
591
Notre Dame Journal of Formal Logic
Volume XVI, Number 4, October 1975
NDJFAM

THE PROGRAMMATIC SEMANTICS OF BINARY
PREDICATOR CALCULI

JORGE BARALT-TORRIJOS, LUCIO CHIARAVIGLIO,
and WILLIAM GROSKY

One may take the view that combinatory logic is concerned with some
families of calculi that share well studied morphological and transforma-
tional features. These calculi allow for a variety of interpretations. There
has been some interest among those concerned with the theory of pro-
gramming, in these calculi. The intuitive programming interpretations of
some of these calculi generally view them as abstract theories of rules that
govern problem solving by idealized computing facilities (see Goodman [2]).
In this paper,* we wish to present a formal programmatic semantics for a
selection of combinatory calculi that is based on first-order model
theoretic considerations. There may be extensions of the methods here
proposed to higher order and type theoretic considerations (see Curry,
Hindley, and Seldin [1], and Sanchis [4, 5]). For the present, we shall limit
ourselves to the first-order case.

In the following sections of the paper, we first review the morphology
and transformational syntax of the calculi, we then construct a first-order
referential semantics and conclude with a section that develops the pro-
grammatic semantics. The capstone of the paper is a semantic complete-
ness theorem that exhibits how the semantic notion of programmatic
equivalence is related to the syntactical concepts of reducibility and
extensional equivalence.

1 A family of first-order binary predicator languages Each calculus FC
of the family has the following morphology:

a) C is a set of individual constants)
b) V is a denumerably infinite set of individual variables;
c) = is a two-place predicator;
d) αp is a two-place functional sign;
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e) the set of terms, T, is the closure of C U V under the operation of
prefixing αp appropriately to two terms (i.e., op(tl9 t2)))

f) the set of formulae of FC is obtained by infixing = between terms (i.e.,

*i Ξ t2).

The transformational syntax of each FC is as follows:

a) there is a possibly empty set of formulae that are axioms;
b) there is a rule of substitution that states that if / is a theorem of FC, if
xl9 . . .,xn are n distinct variables, and if tl9 . . ., tn are in T, then the
formula obtained by simultaneous unary substitution of tl9 . . ., tn for
xl9 . . ., xninf is also a theorem (briefly, if H/, then v-[tjxl9 . . ., tn/xn]f);

also,

c) perhaps other rules of inference.

The simultaneous unary substitution of n terms for n distinct variables
in terms and formulae is given the usual formulation and satisfies the
common distribution laws with respect to the functional sign and predicator
(i.e., if t and t* are in T, then [t1/xl9 . . ., tn/xn] ap(t9 t*) is identical to
a?([tι/xi, . . ., tn/xn] t, [tjxu . . ., tn/xn] t*) and [tjxl9 . . ., tn/xn] (t = t*) is
identical to {[tjxl9 . . ., tn/xn] t) = {[tjxl9 . . ., tn/xn] t*).

The term tλ is said to be the functional component and t2 the argument
component of the term αp(ίi, t2). The relation is a component of is transi-
tive and reflexive on the set of terms. A term is said to be closed if it has
no components that are variables. A calculus FC is said to have the
substitution property if and only if, for any terms t and t* with component
variables xl9 . . ., xn, if ^-[t1/xι, . . ., tn/xn] (t = t*) for all closed terms
tu . . ., tn> then ht = t*.

By a first-order referential model of FC we understand a pair 9W =

(D, IC) such that,

a) D Φ 0;
b) IC: C — D;
c) 7 C ( α p ) : DxD — D;
d) 7C(=) CDXD;
e) for any term t and de Assig(3Dϊ) = {d\d:V —* D}9 td is the interpretation of t
relative to d;
f) the truth of a formula / i n 9W, 9WN/, and the notion of satisfaction of / in
30Ϊ relative to de Assig(9W), 9W N[/, d], are given the usual explication;
g) if \-f9 then 9WN/. The set D is called the carrier and IC is called the
interpreting function of 9W.

Every calculus FC is semantically complete. In order to show this, we
may construct a free model Wl = (T, IC)9 where,

a) T is the set of terms of FC;
b) IC is the identity on C U V;
c) 7C(αp) is the operation of prefixing αp appropriately to terms;
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d) IC(=) is a relation on T that holds between any two terms tx and t2 if and
and only if H^ = t2.

It is clear that all and only all the theorems of FC are truths of this
model.

2 The programmatic semantics of the family of calculi We take the view
that nothing may be considered to be a plan or program unless we can
envisage goals that might be attained by the proper execution of such plans
or programs. Similarly, we also take the view that the notion of command-
ing or governing a computing facility presupposes the notion of goals. Our
strategy then is first to delineate what a goal language is; second, to
identify what we may mean by processes relative to the interpretation of
the goal language; and third, to identify among these processes those that
may be governed by plans or programs.

A goal language, ζC, for FC has the following characteristics:

a) the morphology of QC includes the morphology of FC;
b) QC may contain further descriptive vocabulary such as connectives,
quantifiers, etc., but we assume that its set of variables is V;
c) QC does not have a theory proper that characterizes its descriptive
vocabulary;
d) QC has first-order realizations, 9W = (D, IG), where D is the carrier and
IG the interpreting function.

A possible realization of QC that is a model of FC is denoted by $Fί*. Any
function s from the natural numbers into the set Assig(9W*) is said to be a
process in Wl*. Any pair G = (Gι, G2) of formulae of QC is a goal.

Definition 1 A process s is bound by a goal G = ( d , G2) in 5KP1* if and only
if, 9W*l=[Gi, s(°)l implies that there is an n ^ 0 such that for all m^n,

The intuitive idea behind the concept of process is that of an activity
that modifies elements of the carrier of 331* producing new elements of the
carrier. In order to have these activities localized relative to the goal
language, they are conceived as transformations of assignments into
assignments. A goal may then be conceived as a pair of formulae of QC,
or, if we desire to generalize, as a sequence of formulae of QC such that if
the first is satisfied by the initial state of the process, then the succeeding
formulae are satisfied in their order after finite delays. If there is a final
formulae in the sequence, then it must be satisfied in proper order after a
finite delay and thereafter. The notion of a process being bound by a goal
is our reconstruction of the intuitive idea of a process succeeding at
attaining a goal.

Among the processes in some realization of QC that is also a model of
FC, there may be some that may be said to be the execution of terms of FC
by some appropriate executing facility. We may now turn to the question of
executing facilities.

Let Pos be the set composed of the elements o and all finite strings of
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α's and / 's . The set Pos may be thought of as a universal set of positions
for the components of any terms. A construction function for terms of any
calculus is a partial function c: Pos x.T —* T such that, for any te T9 c(o, t)
is t; c(a, t) is the argument component of t; c(f, t) is the functional com-
ponent of t; c{aa, t) is the argument component of the argument component
of t; and so on, until all the components of t are exhausted.

In order to conceive of terms of FC as governing some process in a
realization SPΪ* = (D, /G), we need the following,

a) a representation function R that maps D into the set of closed terms of

FC;

b) a syntactical processing agency P that maps terms of FC into terms of

FC;
c) an allocating function αl that maps V into Pos.

Let t be a term of FC and x19 . . ., xm the variables that are components of
t. The process generated by t in 9W* with the initial assignment de
Assig(SW*) relative to a representation R, agency P and allocating function αl
is given by:

Definition 2 Proc(ί, 9W*, d, R, P, αl)(0) = d, and, for any xeV and n ^ 0:

a) (Proc(ί, $K*, d, R, P, αl)(w + 1)) (x) = IG(c(a\(x), Pn([R(d(x\))/'x\, . . .,

R(d(xm))/xm]t))) if c is defined at o\(x) and Pn{[R{d{xλ))/xu . . ., R(d(xm))/

*m\ t);

otherwise,

b) (Proc(ί, 3W*, d, R, P, a\)(n + l))(x) = (?roc(t, 5W*, d, R, P, o\)(n))(x).

The intuitive content of this definition and the preceding remarks can
be exhibited by the following diagram:

d dτ d". . .
J l i 1

R IG,a\ /G,αl

tr • r • * " ' . . .
p p

From an initial assignment d and a term t the representation function R
determines a closed term V. The syntactical transformation P yields a
new term trι. The allocation function αl together with the interpreting
function IG determine a new assignment d\ The sequence of assignments
d, dr, d", . . . is the process in 30Ϊ* governed by t relative to R, Pf and αl.

Definition 3 Two terms tι and t2 of FC are pro grammatically equivalent
relative to R, P, and αl, tγ Eqυ\v(R, P, αl) t2, if and only if, for every 9W*,
every de Assig(3W*), and every goal G of QC, P r o c ^ , 9W*, ^, R, P, αl) i s

bound by G in 9W* if and only if ?roc(t2, WJ*, d, R, P, αl) i s bound by G in
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Terms are programmatically equivalent if the processes they govern
co-succeed in attaining goals of QC in every possible realization that is
also a model of the calculus to which the terms belong. We say that a
syntactical processing agency P is admissible for a calculus FC if and only
if, for every n and term t of FC, \-Pn{t) = t.

Theorem 1 If FC has the substitution property, P is admissible and
tι Equiv(β, P, αl) t2for all αl and R, then \-tγ = t2.

Proof: Assume the hypothesis of the theorem. Let G = (G l 5 G2) be a goal
such that Gx is a truth of 9W* and G2 is the formula [R(d(x1))/xu . . .,
R(d(xn))/xn] tγ Ξ χ9 where a\(x) = o, xu . . ., xn are the component variables
of t1 and t2, and de Assig(9W*). From these assumptions, we may conclude
that 9W*h[G2, Proc(ίi, d, R, P, a\)(m + 1)] for any m, since the following
holds:

a) (Procfo,*!*, d, R, P, αl)(m + l))(*) = IG(c(o, Pm([R(d(xJ)/xl9 . . . , R(d(xn))/
xn] ίi))) = IGiP^ίRidix^/x,, . . ., R(d(xn))/xn] ί x)) ;

b) the interpretation of [R(d(x^)/xu . . ., R(d(xn))/xn] tx relative to any
assignment d is simply the IG of this term since the term is closed;
c) the pairs formed by (ProcC^, 3W*, d, R, P, a\)(m + l))(x) and IG{[R{d{xγ))/
xu . . ., R(d(xn))/xn] tλ) are in /G(=) for m = 0, and hence for m > 0, because
P is admissible, and 3W* is a model of FC.

Thus, we may conclude that for all m greater than some k^O,
9W*N[G2, ?roc{t2, m*, d, R, P, a\)(m + 1)]. Using the assumption that P is
admissible and FC is semantically complete, we conclude that ^-[R{d(x^)/
xu . . ., R(d(xn))/xn] (tι = t2) for any d and R. We have assumed that FC has
the substitution property, and hence htλ = t2. QED

We may say that a syntactical agency P is a conversion for FC if,
whenever \-tx = t2, then there are m, n ^ 0 such that Pm{tι) = Pn{t2). The
following theorem is evident.

Theorem 2 If P is a conversion for FC and htλ = t2, then, for every
possible realization 3W of QC (SP1 need not be a model of FC), every de
Assig(XK), and every goal G, Proc(^, d, R, P, αl) is bound by G in W\ if and
only if Proc(£2, 30ί, d, R, P , αl) is bound by G in 9W.

This theorem can be generalized to goal languages that do not include

the morphology of FC.

3 Conclusion We feel that this approach to programmatic semantics and to
the problems concerned with the equivalence of programs (terms) offers
distinct advantages over previous formulations. The major advantage is
that of the formulation of the notion of equivalence between programs
(terms) which does not include the concept of termination. Another advant-
age is that we are working in a formal system whose proof theory, we feel,
is much simpler than that of the lower predicate calculus (see Manna [3]).
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