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A FORMALISATION OF THE ARITHMETIC OF THE
ORDINALS LESS THAN w?®

H. P. WILLIAMS

Some of the results of ordinal arithmetic can be derived from a
multi-successor equation calculus. The initial functions are:

(i) the zero function N(x) =0
(ii) the identity function I(x) = x.

These two functions are implicit. In addition there are:
(iii) a countable number of successor functions So, S4, Sz, . . . .

The successor functions are restricted by the axioms

A SuSV'—'Suif[J.>V

B sasb...5q=sa'5b'...5q'

with a=b=...=qand a'=0d'=...=q" if and only if a =a', b = 0",
...q9=4q".

A function may be defined explicitly, or by recursion in the following
way
F(x,0) =a(x)
F(x,Spy) = bu(x, y, Fx, y))

from previously defined functions a(x) and byu(x, y, 2) (for all p) if the 5,
obey the following identity imposed by A:

c bulx, Suy, bux, y, 2)) = bulx, v, 2) if v < p,
The rules of inference are the following schemata
sb F(x) = Gx)
! F(A) = G(A)
A=B
Sba FA) = A(B)
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A=B
T A=C
B=C

and the uniqueness rule

F(Sp2) = Hulx, Flx))

u F(x) = H*F(0)

for all

F, G, H, are recursive functions and A, B, C are recursive terms. H?f is
defined by the primitive recursion H% =¢, H¥ ¢ = Hulx,H?). U may be
shown to be equivalent to the schema

70) = g(0)
U, F(Sux) = Hylx, flx)) for all u
&(Sux) = Hulx, g(x))
) = glx)

Sx0 is interpreted as wt . w® is understood to be 1 and S, generates the
natural numbers starting with 0. Addition is defined by the following
recursion:

a+0=a,a+5Sub=Sua+0d).

Predecessor functions P, P;, Pp, ... are introduced by the following
definitions:

(i) P,0 =0 forall
(ii) PuSva = Pua if v < p
(iil) PyS,a =Sa if v> p.

Py Sua is defined by the following

(iv) PpS0=0
(v) PuSuSpa =PySua ifv < p
(vi) PuSuSua =S,a if v=p

We must verify that these definitions obey the consistency condition C.
Consider P,S,Sya when v > )

Case (1) pu<v
PuSySra = S, 5\a by (ii)
=S,a
PuSva = S,a by (ii)

Case (2) up=v
PuSuSaa = PuSuSraa = PuSyua by (v)
P#SVa = P#Spa

Case (3) upu>v
PuSySaa = Py Sya = Pua by (iii)
P.Sva = Pua by (iii)
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Subtraction is defined by the following recursions:
a+0=a, a=>Sb=(@=>>b)=*w a=w="Pa
It must be verified that the functions in terms of which addition and

subtraction are defined obey the consistency condition C.
For addition

SuSvi@ +b) = Sula + 1) if v < .
For subtraction it is first necessary to prove the following result.
(1a) PuPva = Ppa, v < p
Let f(a) = Py Pya, gla) = Pua
f(0) = P, P,0 = PO =g(0) by (i)

If X < v, f(Saa) = Py P,Sra= P, Poa = f(a) by (iii)
g(Sya) = PySxa = Pua = f(a) by (iii)

If x> v, f(Sxa) = PuP,Sya= PuSx = g(Sxra) by (ii)

Ifx =v, f(s,\(l) = Pp PvSia
g(Sxa) = P, S,a

Let pa) = f(Sxa), q(a) =g(S)a).

Then p(0) = P, P,S,0=P,0=0
q(0) = P,S,0=0

If = v p(Ska) = Py PyS,Ska = PuSka by (vi)
q(Sxa) = PuS,Ska = P, Spa by (iii)

If < v p(Spa) = PyP,Sra = PuS,S,a = P(a) by (v)
q(Ska) = Py S,Ska = Py Spa by (iii)
= Pua by (iii)
= PuS,a by (iii)
=qa)
We will now prove the following
(1b) PuPya = Pya, v < p
Let f@) = P, Pua, gla) = Pua
£0)="P,P,0="P,0=0
g(0) =P, 0=0
Case (1) x<v<yu

f(Sxa) = P, PySaa = P, Pua = fla) by (ii)
g(sra) = PySra = Pua = g(a) by (ii)

Case (2) v=ar<yu
f(Sxa) = Py PuSra = P, Pua = fla) by (ii)
g(Sra) = PySya = Pua = gla) by (ii)
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Case (3) v<u<n
f(Sya) = PLPuSya = P, Sha = Sxa by (iii)
g(Sxa) = PuSxa = Syaby (iii)

Case (4) v< pu=2x
f(s)ta) = Py Py Sua= wl a)
g(Sxa) = PySua=n(a).

If 6 < p, m(Ssa) = P, PuSySsa = P, P, Sua = m(a) by (v)
n(Ssa) = P, S,Ssa = Py S,a =n(a) by (v)

If 6 = pu, m(Ssa) = P, PyS,Ssa = P,Ssa = Ssa by (vi) and (iii)
n(Ssa) = P, S,Ssa = Ssa by (vi)

We can combine (1a) and (1b) to give
(1) PuPva = Py Pua
The consistency of the defining equations
a=:Sub=(@a+0b) =+ wt
can now be proved since

@+ SuSub=(asSb) = wh=((axb)+w) =+ wh

=PuPyla=b)=Pulaz ) if v<p
@=+0b)*w
=aLSp,b

The degree function d. The function Max(x, ¥) on the natural numbers
is taken as defined. Then the degree function d defined on the ordinals but
having values only among the natural numbers is defined by the following
recursion.

d(0)=0
d(Sua) = Max(d(a), p) .

The consistency condition is satisfied since
Max(Max (d(@),v), 1) = Max(d(a@), u) if v < u.
Multiplication is defined by the following recursions.
a-0=0
a.Sob=a-b+a
a-Syb=a-b+a-wt p>0

0-wt=0

Spa - wh = wmax(d(a),l/)ﬂl.

The consistency of the defining equations for a - w* follows from the
identity

Max (Max (d(@),A),v) = Max(d(a),v) if A < v.
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To prove the consistency of the defining equations for a -b it is first
necessary to prove the following results.

(2) w’+wht=wtif v < p

WY + Wt =550 + Su0 = Su(S,0 + 0)
=5,5,0 = 5,0 = wh

(3) a.w+a-w=a.0ifv<y
0 - w+0-wr=0
0-wt=0

S\a - W + Spa - wh = wMax(d@ Ay | wMGX(d(d),)\)w

= wMax(@d@ M+ by (2) if v < p
Sha - w*

The consistency can now be proved for

a-Sb+a-w=a-b+a-w*+a .t
=a-b+a-wtifv<yu

Some results concerning the function d are now proved.

(4) dw”) = v
d(5,0) = Max (d(0),v) = v.
(5) dl@ + b) = Max(d(a),d(d))

d(a + 0) = d(a)

Max (d(@),d(0)) = Max(d(a),0) = d(a)

d(a+ Spb) = d(Sula@ + b)) = Max(d(@ + b), )
Max (d(a),d (S, b)) = Max(d(a@),Max (d(B), 1))
Max (Max (d(@),d(b)), u)

The result follows by U..

(6) d(sp.a * Syb) = d(Sua) + d(svb)
© 5,0) = d(Sua - w¥) = d(wiCk*)
=d(Spa) + v by (4)
=d(Sua) + d(5,0)
d(Spa - S, 5\b) =d(Spa - Sxb+ Spa - W)
= Max(d(Spa - Sp D), d(Spa - w"))
= Max (d(Spa - S\b),d(Spa) + v)
d(Spa) + d(S, Sad) = d(Sua) + Max (d(Sra),v)
= Max (d(Sua) + d(Sya), d(Sua) + v)

The result follows by U,.
Some results of elementary ordinal arithmetic are now proved.
Associativity of addition

(M @+b)+c=a+(+c)
(@+b)+0=a+0
a+D+0)=a+b
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(a+ b) + Suc = Su(la + d) + ¢
a+(b+Spc)=a+Su(b+c)=5Sula+ (b+c))

The result follows by U;.
The left distributive law

(8) -(b+c)=a-b+a-c

(b+0)=a-b

-b+a-0=a-b+0=a-0»
(b+Spc)=a-Spb+c)=a-(b+c)+a- o
b+a-Syc=a-b+(a-c+a.wh

=(a*b+a-c)+a-wby(7)

QR Q]

The result follows by U,;.

Before proving the associativity of multiplication the following less
general result is proved.

(9) a-(b.o"=(a->d) .
a-0-w(=a-0=0
(@-0)-wt=0-wt=0
a-(5,b-wM=a- wMox(d(b),v)+;4

=a . wd(svb)+#
(@-Sud)-wt=(a-b+a-w’)-wt
It is necessary to prove
a.wISH=(qg.b+a-w) - wt
0 - wdGd) - g
0-2+0-w) -wt=0
S)\a . wd(sl/b)ﬂl.: wd(s}\ﬂ)+d(svb)+#
(Sx@ - b+ Spa - W) - wh = (Saa * b + wIEADw) .

= SdSpapv(Sra « b) - wH
= @ Max(d(Sxa,b),d(Spha) +1)+u

It remains to show

d(Sya) + d(Sub) + u = Max (d(Sya - b),d(Sya) + V) + u
d(Sxa) +d(5,0) =d(S\a) + v

Max(d(Spa - 0),d(Sya) + v) = Max(0,d(Sya) + v)

=d(Sya) + v
Max(d(Sya - Sgb),d(Sya) + v)

= Max (d(Sya) + d(Ssd),d(Sya) + v) by (6)
= d(S)\a) + Mox(d(Sab),v)
=d(S)a) + d(S,S5d)

Hence the result.
Associativity of Multiplication

(10) a-(b-0)=(@-b).-c
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a-(b:-0)=a-0=0

(a-0)-0=0
a-(b-Suc)=a-(b-c+b.ot
a-(b-c)+a-(b-wh
(a-b)-c+(a-b)-wH
=(a-b-c+a-(b-w) by (9)

(@ b)) Suc

The result follows by U;.

(11) O+a=a
0+0=0
0 +5Sua =5u(0 +a)

Component Functions These are defined by the following equations

Cu(0) =0

CuSva) =Cul@) if v < p
Cu(Spa) = SoCpla)
CulSva) =0if v > 4.

These definitions obey the consistency condition C since

(12) Cu(SySra) = Cu(Sra)
= C/t(a)
=Cu(Sva) fx <v<
Cu(S,Sxa) =0
=Cu(Spa) f v> A <v
Cu(SuSva) = SoCp(Sva)
= Socu(a)
=Cu(Spa)if v < .

Before Cantor’s Normal Form theorem is proved a number of results are
required.

(13) w” - Cula) +wt =whif v < p
W’ - Cu(0) + wH =w?” - 0 + wH
= w* by (11)

w’ - Cu(Saa) + wF=w” - Cola) + pif A< v

wY -« Cu(Sya) + wt =w? » SeCula) + wH

(w¥ - Cul@) + @) + w#

=w” - Cula) + (w¥ + w*) by (7)
=w” : Cula) + w* by (2)

w’ 0+ wH

wht if X > v by (1).

w” - C,(Spa) + w*

1}

The result follows by U;.
(14) a-+wh=wh- Cya)+wtif X =d@)
0+ wh =w
wh - Cr(0) + wA = wh - 0 + w
=w)\
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Sua + wh = S\S,a
Saaif p<a
a+ wh
wh - CA(Spa) + wr = WACh(@) + Whif p <A
Saa+ wh = @ + w) + wh
wh . CaA(Sra) + wr. = wr . SChr(a@) + wh
= (w* - Cala) + wA) + w if p> A and d(Sua) > .

1}

1}

The result follows by U;.

n
The Sum Function Given any recursive function f(x) the function ) f(x) is
o

defined on the natural numbers by the following recursions
57 = £(0)
Son n
21 () = f(Son) + 21 ()

Cantor’s Novmal Form Theovem

d(a)
(15) a=2,w* - Cyla)
(4]
Let the right hand side be f(a)
(0)=0
f d(Spa)

f(Sya) = ? w* + Cx(Saa)
Case (i) A = d(a) - d(Sya) = Max(d(a),1) = A.

Hence f(S)a) =i w* + Cx(S)a)

A-1
=wh - Cxr(Sha) + 25 w* - Cx(Sra)
0

=wr . SeCala) + 0
=w* - Cr(a) + wh.
a+ wh

Sxa by (14)

Case (ii) A < d(a), d(Sxa) = Max(d(a),) = d(a)

d(a)
f(Sra) = ? w* - C.(Sra)

d(a@)=1-A A
= %} WAt L Cy il (S)a) +%} w* + C,(Sya)
d(a)=1-A A A-1
= 25 oML Cun(a) + 0t - Ch(Saa) + 25 w* - Ci(Sya)
0 1]
d(a)=1-A

= %} whtttx - ¢y (a) + w - SeCh(a)
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d(a)-1-A
= D) wMHFCrpix(@) + wr - Chla@) + wt
[1]
d(a)-1-A A N
= %} WAHE L Coy g (@) + %} w* . Cy(a) + w” by (13)
= S, f(a)

The theorem follows by U,.

The only successor function in terms of which the component functions are
defined is S,. This fact together with C,L(O) = 0 shows that the component
functions only take values among the natural numbers. The degree function
also only has values among the natural numbers. Hence the above theorem
shows that every ordinal a less than w® can be uniquely expressed in the
form

a a a
a=w l-al+w2-az+...+w"-a/e

where a,, a;, . . ., ap are natural numbers and @,, @,, . . ., @ is a decreas-
ing sequence of ordinal numbers.
The ordinal a given above can be written as

ap cap- a
Sar Saglt...Sqt 0
where Sg/ is an abbreviation for Se; Se; . . . Se;
N
a;

When this is done computation with ordinals written in normal form can be
performed by successive applications of the rules involving successor and
predecessor functions and other arithmetical functions, e.g.

(@ +w? 2+w+3)+ W+ 1) = 505050515252550 + S6520
= 50(505050515252530 + $20)
= 50[52(505050515252530 + 0)]
= 50525050505, 52525350
50525252530 by application of axiom A
o+ w?34+1.
515151520 « o550
515153520 « 0 + 5;5;5:550 - w® + $,5,5,5,0
= wiG1S55:943 | 5 5.5 5.0
w® + $35:5:5,0
S50 + 5;5:5:550
51515155550
=w+wi+w- 3

(W+w-3) - (W+1)

The addition defined above is not commutative. A new addition can there-
fore be defined by the following equation.

a@®b=0b+a.

A countable number of functions T, are defined by the following
equation.

Tua =a@ k.
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The following inference schema is proved.

£(0) = g(0)
U ATua) = Hyula,f@))
z g(Tua) = Hyula,gla))
fla) = g(a)

In the following proof, functions are introduced some of whose arguments
only take values among the natural numbers. The arithmetic of the natural
numbers is used intuitively and proofs using transfinite induction on the
natural numbers are permitted.

The function Gﬁ(a ,b) is defined by the following recursion.

Ghla,b) = b
Gé‘om(a,b) = Hu(w" - m + a,Glla,b))

u and m are restricted to the natural numbers.
Ghla,f@)) = flw" - m+ a
This is now proved.

Gila,f(a) = fla)
flw* -0+ a) = fla)
G§ @ .f(a) = Hu(w" - m +a,Ghla,f(@))
Flw” - Sem + @) = f((wH* + w* - m) +a)
= flw# + (0" - m + a))
= f(Tu(w* - m + a))
= Hy(w* - m + af(w" . m + a))

The result follows by U;.

The inference schema is proved by induction on the degree of a.
For finite a Tea = Soa. Also f(0) =g(0). The result is therefore true
for d(@) = 0. Suppose f(a) =g(a) when d(@) < n. Choose b so that
d(p) =d@) +1

d(a)+1
b= ), w " Ck(d)
0

d(a)
= w9 Cyg (B) + ? w* + Cx(b)

d(a)+1 @ d(a)
1) = ch(a)+1(b) %‘l w* * Cx(d), f] %: w® + Cx ()
by the result just proved

d(a) d(a)
f(? w® - Cx(b)> = g(? w* - Cx(b)>

by the inductive assumption. Hence f(b) = g(b) and the schema is proved.
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A number of results involving subtraction are now proved.

(16) Pua= b= "Pua * b
Pua+0="Pua
P#(a = O) = P#a
P,laé Syb = Pv(Pya = D)
Pula = S,0) = P,Pui@ ~ b)
Py P;L(a = b) by (1)

(17) (a+bd)>c=@=>c)> b
(@a=b)~0=a-*d
(@a=0)=b=a=>0

@b = 5Suc="Pulla+d) = c]
(@~ Suc)=b=Pyla+c)=d
Pulla = ¢) = b] by (17)

(18) a~a=0
0-0=0
Spa = Spa = Pu(Sua + a)

PuSua +a by (17)
Let f(a) = Py Sua = a
f(0)=PuS,0+0=0=0=0
Ifv< Y, f(Sva) Pp. su Sva - Sva
Py(P,Sua = a)
Py PuSua = aby (17)
PuSpa = a
= fla)
PuSuSpa = Sua
PuPuSuSpa * a
PuSpa + aby (vi)
= f(a)
If v> p, f(Sva)= Py SuSva = Sva
=S,a * Sya by (vi).

If v =y, f(Sua)

Hence we can prove Sya ~ Sya = 0 if we can prove Sya = Sya = 0 for all
sufficiently large v. Choose v > d(a).

Then Sya = w?
w’ ~w¥ =P,S5,0=0.

The following result is sometimes useful.

(19) T;;S,,a: S,,Tua
TuSva =w* + (a+ W)

(W' +a) + w?

=5,Tua.

The Diffevence Function

lab| =(a+ b))+ ® +a).
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The following schema holds.

la,b] =0
a=>

Before proving this scheme the following result is proved.
(20) a=b=0 if d(b) = d(a)
If b = 0 d(d) = 0 and the result holds vacuously

a=Sub=Pyla = b)
P’lo = 0.
The schema is now proved.
f@=d)+(B=>a)=0

Suppose d(a) = d(b)

Then (@ b))+ (b >a)=a=>b

Suppose d(b) = d(a)

Then (@ b)) + (b *a)=b * a.

We may therefore suppose in general

a*b=0andd(a) > d(d)
By Cantor’s Normal Form theorem
a =S50St . s
b =Sgosyr. .. siibo

where #4(a) > 0, 74, > 0 and #; = 0 for ¢ < d(a)
and m; =0 for i < d(b)
Hencea = b = PgOPYL . . . Paa?sie . . . sié0o
d(b ’
PiGy Se° - . . S4d90 by (16)

md(b) md(b nd(a)
Pd(b() Suiyett . .. S4ey0

0 d(a) > d(b).

+*

This is a contradiction. We may, therefore, suppose
d(a) = d(d).

Suppose Cq(z)(@) # Cd)(d).
We may suppose Cy.,(0) < Cy,y(@)

. p - pCda)® Cd(a)(@
Thena = b = Pd(a;’ Satay” 0

= 5Cd(a)(@)-Cd(a)(®)
- Scl(zl) 0

#0
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Hence Cy(y)(a) = Cda)(d)

We may next prove Cds)-1(a@) = Cdz) -1(b)
and in general C;(a) = C;(d) i < d(a)
Hence a = b.

An extension of the formalisation to ovdinals greatev than w®

The ordinals less than w® can be represented using successor functions
indexed by the natural numbers. In the development of the arithmetic it is
necessary to use some of the arithmetic of the natural numbers used in the
indexing. By taking more successor functions and using indices extending
into infinite ordinals it is possible to extend this formalisation to ordinals
greater than w®. It is necessary, however, to use some of the arithmetic of
the indexing infinite ordinals. If the preceding formalisation of ordinals
less than w® is accepted it is then possible to consider successor functions
indexed by such ordinals and to formalise ordinal arithmetic for ordinals
less than w®“. This procedure can, of course, be repeated and even greater
ordinals considered.
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