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A NOTE ON THE ARITHMETICAL HIERARCHY

STEPHEN L. BLOOM

Introduction. The purpose of this paper is to give a new proof of this
theorem:

theve is a T, NI, predicate having no inverse image' undev any
Junction from N onto N in T, ov inll;.

Although this is a fact about the arithmetical hierarchy, the only
known proof (so far as I know) veers through quantification theory. Kleene
[1]has shown that every consistent formula of quantification theory has a
model in the domain of natural numbers N in which the satisfying
predicates are in T; NI,. In [2] an example is given of a formula F with
one predicate variable P having no model with domain N when P is
interpreted as a T, or II; predicate. Since predicates of integers and their
inverse images satisfy the same sentences of quantification theory without
identity, we can conclude that the predicate which satisfies F has the
property stated in the theorem.

This is a somewhat surprising result, since it shows that the arith-
metical hierarchy is, in a sense, independent of the ‘names’ of the integers.
In contrast, Putnam [3] has shown that every =, NII, predicate has an
inverse image under a certain function from N onto N in the smallest class
of predicates containing the r.e. predicates and closed under truth
functions.

Since the theorem is a fact of recursive function theory, it would be
appropriate to have a proof which does not involve extra-disciplinary
detours. We present such a proof here.

Proof of the theorvem. The trick in our proof is to code enough
predicates with one predicate S to guarantee its inverse images are not too
simple.

Let S;, S;, S5, be the following recursive predicates: S;(x) <> x=0;
Sslx) «> x=1; Sslx,y) <>y =x +1. Let S.(x) be a r.e. non-recursive
predicate, and define S;+; <> as ~S;, for 7 = 1,3,5,7. We let S(x,y,2) be

1. Throughout the remainder of the paper, ‘‘inverse image’’ will mean ‘‘inverse
image under an arbitrary function from N onto N’’. We use the notations Z,,II,
as Davis [4] uses P, Qg
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defined by
S(x,9,2) <> (2 = 1,2,3,4,7 or 8 and S(x) and y = 2) or
(z = 5 or 6 and S,(x,7))

S is clearly Z, NII,.
For each natural number n we define a predicate V,(x) which is true
iff ¥ = n. (This device was suggested by Marvin Minsky.)

Vol#) <= Si(x); Vi(x) <> Ss(x);
Varr(x) <> (3 91)(332) . . . (A 2) [Vi(31) & Ss(91,2) & Ss(92,53) & . . . & Ss(¥n,%)]

or, equivalently,

(1) <= ()2) ... (yn)[[Vl(.Vl) & Ss(y1,y2) & ... & Sy(y,- 1 yn)] - ~Ss(y”,x)]

V.+1 is recursive, since it can be written in both existential and universal
quantifier forms. Finally, suppose that fis a fixed function from N onto N
and @y, @), ... a; are numbers such that f(a;) = i. Let P(x,y,2) <>
S(f(x), f(), f(2)). P is the inverse image of S under f.

Lemma. If P (or ~P) is r.e., there is a recursive function g such that
g(n) = u implies f(u) = n.

Proof of lemma. Define g(0) =a,, g(1) =a,. Suppose » + 1 is given and
P is r.e. (If ~P is r.e., we use a similar argument.) We want to define
g(n + 1). For any u,

f@) =n+1<> Vu (f(w)
<> @Ay ... Q) Vi) & Ss(31,92) & . . . & S5(,,/ (%)) ]
<> Qv ... Q) [Vif)& S(fw1),f@w2))
&. . . & Ss(f(vy),f(w))]

since f is onto. Using the definitions of S and P we can write this last
line as

(2) Qvy) ... v)[Pl1,as,a) & Pw1,02,a5) & . . . & P(vn,u,a5)]

But we can use (1) and the same procedure to obtain as an equivalent
form of (2)

(3) @) ... (vn) [[P(Ul,as,as) & P(0,,05,a5) & . . . & P(Un-b”n,as)] -
"’P(vn,u,ae)]

From (2), (3) and the fact that P is r.e., we see that the predicate
4V, 1(f(4)) can be written in both one-quantifier forms and is therefore
recursive. If we now define g(n + 1) to be the least # such that (3) holds, g
will be recursive. (Notice that such a u always exists, since f is assumed
to be onto.) This concludes the proof of the lemma.

We can now finish the proof of the theorem. Recall that S;(x) <—
P(u,ay,a;) and ~Sq(x) <> P(u,as,as), where u is any number such that
flu) =x. I P (or ~P) were r.e., by the lemma we could find suchau as a
recursive function of x, so that S; would be recursive, contrary to
hypothesis. Thus P cannot be in X, or II; and S is a predicate having the
desired property.
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Since this argument ‘‘relativizes’’, we have the following corollaries.

Corollary 1. For any set B of natuval numbers, theve is a predicate in
28 N8 having no inverse image in =8 UTE.
Covollary 2. For any set B of natural numbers and any n = 1, theve is a
predicate in ©B,, N 1B, having no inverse image in =8 UTIB,

The proof of corollary 2 uses corollary 1 and the facts that 5 ™% =
sa npm-b-md (See Davis [4], p. 159). Using the above methods, we can
also prove

Covollary 3. Theve is a predicate S(x,y,2) in T, NI, with the property that
for any functions f,g and h of N onto N, the predicate 292 S(f(x), g(y), h(z))
is not in Z, UIl,.
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