), pp. 176-188.
[4] Lemmon, E. J., 'Algebraic semantics for modal logics I,'" The Journal of Symbolic Logic, vol. 31 (1966), pp. 46-65.

The University of Queensland
St. Lucia, Queensland, Australia
and
University of St. Andrews
St. Andrews, Fife, Scotland

