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ON THE USE OF MORE THAN TWO-ELEMENT
BOOLEAN VALUED MODELS

ALEXANDER ABIAN

The independence of the Continuum Hypothesis from the set-theoretical
axioms of ZF is proved in [1] and [2] by making use of models in each of
which a complete Boolean algebra other than {θ, 1} is used for the logical
evaluation of formulas. In both proofs the underlying logical system is the
first order Predicate Calculus. We observe that as long as the underlying
logical system for a theory is the first order Predicate Calculus, then for
that theory, models, in which formulas are evaluated over any complete
Boolean algebra, are almost equally suitable. A main reason for this is the
fact that over any complete Boolean algebra $ί, the usual rules for evalua-
tion of formulas (with ~, V, 3, . . . interpreted respectively, as the com-
plement, infimum, supremum, . . .) yield the unit U^ of $( for every logical
tautology, and, yield the zero 0^ of $1 for every logical contradiction. On
the other hand, as shown in this paper, more than two-element Boolean
valued models are often more convenient for handling seemingly unintuitive
situations. Such is the situation, for instance, in connection with the proof
of the independence of the Continuum Hypothesis where it is possible to
construct models 3WX and 9W2 for ZF in such a way that the powerset of the
"same" set tt0 of ZF does not have the same "amount" of elements in 9WX

as it does inSW2

In this paper we reproduce the above situation in connection with an
extremely modest Example of a set-theory (which is far from resembling
ZF) and we hope that it will be useful to a reader interested in related
matters.

We introduce our Example of a set-theory as a first order theory
without equality whose nonlogical symbols consist of the elementhood
binary predicate symbol "e" and the six individual constants (sets)
α, b, c, d, e, n. Moreover, our Example has five axioms. However, prior
to the description of our Example, we recall that a (complete) Boolean
algebra (A, +, .) is also a (complete) partially ordered set with respect to
^ provided for every element x and y of A we write:

(1) x ^ y if and only if xy = x
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For a first order set-theory S, a Boolean valued model, or simply a
model (or more precisely a matrix of a model) 9W with a domain whose
individuals a re al9 a2, a3, . . . (not necessarily denumerably many) is meant
in this paper to be essentially a matrix such as :

9 «! a2 a3 . . .

aλ bn b12 b13 . . .
(2) a2 b2l b22 . . .

a 3 b 3 l . . .

subject to the following conditions:

(3) Every bij, is an element of a given complete Boolean algebra.
(4) The value \H\ of a formula H which is an axiom of S is equal to the unit
Ikji o/$ϊ, where \H\ is evaluated with respect to (2) according to the
following rules.

Rules for evaluation of formulas Denoting the value of a formula P of
Sby \p\, we let

(5) For every atomic formula aj e a{ of S,

I aj e α, I = b^

(6) For every formula P and Q of S,

l~p| = | P | + u«
| P Λ < ? | = \ P \ . | Q | = i n f { | p | , \Q\}
\ P v Q \ = \ P \ + \ Q \ + \P\ - | Q | = s u p { | P | , \Q\]

\p-+ Q\= \p\ | Q | + I P I + U *

\P^Q\= \P\ + \Q\ + u,,

\(Vx)P(x)\ = \ni{\P(a1)\, \P(a2)\, \P[as)\, . . .}

le^pM^supίlpfox)!, IP(«2)I, |p(fl3)l, . .}

Since every formula of S is built from atomic formulas of S in finitely
many steps and according to well known rules, we see that, based on (5) and
(6), matrix (2) assigns a unique value (i.e., logical value) \p\ to a formula
P of S. Clearly, in our case \P | is an element of the complete Boolean
algebra $1. Also, from (1) to (6) it follows that if formula V is a theorem of
S then \v\ = U .̂ Moreover, as usual, we say that a formula K is true in
model m if and only if \K\ = \}%.

In the top left corner of matrix (2) the elementhood predicate symbol
"e" is advertently written in reverse form "B" SO that δ ί ; denotes the
value of the atomic formula α; eα*. In this way, the i-th row in matrix (2)
describes the set a\ as a function from the domain of individuals of 9W into
the complete Boolean algebra %. This is a customary way of describing
sets. It coincides with the familiar representation of sets by their
elements in the case where % is the two-element Boolean algebra {0, l}. In
this connection, let us mention that, without loss of generality, any Boolean
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algebra can be represented as a set of dyadic sequences (i.e., sequences

made of O's and l's) of a certain ordinal type where addition and multipli-

cation of sequences are performed coordinatewise modulo 2, and, where

the unit and the zero of the Boolean algebra under consideration are given

respectively by a sequence every coordinate of which is 1, and, by a

sequence every coordinate of which is 0. Moreover, if for every sequence

S! and s2 we write

(7) sλ ^ s2 if and only if at every coordinate that sx has 1 so does s2

then we see that (7) defines the same partial order which is given by (1).

In view of what we said about the first order Predicate Calculus, if 3W

is a model for a first order set-theory S then it can be easily verified that

(1) to (6) imply that for every formula P of S,

(8) If \P\ = USH then P is consistent with the axioms of S.

Remark 1 From the sixth equality in (6) it follows that \(Vx)P(x)\ = U*ι if

and only if Usy = \P(aι)\ = \p(a2)\ = . . . In other words, formula (Vx)p(x) is

true in model (2) if and only if every instance of P(x) is true. However,

from the seventh equality in (6) it follows that the situation is not so

intuitive in connection with (3x)P(x). This is because in a Boolean algebra

W the supremum of a subset may be equal to the unit Usy of $ί without

necessitating that Ik̂  be an element of that subset. In other words, it is

possible that formula (3x)p{x) be true in model (2) without necessitating

that any of the instances of P(x) be true. This is perhaps one of the most

unintuitive aspects of a model such as (2) whose entries 6f 7 are elements of

a complete Boolean algebra other than the two-element Boolean algebra

{θ, l}. Indeed in a model where the evaluation of formulas is performed

over the two-element Boolean algebra a statement such as ''there exists an

x such that P(x)" is true if and only if "there exists an instance, say, P(a)

of formula P(x) such that P(a) is t rue" . However, as mentioned above, in a

model where the evaluation of formulas is performed over a complete

Boolean algebra other than the two-element Boolean algebra a statement

such as "there exists an x such that P(x)" may be true without necessitat-

ing that a single instance P(a) of formula P(x) be true.

In connection with the above, let us observe that if a Boolean algebra III

has more than two elements then it always has a subset whose supremum is

the unit of $1 and such that the unit of $1 is not an element of that subset.

For instance, in the case of four-element Boolean algebra (whose elements

we represent by dyadic sequences of length 2) we have

sup {(0,1), (1,0)}= (1,1)

Next, we prove that in a model such as (2),

(9) (β/ e a{) —> (a^ e ak) if and only if b{j ^ b^h

To show (9), assume («; e αz ) —* (afιe ak). But then from (5) and the

fourth equality in (6), we obtain
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bijbkh + bij + 11̂  = USN which implies bijbkh ~ bη

and which, in view of (1), implies bη ^ b^ The converse is proved by

reversing the steps.

We introduce the "subset" predicate symbol " c " by:

(10) x ςz y if and only if (Vz)((z e x) -» (z e y))

From the sixth equality in (6), Remark 1, (9) and (10) it follows that in

a model such as (1),

(11) αf c a,k if and only if b^ ^ bkj for every j

Denoting the elements of an eight-element Boolean algebra by dyadic

sequences of length 3, we give the following matrix illustrating examples

of (11).

d a1 a2 a3 α4

βi (0,0,1) (1,1,1) (0,0,0) (1,1,0)

(12) a2 (0,0,1) (0,0,1) (0,0,0) (0,0,0)

a3 (0,0,0) (1,1,0) (0,0,0) (1,1,0)

α 4 (0,0,0) (0,0,0) (0,0,0) (0,0,0)

Clearly, in the above, in view of (11) and (7), we have:

(13) ax c al9 a2 c al9 a3 c alf aA c ax

However, in model (12) none of a2 c a3, a3 c a2> aλ c a2 is true.

Remark 2 It can easily be verified that in model (12) the set aγ has one and

only one element, namely, a2 and, in fact, at is a singleton (see discussion

on page 561). This is because in model (12) the logical value of the formula

(Vx)((x €«!)«-» (χ= a2))

which is equivalent to

(Va)((*e «!><-* {Vy)({yex) <-> (y e a2)))

is equal to (1, 1, 1). But this means that in model (12) the set aλ is singleton

a2 (since every element of a± is equal to a2). It is also easy to verify that in

model (12) the axiom of Extensionality is valid (see discussion on

page 563). In other words, in model (12) equal sets are elements of the

same sets. Nevertheless, as (13) shows, aγ has four distinct subsets in

model (12). Clearly, more than two-element Boolean valued models can

readily be constructed where the axiom of Extensionality is valid and

where a singleton has any finite (>0), or infinite number of subsets. We

observe and emphasize that this situation (whose analog is a key circum-

stance in the proof of the independence of the Continuum Hypothesis from

the axioms of ZF) cannot occur in two-valued models. In other words, in a

familiar (i.e., intuitive) two-element Boolean valued model, in which the

axiom of Extensionality is also valid, a singleton cannot possibly have

more than two subsets. Thus, in many cases, for the proof of consistency
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of statements which seem to be unintuitive, more than two-element Boolean
valued models seem to be useful.

As expected, we introduce the ' 'equality" predicate symbol "=" by:

(14) x = y if and only if (x c 3;) Λ (3; c x)

Hence, in a model such as (1),

(15) a{ =ak if and only if b^ = bkj for every j

As usual, in any set-theory a set n is called an empty set if and only if

(16) (Vx)(~(xen))

From (5), the sixth and first equalities in (6) and (16) it follows that in
a model such as (1) the set an is an empty set if and only if

inf {(bnl + LI*), (bn2 + U«), (bn3 + U*), . . .} = U*

which, in view of Remark 1, implies

(17) bnj = U* + UsM = Ofl for every j

where 0% is the zero of the Boolean algebra under consideration. From
(15) and (17) it follows that any set-theory has at most one empty set.
Clearly, in the example given by (12), the set a4 is the empty set. In any
set-theory a set s is called nonempty if and only if

(18) (3x)(xes)

From (5), the seventh equality in (6) and (18) it follows that in a model
such as (1) the set as is a nonempty set if and only if

(19) sup{6sl, bs2, bs3, . . .}= ILy

Remark 3 Let us consider the following matrix

9 Vγ V2 V3 V4

Vi (0,0,1) (1,1,1) (0,0,0) (1,1,0)
v2 (0,0,1) (1,1,0) (0,0,0) (0,0,0)

Let us examine in the above matrix the row corresponding to the set
v2. In view of (17), we see that v2 is not an empty set. However, it is also
obvious that none of the sets υl9 v2, v39 v4 is an element of v2. Nevertheless,
from (19) and (12) it follows that

(3*)(*e v2) = suP{(0, 0, 1), (1, 1, 0), (0, 0, 0), (0, 0, 0)} = (1, 1, 1)

and, therefore, in the above model the statement *'there exists an x such that
xe v2" is true. This is an instance (referred to in Remark 1) of the
unintuitive situation which may arise in connection with more than two-
element Boolean valued models. For example, in the above model none of
V\ e v39 v2 e v3, v3 e v3, v± e v3 is true. Hence, intuitively, one expects that v2

is an empty set. However, this is not the case, since the statement " there
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exists an x such that x ev2" is true in the above model. We observe that in
all of this there is no logical inconsistency. The seeming awkwardness of
the situation results from our intuitive interpretation of a statement such
as "there exists . . . " .

Finally, we consider our Example.

Example Let S* be a set-theory whose individual constants are α, b, c, d,
e, n and whose axioms are:

(i) The only elements of b are α and c. Thus, b is a doubleton.
(ii) The powerset of b is e.
(iii) n is an empty set.
(iv) α, b, c, d, e, n are pairwise distinct.
(v) The axiom of Extenstonality (i.e., equal sets are elements of the same
sets).

Proposition 1 The set-theory S* is consistent.

Proof: The consistency of S* follows from the fact that the following
two-element Boolean valued matrix is a model for S*, i.e., axioms (i) to (v)
are true with respect to matrix (20).

9 α b c d e n

α 0 0 1 0 0 0
b 1 0 1 0 0 0

(20) c 1 0 0 0 0 0
d 0 1 0 1 0 0
e 1 1 1 0 0 1
n 0 0 0 0 0 0

It is easy to verify that axioms (i) to (v) are true in the intuitive (i.e.,
two-element Boolean valued) model (20).

Proposition 2 The statement:

(21) The powerset e of the doubleton b has five elements α, b, c, d, n,

is consistent with axioms (i) to (v) of S*.

Proof: We prove Proposition 2 in a four-element Boolean valued model.
Since our proof involves an unintuitive model, we first rewrite the axioms
as formulas of set-theory where " c " and " = " are given respectively by
(10) and (14). Accordingly, axioms (i) to (v) become:

(i*) (V*)((*eb)^((* = α)v(* = c))).
(ii*) (V#)((#ee)«-»(#cb)).
(iii*) (Vx)(~(xer\)).
(iv*) α, b, c, d, e, n are pairwise distinct.
(v*) (V*)(V;y)(V2)(((* = y) λ (x e z)) - (y e z)).

Now, representing each element of the four-element Boolean algebra
by a dyadic sequence of length 2, we propose the following four-valued
Boolean model for axioms (i*) to (v*) of S*.
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3 α b c d e n

α (1,0) (1,0) (1,0) (1,0) (0,0) (0,0)
b (1,1) (1,0) (1,1) (1,0) (0,0) (0,1)

(22) c (1,0) (1,0) (0,0) (0,0) (0,0) (0,0)
d (1,1) (1,0) (0,1) (0,0) (0,0) (0,1)
e (1,1) (1,1) (1,1) (1,1) (0,0) (1,1)
n (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Clearly, axioms (iii*) and (iv*) are true in (22) by virtue of (17) and
(15), respectively. To prove that axiom (i*) is true in (22), we have to show
that in (22),

(23) (α € b) <-*• ((α = α) v (α = c))
(24) (b e b) «-*• ((b = α) v (b = c))

(25) (c e b)««. ((c = α) v (c = c))

(26) (d e b) * * ((d = α) v (d = c))

(27) (eeb)^ ((e = α) v (e = c))

(28) (n e b) w ((n = α) v (n = c))

Examination of (22) shows that (23) and (25) a r e obviously t r u e . To

prove that (24) i s t r u e in (22), in view of the th i rd and fifth equali t ies in (6),

we have to show:

(29) | b e b | = *up{|b = α | , |b = c | }

and in o r d e r to prove (29), in view of (14), (10) and sixth and fifth equal i t ies

in (6), we have to show that

(30) | b e b | = s u P { i n f { ( | α e b | + | α e α | + (1,1)), ( | b e b | + | b e α | + (1,1)),

( I c e b | + | c e α | + ( l , l ) ) , ( | d e b | + | d e α | + (1, 1)),

( | e e b | + l e e α l + d , 1)), ( | n e b | + | n e α | + (1,1))},

i n f { ( | α e b | + l α e c l + d , 1)), ( | b e b | + | b ε c | + (1,1)),

( | c e b | + I c e d + (1,1)), ( | d € b | + | d e c | + (1,1)),

( l e e b l + | β e c | + ( l , l ) ) , ( | n e b | + | n e c | + (1, 1))}}

which, in view of (22), amounts to proving

(31) (1, 0) = suP{inf{(l, 0), (1,1), (1, 0), (1, 1), (1,1), (1, 0)},

inf{(l,O), (1, 1), (0,0), (0, 1), (1, 1), (1,0)}}

o r to proving

(32) (1, 0) = suP{(l, 0), (0, 0)}

But the above equality, in view of (7), i s obviously t r u e . Thus, (24) i s t r u e

in model (22). To prove that (26) is t r u e in (27), we have to show:

(33) |d e b | = su P { |d = α | , |d = c | }

by p e r f o r m i n g for (33) the analogs of the t h r e e s teps (30), (31), (32) which

we per formed for (29). The las t two s teps amount to proving

(1, 0) = suP{inf{(l, 0), (1,1), (0, 0), (0, 1), (1,1), (1, 0)},

inf{(l, 0), (1, 1), (1, 0), (1, 1), (1,1), (1, 0)}}
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or to proving

(1, 0) = sup{(0, 0), (1,0)}

But the above equality, in view of (7), is obviously true. Thus, (26) is
true in model (22). Again the truth of (27) in (22) is established by
observing that

| e e b | = suP{|e =α | , |e = c|}

is true in (22), because

(0,0) =suP{inf{(l,0), (1,0), (1,0), (1,0), (1,1), (0,0)},
inf{(l,0), (1,0), (0,0), (0,0), (1, 1), (0, 0)}}

or, because

(0,0)= sup{(0,0), (0,0)}

Similarly, the truth of (28) in (22) is established by observing that

| n e b | = suP{|n = α|, [n = c|}

is true in (22), because

(0, 1) = suP{inf{(0, 1), (0, 1), (0, 1), (0, 1), (1, 1), (1, 1)},
inf{(0, 1), (0, 1), (1,1), (1,1), (1,1), (1,1)}}

or, because

(0,1)= sup {(0,0), (0,1)}

Thus, axiom (i*) is true in (22). Next, we prove that axiom (ii*) is true
in (22). To this end we have to show that in (22),

(34) (oee)e(αcb)
(35) (bee)o(bcb)
(36) (cee)^(cc b)
(37) (dee)^(dcb)
(38) (eee)e(ecb)
(39) ( n e e ) ^ ( n c b )

A m e r e inspection of matrix (22) shows that (34) to (39), expect for
(38), a r e obviously true in (22). To prove that (38) i s also true in (22), in
view of (10) and the fourth, fifth, and sixth equalities in (6), we have to
show:

| e e e | = i n f { ( | α e e | | α € b | + |α e e | + (1,1)), ( | b ε e | | b ε b | + |b ee l + (1, 1)),
( | c € β | | c € b | + | c € β | + ( l , D ) , ( | d e e l | d e b | + Id e e | + (1,1)),
( l e e e l l e e b U |e e e l + (1, D), ( | n e e | | n e b | + | n e el + (1, 1))}

which, in view of (22), amounts to proving

(0, 0) = ίnf {(1, 1), (1, 0), (1, 1), (1, 0), (1, 1), (0, 1)}

which is obviously t rue . Hence, e is the power set of b .
Finally, we show that axiom (v*) is true in (22). But this follows from
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the fact that in (22) for every pair of equal first (second) coordinate-rows
the corresponding first (second) coordinate-columns are equal. For
instance in (22), the first coordinate-rows of α and b are equal; so are the
first coordinate-columns of α and b. Again, in (22) the second coordinate-
rows of b and d are equal; so are the second coordinate-columns of b and
d. Thus, indeed, (22) is a model for S*. Now, let us observe that in (22) we
have

| α e e | = | b e e | = Icεel = Id β el = |ne e| = (1, 1)

Consequently, from (8) it follows that statement (21) is consistent with
the axioms of S*. Hence, Proposition 2 is proved.

Remark 4 In connection with intuitive models (i.e., two-element Boolean
valued models) it is a common practice to represent a set s as a pair of
braces inside of which all the sets of the domain of the model which are
elements of s are inserted. We may generalize this representation in
connection with unintuitive models. For instance, in case of the four-
element Boolean valued model (22), we may represent each set as a pair of
braces with three compartments corresponding respectively to the logical
values (1, 1), (1,0), (0, 1), where in each compartment the appropriate sets
of the domain of the model are inserted. Accordingly, we may represent
the sets α, b, c, d, e, n of model (22) as follows:

α = {|α, b, c, d|}, b = {α, c |b, d |n},
c = {|α, b|}, d = {αlb|c, n},
β = {α, b,c,d, n i l } , n = {||}.

We may call the above "unintuitive representation of sets" (or,
perhaps, representation of unintuitive sets), and, we may observe that the
above representation gives some insight as to the various properties of
sets.

Proposition 3 The statement:

(40) The powerset e of the doubleton b has four elements α, b, c, n,

is consistent with axioms (i) to (v) of 5*.

Proof: The proof of Proposition 3 follows readily from the intuitive model
(20). Indeed, it is easy to verify that in (20) axioms (i) to (v) of S* are true
and that e is the powerset of b and α, b, c, d are the only elements of e.
Consequently, statement (40) is consistent with the axioms of S*.

Proposition 4 The statement:

(41) The powerset e of the doubleton b has three elements b, c, n,

is consistent withaxioms (i) to (v) of 5*.

Proof: For the proof of Proposition 4, we consider the following intuitive
model for S*:
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9 α b c d e n

α 0 1 0 0 0 0
b 1 0 1 0 0 0

(4 2) c 1 0 0 0 0 0
d 0 1 0 1 0 0
e 0 1 1 0 0 1
n 0 0 0 0 0 0

It is easy to verify that in the intuitive model (42) axioms (i) to (v) of
S* are true and that e is the powerset of b and b, c, n are the only elements
of e. Consequently, statement (41) is consistent with the axioms of S*.

Combining Propositions 1 to 4 we have:

Proposition 5 Consider the set-theory S* whose individual constants are
α, b, c, d, e, n and whose axioms are given by (i) to (v). Then S* is consis-
tent and each of the following statements is consistent with the axioms ofS*:

(21) The powerset e of the doubleton b has five elements α, b, c, d, n.
(40) The powerset e of the doubleton b has four elements α, b, c, n.
(41) The powerset e of the doubleton b has three elements b, c, n.

The reader is advised to observe an analogy between Proposition 5 and
the following:

Proposition Assuming that the Zermelo-Fraenkel set-theory ZF is con-
sistent, let p(tf0) denote the powerset of the set$0 of all natural numbers of
ZF. Then, for instance, each of the following statements is consistent with
the axioms of ZF:

(21*) P(«o) is equipollent to «5.
(40*) P(NO) is equipollent to tf4.
(41*) P(N0) is equipollent to tf3.
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