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DOING LOGIC BY COMPUTER

RICHARD L. PURTILL

Teachers of logic often tell their classes that a great number of tasks
in logic can be performed mechanically. Surprisingly enough, most logi-
cians have failed to make full use of existing mechanical devices which
could demonstrate this point, and by so doing, increase the interest of
students in the theory and application of logic.

In this paper®, I will first describe some simple ways of using digital
computers to do certain tasks connected with logic, for example, draw up
truth tables, decide whether statements are tautologies, contingent or con-
tradictory and whether arguments are valid or invalid. I will then go on to
discuss some extensions of these techniques. The advantage of the tech-
niques I am about to describe is that they can be used on most machines
which can be programmed by means of FORTRAN, which is a ‘‘pro-
gramming language’’ in which instructions can be written in combinations
of English and algebraic statements. Many such machines are in use in-
cluding some small computers used mainly for bookkeeping operations.
There are a few specially designed logical computers in existence, and
some rather rare and expensive computers have certain logical capabilities
in addition to their mathematical ones. But such computers exist in fairly
small numbers, and are fairly difficult of access, whereas machines which
can be programmed in FORTRAN are fairly common, and more likely to be
available.

Let us begin with a very simple problem in logic. A and B are true
statements; X and Y are false statements. Our problem is to discover the
truth or falsity of certain compound statements made up of A’s, B's, X’s
and Y’s joined by the truth functional connectives ‘“.”’ (‘‘and’’) ‘‘v,”” (“‘or”’).
Now the average computer has no such special symbols as, ‘“.”” and ‘‘v”’
and it is designed to do mathematical rather than logical calculations. What
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we must do is to translate our logical problem, which the machine cannot
solve, into a mathematical problem, which it can. One simple way to go
about this (which we will eventually discard for a better technique) is to re-
place all “‘v”’ (‘“or’’) symbols with ‘‘+’’ and all ‘“.”’ (‘‘and’’) symbols by
“x”” (the FORTRAN symbol for ‘‘times,”’ or multiplication). We then give
A and B the numerical value ‘“1”’ and X and Y the numerical value ‘‘0.”” In
this way we change e.g. ((AvX).((XvY).B).A v (X.Y)) which means
nothing to the machine into ((1 + 0) * ((0 + 0) *1)*(1 +(0 * 0)), a simple cal-
culation which the machine can do in a few microseconds. It is easy to see
that any true compound statement will result in a positive number, while
any false compound statement will result in zero, when subjected to this
process. What, if anything, have we gained by doing the problem in this
way? In the first place, the machine once told that A and B are equal to
one, and X and Y are equal to zero, will make the substitutions for us: we
can write (4 +X) * ((X+A) * B) etc. in our program and the machine will
calculate it as (1 +0) *((0+0) *1) etc. without further instructions.
Furthermore, the machine will calculate the value of any expression, no
matter what its complexity without mistakes and in a very short time.

Besides its ability to calculate, the standard computer has the ability
to test the value of an expression and do one thing if its value is a negative
number, another if its value is zero, and yet another if its value is a posi-
tive number. If we like, we can use this capability and instruct the com-
puter to type out the word ““FALSE’’ if the value of an expression is zero,
the word ‘““TRUE’’ if the value of an expression is a positive number, thus
saving us the trouble of retranslating from numbers to truth values.

Without some substitute for ‘‘~’’ (‘‘not’’) we cannot express all pos-
sible compound statements, and it would be convenient to have substitute
for D’ (‘‘if-then’’) and ‘="’ (“‘if and only if’’). No mathematical operators
are as conveniently analogous to these symbols as ‘‘+’’ and “‘*’’ are to ‘‘v”’
and ‘‘.’’. Fortunately, almost all computers allow us to define special
operators, technically called “‘functions,’’ to perform non-standard calcu-
lations. Thus, we can define a function named ‘‘X’’ such that, if the
machine reads the expression ‘‘X(4)”’ it will ascertain the value of A, if it
is zero change it to one, and if it is any positive number change it to zero.
Furthermore, the complexity of the expression operated on by ‘“X’’ does
not matter. If the machine reads “X((4 + X) * ((X+ A) * B))”’ it will calcu-
late the value of ‘(A + X) * ((X+A) * B)”’ and if it is zero change it to one,
or if it is positive change it to zero. Also eg. “X(X(X(X(4))))”’ is a
perfectly legitimate expression and will be correctly calculated by the
machine.

So far we have substitutes for ‘.’ (‘‘and’’), ¢‘v’’ (‘‘or’’), and ¢~’
(“‘not’’): which will enable us to express any statement in the propositional
calculus. It is possible to define a function, named for example, “FIF’’?
which will take the place of ‘>’ (‘‘if-then’’). One way to do this is to give

2. For technical reasons these functions may not begin with the letters I, J, K, L, M,
or N.
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the machine the following instructions: ‘‘When you read the expression
FIF(A,B), subtract B from A. If the result is zero or negative, substitute a
value of 1 for the expression FIF(A,B), if the result of the subtraction is
positive substitute a value of 0 for FIF(A,B).” This instruction gives us
an analogue for ‘2’ (‘‘if-then”’). ‘“pDqg’’ (‘‘if p then ¢’’) is true if p and q
are both true, both false, or if p is false and q true. It is false if p is true
and g false. Now substitute one and zero for true and false and it can be
seen that we want a value of one (=true) for the combinations one-one,
zero-zero, and zero-one, and a value of zero (=false) for one-zero. The
instructions described have this effect. One minus one is zero, and the
machine substitutes one. One minus zero is one, and the machine sub-
stitutes one. One minus zero is one, and the machine substitutes zero.
Zero minus one is minus one, and the machine substitutes one, and finally
zero minus zero is zero, and the machine substitutes one. If we use this
simple way of defining ¢‘if-then’’ functions, however, we must now define
a special ‘“v’’ (‘‘or’’) function to replace ‘‘+.”” For otherwise, if we had
(A v B) D C, where A,B and C were all true this would be calculated as
(1+ 1) -1 and the machine would mistakenly substitute zero, that is call
the expression false. But it is easy to define a function,named for example,
“OR’’ which will leave a zero unchanged but substitute a 1 for any positive
number that results from addition. That is, the machine is told ‘‘if you
read OR(A,B), add A and B. If the result is zero, let it stand, but if the
result is any positive number, substitute 1.”> A function for ‘=’ (‘‘if and
only if”’) can also be defined, and called for example ‘“‘EQ.’> We could re-
tain ‘¥’ for ‘“.”’ (‘““and’’) but for consistency it is as well to define a
separate ‘‘AND’’ function. We then have a quasi-Polish notation which,
however, needs punctuation.

So far so good. But calculating truth values of compound statements
composed of statements with fixed truth values is not a very advanced part
of propositional calculus which is not a very advanced part of logic. Can
we determine whether statements expressed in terms of variables are
tautologous, contingent or contradictory, and whether arguments are valid
or invalid? We can, but let us first consider a simpler problem; that of
writing truth tables by machine.

This involves another capability of computers: the ability to repeat a
given task many times while keeping a ‘‘tally’’ of the number of repetitions
as it goes along each repetition adding to the tally number. In fact, the task
itself is generally written as a function of the tally number, or index, e.g.
If we wish to square the digits from 1-100 we merely instruct the machine
to square the current value of the tally and store the separate results. Such
statements might read:

DO11I=1,100
18Q (1) =1%x2

The machine at the start, looks at the current value of the index, which is 1,
squares it and stores it in a location it has reserved called SQ (1). The
second time around, the tally is 2, so the machine squares 2 and stores it
in a location called SQ (2). This it would continue, through the Jth
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repetition, squaring J and storing it in SQ (J) that is, the Jth location
reserved for squares, till it got to 100, which it sees is the upper limit on
the number of repetitions, so after squaring and storing in SQ (100) it would
go on to the next instruction.

Now in order to write a truth table we put a number of the repetition
instructions, called ‘DO statements’’ or ‘DO loops’’ together in series.
Suppose that we want to write a truth table for three variables, first using
1’s and 0’s instead of T’s and F’s. We put three ‘DO statements’’ together,
each one of which is instructed to set its tally number (or actually for
technical reasons a number computed from the tally number)® first at zero
and then at one. (Call the tally number of the first ‘DO statement’’ I, of
the second J, and of the third K.)

When the machine reads the first DO statement it sets the tally, I, to
zero, and goes on. It then encounters the next DO statement, sets J to zero
and goes on. It then encounters the third DO statement, sets K to zero and
goes on to the next instruction. Suppose that this is to print out the values
of I, J, and K. This would give us the line:

000

Now the crucial thing is what the machine does next. Since the third
DO statement instructs the machine to do two things, the machine will keep
repeating till it has done them. It thus goes back and changes the value of
K to one. Since the machine has not yet changed the value of I and J they
remain the same, (i.e. zero) and the machine goes on again to the next
statement which is, of course, (since the machine has gone back to the third
DO statement) the instruction to print I, J, and K. This time we get the
line:

001

Now the machine has done all the repetitions required by the third DO
statement, and it goes back to the second DO statement and changes J from
zero to one. But since it has gone back, it comes again to the third DO
statement which must begin with the value 0 first time around and so sets K
at zero again. It then comes to the PRINT, I, J, K, instruction again and
prints the line:

010
As before, it repeats with K as one, giving the line
011

Now as the second DO statement has been ‘‘satisfied,’’ that is, its in-
structions have been carried out, so the machine goes back to the first DO
statement and changes I to one. But what comes next--the second DO
statement! So everything described so far is repeated again with I at zero,

3. The tally number cannot be zero, so we set it first at 1 and then at 2, then subtract
1 from this tally number so that the number we use is first zero, then 1.
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that is J is set first at 0, then at 1 while K is first 0, then 1 each time re-
sulting in the lines:

100
101
110
111

We have had then, eight lines:

000
001
010
011
100
101
110
111

which is a truth table for three variables using 1’s and 0’s for T’s and F’s.
(The table is upside down, but this can be remedied.)®* The machine now
has finally obeyed all its repetition instructions and stops or goes on to
other tasks as instructed. By printing out the contents of certain memory
locations labeled by use of I, J, and K instead of the values of I, J, and K,
we can get the machine to print T’s and F’s instead of 1’s and 0’s. We can
easily have the machine label the rows P, Q, R or whatever variableswe
are using. And there is no limit to the number of variables for which we
can draw up a truth table. For example, I have one for eight variables,
which has 256 lines and covers about three sheets of paper. In itself, it is
merely a curiosity: since the techniques I am about to describe make it
unnecessary for human beings to actually look at truth tables.

Suppose that our problem is to determine whether some statement in
the propositional calculus is a tautology, contingent, or a contradiction.
Take, for example, (P v Q) = (P v (Q. ~ P)) (which happens to be a tautol-
ogy, but is a particularly counter-intuitive one). First, we need to rewrite
this, as we did with our fixed truth-value statements. It becomes
EQ (OR (P,Q), OR (P, AND(Q,X(P)))). We then need to test this by finding
its value for each line of the truth table. We can do this simply by setting
up two DO loops similar to those described above whose tally numbers, are
labeled P and €. Thus, the first time through, both P and @ will be zero,
the second time P will be zero and @ one, the third P will be one and @
zero and the fourth, both will be one. By simply putting the statement to be
tested in the position of the PRINT, I, J, K, statement in our previous
example, its value will be computed for each set of values of P and @. (For
any given set of values, the machine precedes just as in the first case we
discussed.) We can then make the next statement one of the type that test
the value of an expression and take different paths depending on whether the

4. By subtracting the tally from 2 instead of subtracting 1 from the tally.
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value is a zero or a positive number. For any line which gives the value
zero to the expression to be tested, we can make some sort of tally, and if
we like, also print out that line of the truth table. If all lines of the truth
table give the statement being tested a value of zero, (that is, false) it is of
course contradictory; if no line gives it a value of zero, it will of course be
a tautology. If some lines but not others give the expression a value of
zero, then it is contingent, and as I have said the lines for which the ex-
pression is false can be printed out. An argument ca. be tested for validity
by testing whether it becomes a tautology when written as a statement in
which the premises are joined by ‘‘ands’’ and are asserted to jointly imply
the conclusion.

The programs described so far actually exist, and have worked cor-
rectly exercises from a number of standard logic texts, for example those
in chapter two of Copi’s Symbolic Logic.

Our success so far has been achieved by reducing logical manipulations
to arithmetical ones, and by using the special reiterative features of the DO
statement to generate truth tables. We can also perform other tasks which
are normally performed by symbolic manipulation, by working through
truth tables and building on the programs described so far. One such task
is finding the Boolean expansion of a statement. Corresponding to the lines
of the truth table for » variables are the disjuncts of the Disjunctive
Boolean Normal Form for » variables of a tautology.

par

TTT p.q.7)
TTF p.q.~7r)
TFT (p.~q.7)
TFF p.~q.~7)
FTT (~p.q.7)
FTF (~p.q.~7)
FFT (~p.~q.7)
FFF (~p.~q.~7)

The Disjunctive Boolean Normal Form of any expression consists of
the disjunction of those disjuncts corresponding to the lines for which it is
true. Thus the expression ‘‘(p.q)’’ is true for the first and second lines of
the truth table and its Disjunctive Boolean Normal Form is ‘“((p.q.7) v
(p.qg.~v).”

So by a slight adjustment of our previous program we can print out the
Disjunctive Boolean Normal Form of an expression instead of printing the
lines of a truth table for which it is false. Since a contradiction has no
Disjunctive Boolean Normal Form we can utilize the Conjunctive Boolean
Normal Form of contradictions.

A somewhat more complex program will serve to simplify expressions
with a limited number of variables. It can be shown that for » variables
there are 2% distinct non-equivalent expressions which can be formed from
these variables. These correspond to the 22" possible arrangements of T’s
and F’s under an expression for the 2” lines of a truth table for # variables.
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Of course any expression with a given pattern of T’s and F’s for some
standard form of truth table is equivalent to any other expression with that
pattern for that standard form of truth table. Thus, with the standard truth

table we have been using “((~p v ~¢q) - (p v ¢))’’ and “~ (p = ¢)’’ have the
same pattern;

2} ~(@p=q (~pv~q .(pva)
TT F F
TF T T
FT T T
FF F F

and are thus equivalent.

Now, of a set of equivalent expressions, some must be simpler than
others. By a certain amount of conventionalization with regard to what will
count as simplicity a unique simplest expression can be found for each
pattern of T’s and F’s. We can record this list of simplest expressions in
the computer’s memory, and for any expression find its equivalent simplest
expression, by finding its pattern of T’s and F’s for a standard truth table,
and locating in the machine memory the simplest expression with that
pattern.

In practice one convenient way to do this is to replace the T’s and F’s
by ones and zeroes and read the pattern from top to bottom as a binary
number. Thus p v (~p D ¢q v (~ g D 7)) has the following pattern:

pv(~p>2(gv(~g>D7))

paqgr or numerically
TTT T 1
TTF T 1
TFT T 1
TFF T 1
FTT T 1
FTF T 1
FFT T 1
FFF F 0

Read as a binary number this is 11111110, which in decimal notations is
254. We then look in a memory location labelled by use of the number 254
and find the simplest form corresponding to pv (~p D (g v(~gq D7),
which is p v (¢ v#). The computation of the decimal number, (which Icall
the Characteristic Number of an expression) which corresponds to the
binary number which correspond to the pattern of T’s and F’s, can be
performed by a fairly minor modification of the programs described so far.

This method of simplification would be ideal except for one fatal
limitation: while there are a manageable 256 simplest expressions for 3
variables, there are 65,536 simplest forms for 4 variables and a fantastic
2% simplest forms for 5 variables. Thus, though I have a working program
which will solve, in a few seconds, the most complex simplification prob-
lems given in logic books (none that I have seen go beyond three variables)
the method is in a way a dead end.
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A more general solution to the simplification problem is to first use
the Disjunctive Boolean Normal Form writing program then apply the
relatively cut and dried techniques available to simplify the resulting
Boolean Form. Mechanization of this second stage is a current research
problem. The Disjunctive Boolean Normal Form writer has no inherent
limitations, though in fact the working program is only for three variables.

Thus, the existing programs cover all the essential manipulations of
propositional logic. Proofs, of course, are never really necessary in
propositional logic, since truth table techniques can always show whether a
given inference is valid. The techniques described could be modified to
check proofs, although there are special problems in distinguishing a
genuine proof from a string of disconnected lines, each of which follows
from the premises. The creation of proofs is a different sort of problem
although there are techniques available for propositional logic which could
probably be computerized.

Beyond propositional logic, some possibilities exist for mechanization
of logical calculations. I have a rather cumbersome program which will
take syllogisms written in what approximates to ordinary English and check
their validity. I now have programs for propositional modal logic, using
techniques related to those which I have described for propositional logic.

DO loops which go from 1 to 4 are used to create the four-valued
tables by which modal propositions can be tested, and new functions called
REQ (for necessity) and POS (for possibility) are used, along with redefini-
tions of the other connectives for the four-valued tables. These functions
can be adjusted to create a modal S3, S4 or S5 system, as desired. Some
very complex expressions can be tested, and some rather interesting
results are beginning to come out of this research, which I hope to report
on in due course.

The mechanization of logical calculations involving quantified state-
ments is a difficult problem for which I see at present no very satisfactory
solutions.

The advantage of the programs described in this paper is that logical
expressions can be translated into relatively clear and simple FORTRAN
statements, and tested, simplified etc. by insertion into relatively short and
easily understandable programs written in FORTRAN. If Polish notation is
used the translation process becomes even easier, although for technical
reasons not all of the usual letters of Polish notation can be used as names
of functions.

What is the point of being able to perform logical calculations by com-
puter? So far at least there is no special demand for complex or large
scale logical calculation, although the development of simple and workable
programs for such calculations may help to encourage a demand for logical
calculations which would be tedious and unprofitable if they had to be done
“‘py hand.”

However, as I suggested at the beginning of this paper, the heuristic
value of such techniques is considerable. The analogies demonstrated be-
tween logical and mathematical calculations, the relation between mechani-
cal methods in logic and the performance of such tasks by actual machines
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all offer valuable insights. If computer time can be made available for a
logic class, the mechanical performance of necessary calculations can en-
able problems to be assigned which go beyond the usual trivialities.

But the greatest rewards are reserved for those who actually invent
new programs for performing logical tasks. Programming in FORTRAN
enables the interested non-specialist to use the resources of modern com-
puter technology without becoming involved in technicalities or details, and
the insight into the structure of a problem or method gained by translating
it into computer terms is a valuable by-product of such research. And if
enough interested logicians turn their attention to the problems of doing
logic by computer, the crude beginnings here described may lead to results
of great value.

APPENDIX

Introduction

This list was produced by computer. The fact that it appears to be in standard
logical notation may be puzzling. Actually in my programs the input must be in the
form described, but there is greater freedom with regard to output By using the
letter ¢‘V’’ for ‘‘or,”’ a period for ‘‘and,”’ an equal sign for ‘‘if and only if’’ and a
minus sign for ‘‘not’’ the output can be made to look approximately like standard
logical notation. There is, of course, no horseshoe for ‘‘if then,’’ and also the equal
sign rather than a triple bar must be used for ‘‘if and only if’’ and the straight minus
sign rather than the ‘‘squiggle’’ or tilde for ‘‘not.”’

The leftmost number is the Characteristic Number described in the paper. The
number to the right of this is the Characteristic Sum. The number of lines of an
eight-line truth table for which the statement is true. This list can be recorded in the
computer and in the simplification problem described in the paper, an input of the
form OR (P, 'FIF(OR (P, FIF(X (@), R)))) (in the appropriate program) will reduce the
output:

(PVQVR).

which is the simplest form of the expression written in machine notation above.

o o ( P o =P)
1 1 P o -0 . -R)
2 1 P ol =@ o R}
3 2 - . -0
4 1 P Q@ . -R)
5 2 -2 . -R
6 2 -P ol Q = =R)
7 3 -P ol =-Q vV =R)
8 1 -P ol Q . R)
9 2 -P of Q = R)
10 2 -P .o R
11 3 -p ol =Q v R)
12 2 -P [ Q
13 3 -p ol Q V. =R}
14 3 -P ol Q v R)
15 4 -P
16 1 P ol -Q . -R)
17 2 -Q . -R
18 2 -Q ol P = =R)
19 3 -Q ol <P vV =R)
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