PROOF OF SOME THEOREMS ON
 RECURSIVELY ENUMERABLE SETS

TH. SKOLEM

In this paper I shall first define a class of functions which I call lower elementary, abbreviated l.el. functions in the sequel, and after some preliminary considerations prove that every recursively enumerable set of integers can be enumerated by a l.el. function. All variables and functions shall here take non-negative integers as values. L. Kalmár defined the notion elementary function (see [1]). These are the functions that can be constructed from addition, multiplication and the operation $\dot{-}$ by use of the general sums and products

$$
\sum_{r=0}^{x} f(r) \quad \text { and } \prod_{r=0}^{x} f(r),
$$

where f may contain parameters, together with the use of composition. If we omit the use of general products, we get what I call the lower elementary functions. The definition is therefore:

Df 1 . The l.el. functions are those which can be built by starting with the functions $0,1, x+y, x y, x \dot{-} y$ and using the summation $\sum_{r=0}^{x} f(r)$, where f may contain parameters, besides use of composition. By the way, instead of $x \dot{-}$ one can choose $\delta(x, y)$, the Kronecker delta (see [2]). As to the summation schema it can be shown that it is sufficient to require its use in the case that f contains one parameter at most. Of course $x y$ can be omitted as starting function.

Clearly every polynomial is an l.el. function. Further every 1.el. function can be majorised by a polynomial. This is seen immediately to be true for the starting functions and it is easily seen to be hereditary with regard to summation and composition. If for example $f(x, y)$ is always $\leqq \varphi(x, y)$, where φ is a polynomial, then for all x and y

$$
\sum_{r=0}^{x} f(r, y) \leq \sum_{r=0}^{x} \varphi(r, y)
$$

and the right hand side here is again a polynomial. In order to prove that also composition leads from functions which can be majorised by polynomials to functions of this kind we may first suppose that $f(x, y)$ increases steadily for increasing x and y, that is $f(x, y) \leqq f\left(x^{\prime}, y^{\prime}\right)$ when $x \leqq x^{\prime}$, $y \leqq y^{\prime}$. Then we have for all x and y, supposing that f, g, b are majorised by the polynomials φ, γ, η,

$$
f(g(x, y), b(x, y)) \leqq f(\gamma(x, y), \eta(x, y)) \leqq \varphi(\gamma(x, y), \eta(x, y))
$$

and the last function is a polynomial. However, if $f(x, y)$ is not monotonous, we have in any case

$$
f(x, y) \leqq \sum_{r=0}^{x} \sum_{s=0}^{y} f(r, s) \leqq \sum_{r=0}^{x} \sum_{s=0}^{y} \varphi(r, s)=\phi(x, y)
$$

and the polynomial $\phi(x, y)$ is of course monotonous with regard to x and y. Therefore

$$
f(g(x, y), b(x, y)) \leqq \phi(g(x, y), h(x, y)) \leqq \phi(\gamma(x, y), \eta(x, y)),
$$

where the last function is a polynomial. Of course these proofs can be carried out just as well for functions of more variables.

Lemma 1. Let f and g be l.el. functions and always $f(x)>y$ when $x>$ $g(y)$. Then the greatest x such that $f(x) \leqq y$ is a l.el. function of y.
Proof: As a matter of fact this greatest x can be expressed so:

$$
x=\sum_{r=0}^{g(y)} r \cdot \overline{\mathbf{s g}}(f(r) \dot{y}) \overline{\mathbf{s g}} \sum_{s=r+1}^{g(y)} s \cdot \overline{\mathbf{s g}}(f(s) \dot{y})
$$

where $\overline{\boldsymbol{s g}} z$ as usual means $1-z$. Indeed, letting r take successively the values $g(y), g(y) \div 1, g(y) \doteq 2, \ldots$ we will once for the first time reach an r such that $f(r) \dot{-y}$ is $=0$ so that $r \overline{s g}(f(r)-y)$ is just $=r$ which is the desired x. Still $\boldsymbol{s} \overline{\operatorname{sg}}(f(s) \dot{y})$ is $=0$ for greater values of s than x so that $\overline{\operatorname{sg}} \sum_{s=x+1}^{g(y)} s \overline{\operatorname{sg}}(f(s) \dot{-} y)=1$. For smaller values of r than x we have $\overline{\operatorname{sg}} \sum_{s=r+1}^{g(y)}$ $\boldsymbol{s} \overline{\operatorname{sg}}(f(s) \dot{-y})=0$. Therefore the value of the whole double sum is x as asserted.

Lemma 2. Putting for $r=1,2, \ldots, m$

$$
x_{r}=\tau_{r}^{(m)} y
$$

when $y=\mathfrak{P}_{m}\left(x_{1}, \ldots, x_{m}\right)$, where $\mathfrak{P}_{m}\left(x_{1}, \ldots, x_{m}\right)$ is the polynomial

$$
\left.\left.\begin{array}{rl}
\left(x_{1}+x_{2}+\cdots+x_{m}+m-1\right. \\
m
\end{array}\right)+\binom{x_{1}+x_{2}+\ldots+x_{m-1}+m-2}{m-1}, \begin{array}{c}
x_{1}+x_{2}+1 \\
2
\end{array}\right)+x_{1}, ~ \$+\ldots+\left(\begin{array}{c}
\end{array}\right.
$$

the functions $\tau_{r}^{(m)}(y)$ are all of them 1.el.

Proof: As is well known (see [3]) the equation $y=\mathfrak{F}_{m}\left(x_{1}, \ldots, x_{m}\right)$ yields the simplest one to one correspondence between the integers y and the m tuples of integers x_{1}, \ldots, x_{m}. Putting for $r=1,2, \ldots, m x_{1}+x_{2}+\ldots+$ $x_{r}=\xi_{r}$ we get that ξ_{m} is the greatest value of z such that

$$
\binom{z+m-1}{m} \leqq y
$$

Therefore according to lemma $1 \xi_{m}$ is a l.el. function $\sigma_{m}^{(m)} y$. Further ξ_{m-1} is the greatest z such that

$$
\binom{z+m-2}{m-1} \leqq y-\binom{\sigma_{m}^{(m)} y+m-1}{m}=y_{1}
$$

so that according to lemma $1 \xi_{m-1}$ is a l.el. function of y_{1}. But y_{1} is a l.el. function of y. Therefore $\xi_{m-1}=\sigma_{m-1}^{(m)}(y), \sigma_{m-1}^{(m)}(y)$ being a 1.el. function of y. This can be continued in an obvious way. We obtain for $r=2, \ldots, m$

$$
x_{r}=\xi_{r} \dot{-} \xi_{r-1}=\sigma_{r}^{(m)}(y) \dot{-} \sigma_{r-1}^{(m)}(y)=\tau_{r}^{(m)}(y) \text { and } x_{1}=\xi_{1}=\tau_{1}^{(m)}(y)
$$

where all the $\tau_{r}^{(m)}(y)$ are 1.el.
In the sequel \mathbf{p}_{n} means the $(n+1)$ th prime and $\mathbf{e}(m, n)$ the exponent of the highest power of \mathbf{p}_{n} dividing m.

Lemma 3. Both \mathbf{p}_{n} and $\mathbf{e}(m, n)$ are 1.el. functions.
Proof: According to a well known theorem of Tchebychef in elementary number theory one has that

$$
\pi(x)>c \frac{x}{\log x}
$$

where $\pi(x)$ is the number of primes $\leqq x$ and c some positive constant. It follows that for $x>g, g$ some positive integer,

$$
\pi(x)>x^{1 / 2},
$$

because g can be chosen such that $c x^{1 / 2}>\log x$ for all $x>g$. Now if \mathbf{p}_{n} is the largest prime $\leqq x$ so that $n+1=\pi(x)$, we get

$$
x<(n+1)^{2},
$$

whence

$$
\mathbf{P}_{n}<(n+1)^{2}
$$

This is certainly valid for all $n>g$, because $x>\pi(x)>n$ yields $x>g$.
Now $\mathrm{d}(a, b)=\sum_{r=1}^{b} \delta(a r, b)$ is 1 or 0 according as a divides b or not. Writing $\bar{\delta}(x, y)$ instead of $1-\delta(x, y)$ the function

$$
\mathbf{P}(a)=\mathbf{s g} \sum_{r=1}^{a} \mathrm{~d}(r, a) \bar{\delta}(r, 1) \bar{\delta}(r, a)+\delta(a, 1)
$$

is $=0$ or 1 according as a is a prime or not. Hence

$$
\mathbf{P}_{n}=\sum_{t=0}^{\max \left(g,(n+1)^{2}\right)} t \cdot\left((1 \doteq \mathbf{P}(t)) \cdot \delta\left(n, \sum_{s=0}^{t-1}(1 \doteq \mathbf{P}(s))\right) .\right.
$$

Thus $\mathbf{p}_{\boldsymbol{n}}$ is a l.el. function of n.
That the function $\mathbf{e}(m, n)$ is l.el. as well can be proved easier. The 1.el. function of a and n

$$
\sum_{r=1}^{a} \sum_{s=1}^{a}(\mathrm{~d}(r, a), \mathrm{d}(s, a) \cdot \overline{\mathrm{d}}(r, s) \cdot \overline{\mathrm{d}}(s, r))+\overline{\mathrm{d}}\left(\mathbf{p}_{n}, a\right)
$$

is $=0$ or >0 according as a is a power of p_{n} or not. Therefore the l.el. function
$\mathbf{Q}(a, m, n)=\overline{\mathrm{d}}\left(\mathbf{p}_{n}, a\right)+\overline{\mathrm{d}}(a, m)+\sum_{r=1}^{a} \sum_{s=1}^{a}(\mathrm{~d}(r, a) \cdot \mathrm{d}(s, a) \cdot \overline{\mathrm{d}}(r, s) \cdot \overline{\mathrm{d}}(s, r))$
is $=0$ if and only if a is a power of p_{n} and divides m. Then $e(m, n)$ is just the number of these a for which $\mathbf{Q}(a, m, n)=0$. Therefore

$$
\mathbf{e}(m, n)=\sum_{a=1}^{m}(1 \doteq \mathbf{Q}(a, m, n))
$$

and this is a l.el. function of m and n.
Df 2. A set shall be called l. el.enum. (that is lower elementary enumerable) if its elements can be enumerated by a l.el. function.

Theorem 1. Let $\nu\left(x, x_{1}, \ldots, x_{m}\right)$ and $\lambda_{1}(x), \ldots, \lambda_{m}(x)$ be l.el. functions such that $\lambda_{r}(x) \leqq x$ for $r=1,2, \ldots, m$. Further let the function f be defined by the course of values recursion

$$
f(n+1)=\nu\left(n, f\left(\lambda_{1}(n)\right), f\left(\lambda_{2}(n)\right), \ldots, f\left(\lambda_{m}(n)\right)\right), f(0)=a .
$$

Then the set of values of f is l.el.enum.
It ought to be remarked that f itself need not be l.el. which is already shown by the very simple example $f(n+1)=2 f(n), f(0)=1$.
Proof: I consider numbers N with the following property

$$
N=p_{0}^{e_{0}} p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}
$$

where $e_{r}=\mathbf{e}(N, r)=f(r)$. In other words, we put $e_{o}=a$ and for $r=0,1, \ldots$, $n-1$ successive

$$
e_{r+1}=f(r+1)=\nu\left(r, f\left(\lambda_{1}(r)\right), \ldots, f\left(\lambda_{m}(r)\right)\right) .
$$

Thus N has the property expressed by saying that $\mathbf{F}(N, n)=0$, where $\mathbf{F}(N, n)$ is the l.el. function

$$
\bar{\delta}(\mathbf{e}(N, 0), a)+\sum_{r=0}^{n-1} \bar{\delta}\left(\mathbf{e}(N, r+1), \nu\left(r, \mathbf{e}\left(N, \lambda_{1}(r)\right), \ldots, \mathbf{e}\left(N, \lambda_{m}(r)\right)\right)\right.
$$

It is therefore obvious that $y=f(x)$ is equivalent the existence of an N such that

$$
\mathbf{F}(N, x)=0 \quad \& \quad y=\mathbf{e}(N, x)
$$

or in other words

$$
\mathbf{F}(N, x)+\bar{\delta}(\mathbf{e}(N, x), y)=0 .
$$

The integers y for which this is true, that is the y which are values of $f(x)$, are now given by the following equation, where I have put $\mathbf{F}(N, x)+$ $\bar{\delta}(\mathbf{e}(N, x), z)=\mathbf{G}(N, x, z)$,

$$
y=z(1 \doteq \mathbf{G}(N, x, z))+\operatorname{asg} \mathbf{G}(N, x, z) .
$$

Here the right hand side is a 1.el. function and if we insert

$$
N=\tau_{1}^{(3)} u, \quad x=\tau_{2}^{(3)} u, \quad z=\tau_{3}^{(3)} u,
$$

it becomes a l.el. function of u which enumerates the considered numbers y when u runs through all non negative integers.

Remark: If $g(x)$ is l.el. we get of course a l.el. enumeration of the values of $f(g(x))$ by replacing the x in $\mathbf{G}(N, x, z)$ by $g(x)$ and after that taking again N, x, z as $\tau_{r}^{(3)} u, r=1,2,3$.

Theorem 2. Every recursively enumerable set is l.el.enum.
Proof: As I have explained in a paper published many years ago (see [4]) it is possible to replace the system of equations defining a recursive function by production rules for n-tuples. Indeed the definition of a function of $n-1$ variables, say $x_{n}=f\left(x_{1}, \ldots, x_{n-1}\right)$, is equivalent the generating of a set of n-tuples (x_{1}, \ldots, x_{n}) such that every ($n-1$)-tuple (x_{1}, \ldots, x_{n-1}) occurs in just one of the n-tuples. In the defining equation system some earlier defined functions may be present, however we may introduce again the corresponding rules of production of m-tuples for the actual values of m. Then we may assume that in the production rules we have only the successor function left, but so strong a reduction is not always necessary. Every production rule of n-tuples then says that the n-tuples $\left(b_{1}, \ldots, b_{n}\right),\left(c_{1}, \ldots\right.$, $\left.c_{n}\right), \ldots,\left(k_{1}, \ldots, k_{n}\right)$ produce the n-tuple (a_{1}, \ldots, a_{n}). Here a_{1}, \ldots, a_{n} are some of the b_{1}, \ldots, k_{n} or perhaps expressed by some of them by using the successor function a given number of times or perhaps using even some other simple functions which we may assume as l.el. functions. Instead of trying to explain this further in a general way I shall give some examples of the procedure.

That the values of the el. but not l.el. function x ! can be l.el. enumerated is seen at once because of Th.1. Indeed this function $f(x)$ is defined by the equations

$$
f(0)=1, \quad f(x+1)=(x+1) \cdot f(x)
$$

and this is a special case of the recursion treated in Th.1. In the same way it is seen that although the functions $2^{x}, x^{x},(x!)^{x}$ and similar ones are not l.el. their corresponding sets of values are l.el.enum.

Let us however look at the function $f(x)$ defined by

$$
f(0)=0, \quad f(x+1)=2^{f(x)}
$$

This function is primitive recursive, but probably not elementary. It is here convenient to replace also the function 2^{z} by a generating of pairs. We then have to deal with 2 kinds of pairs, say (a, b) and $\{a, b\}$. We start with $(0,0)$ and $\{0,1\}$ and the production rules are

1) $\{a, b\}$ produces $\{a+1,2 b\}$
2) $(a, b),\{b, c\}$ produce $(a+1, c)$.

Remark: We could also remove the function $2 n$ so that only the successor function is used inside the pairs, but that would require the treatment of 3 kinds of pairs and that is not necessary because the function $2 n$ is 1 .el.

We now introduce an enumerating function φ for the pairs letting $\varphi(2 n)$ enumerate the pairs (a, b) and $\varphi(2 n+1)$ the pairs $\{a, b\}$. This can be performed so: We put $\varphi 0=\mathfrak{p}_{2}(0,0)=0, \varphi 1=p_{2}(0,1)=1$ and

1) as often as we have put $\varphi(2 n+1)=p_{2}(a, b)$ we put $\varphi(2 n+3)=f_{2}(a+$ 1, $2 b$),
2) as often as we have put $\varphi(2 m)=p_{2}(a, b)$ and $\varphi(2 n+1)=p_{2}(b, c)$ we put $\varphi\left(2 p_{2}(m, n+1)\right)=p_{2}(a+1, c)$,
3) similarly we write $\varphi\left(2 p_{2}(m, n+1)\right)=0$ when $\varphi(2 m)=p_{2}(a, b)$ and $\varphi(2 n+1)=p_{2}(c, d), b \neq c$.
Remark: One may notice that $2 p_{2}(m, n+1)$ is always $>\max (2 m$, $2 n+1$) and takes different values for different pairs m, n. Therefore these argument values are always available without confusion.

The definition of φ can be written more concisely thus:

$$
\begin{gathered}
\varphi 0=0, \varphi 1=1 \text { and for } n>0 \\
\varphi(n+1)=p_{2}\left(\tau_{1}^{(2)} \varphi(n-1)+1,2 \tau_{2}^{(2)} \varphi(n-1)\right) \mathrm{rm}(n+1,2) \\
+p_{2}\left(\tau_{1}^{(2)} \varphi\left(2 \tau_{1}^{(2)}\left[\frac{n+1}{2}\right]\right)+1, \tau_{2}^{(2)} \varphi\left(2 \tau_{2}^{(2)}\left[\frac{n+1}{2}\right]-1\right)\right) \\
\text { times } \delta\left(\tau_{2}^{(2)} \varphi\left(2 \tau_{1}^{(2)}\left[\frac{n+1}{2}\right]\right), \tau_{1}^{(2)} \varphi\left(2 \tau_{2}^{(2)}\left[\frac{n+1}{2}\right]-1\right)\right) \mathrm{rm}(n, 2)
\end{gathered}
$$

It is obvious that this recursive definition is just of the form dealt with in Th.1. Now $y=f(x)$ means that for some n we have $\varphi(2 n)=p_{2}(x, y)$, whence $y=\tau_{2}^{(2)} \varphi(2 n)$. However according to the remark to Th. 1 the set of values of $\tau_{2}^{(2)^{2}} \varphi(2 n)$ is l.el.enum.

Let us take as a further example the function of R. Péter which is not primitive recuisive and is defined thus:

$$
\begin{aligned}
\psi(0, n) & =n+1 \\
\psi(m+1,0) & =\psi(m, 1) \\
\psi(m+1, n+1) & =\psi(m, \psi(m+1, n))
\end{aligned}
$$

The translation of this into a generation of triples is so: We consider a set S of triples generated by following rules:

1) Every triple ($0, n, n+1$) belongs to S
2) As often as we have got $(a, 1, b)$ in S we put $(a+1,0, b)$ in S
3) As often we have already $(a+1, b, c)$ and (a, c, d) in S we put ($a+1$, $b+1, d)$ in S

Clearly this generation of triples is just what the computation of the values of ψ amounts to, the third element in any triple being the value of the ψ function of the first and second element. Here we may define a function φ so:

$$
\begin{gathered}
\varphi(3 n+1)=p_{3}(0, n, n+1), \varphi(3 n+2)=p_{3}(a+1,0, b) \text { when } \varphi n=p_{3}(a, 1, b), \\
\text { otherwise } \varphi(3 n+2)=1,
\end{gathered}
$$

$\varphi(3 n)=p_{3}(a+1, b+1, d)$ when $\varphi \tau_{1}^{(2)} n=\mathfrak{f}_{3}(a+1, b, c)$ and $\varphi \tau_{2}^{(2)} n=p_{3}(a, c, d)$, otherwise $\varphi(3 n)=1$.

Then the values of φ are just p_{3} of all the generated triples. The value $1=p_{3}(0,0,1)$ is taken by φ infinitely often, the other values once each. The recursive definition of φ can be written in concise form thus: $\varphi 0=1$ and

$$
\begin{aligned}
\varphi(n+1) & =\mathfrak{p}_{3}\left(0,\left[\frac{n}{3}\right],\left[\frac{n}{3}\right]+1\right) \delta(\mathrm{rm}(n+1,3), 1)+{p_{3}}^{(} \tau_{3}^{(3)} \varphi\left(\left[\frac{n}{3}\right]\right) \\
& \left.\left.+1,0, \tau_{3}^{(3)} \varphi\left(\left[\frac{n}{3}\right]\right)\right) \delta\left(\tau_{2}^{(3)} \varphi\left(\left[\frac{n}{3}\right]\right), 1\right)+\bar{\delta}\left(\tau_{2}^{(3)} \varphi\left(\left[\frac{n}{3}\right]\right), 1\right)\right) \\
& \delta(\mathrm{rm}(n+1,3), 2)+\left(\mathfrak { p } _ { 3 } \left(\tau_{1}^{(3)} \varphi \tau_{1}^{(2)}\left(\left[\frac{n+1}{3}\right]\right), \tau_{2}^{(3)} \varphi \tau_{1}^{(2)}\left(\left[\frac{n+1}{3}\right]\right)\right.\right. \\
& \left.+1, \tau_{3}^{(3)} \varphi \tau_{2}^{(2)}\left(\left[\frac{n+1}{3}\right]\right)\right) \delta\left(\tau_{3}^{(3)} \varphi \tau_{1}^{(2)}\left(\left[\frac{n+1}{3}\right]\right), \tau_{2}^{(3)} \varphi \tau_{2}^{(2)}\left(\left[\frac{n+1}{3}\right]\right)\right) \\
& +\bar{\delta}\left(\tau_{3}^{(3)} \varphi \tau_{1}^{(2)}\left(\left[\frac{n+1}{3}\right]\right), \tau_{2}^{(3)} \varphi \tau_{2}^{(2)}\left(\left[\frac{n+1}{3}\right]\right)\right) \delta(\mathrm{rm}(n+1,3), 0)
\end{aligned}
$$

This is a recursion of the kind treated in Th. 1 according to which we can find a l.el. function, say $f(n)$, which takes the same set of values as φn. Now the values of Péter's function constitute the set of values of $\tau_{3}^{(3)} \varphi n$ which again coincides with the set of values of $r_{3}^{(3)} f(n)$ and this is a l.el. function.

By the way there is another method of proof of which I shall give a hint. E. L. Post has developed a theory on sets of strings of letters. In particular he has shown that the recursive sets can be conceived as the so-called canonical sets in his normal systems (see [5], p. 170). In a normal system one string of symbols 1 and b is given as axiom. Further there are say m rules of production for strings of symbols 1 and b, say $\sigma_{1, r} \alpha \rightarrow \alpha \sigma_{2, r}, r=$ $1, \ldots, m$, where the σ 's are given strings, α arbitrary. Using the prime
number decompasition of positive integers we can represent the strings by numbers, letting the exponent of each prime be the number of letters in a corresponding sequence of equal symbols in the string. Then it turns out that the number correspending to $\alpha \sigma_{2, r}$ becomes a l.el. function, say $l_{r}(x)$, of the number x coiresponding to $\sigma_{1, r} \alpha$. If a represents the axiom, we thus get generated the numbers $a, l_{r}(a), l_{s} l_{\dot{r}}(a)$, and so on. These numbers are the values of the function φ defined thus:

$$
\varphi(0)=a, \varphi(n+1)=\sum_{j=1}^{m} l_{r} \varphi\left[\frac{n}{m}\right] \delta(\mathrm{rm}(n+1, m), r) .
$$

Since this recursive definition is of the kind considered in Th. 1 we have according to this theorem a l.el. function $f(n)$ whose set of values is the same as the set of values of φn.

Theorem 3. For any recursive relation

$$
\rho\left(x_{1}, \ldots, x_{n}\right)=0
$$

there is an equivalent parametric representation

$$
x_{1}=f_{1}(t), \ldots, x_{n}=f_{n}(t),
$$

where the f_{r} are l.el. functions, provided that there is at least one n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ satisfying the relation. Indeed there is a l.el. function $f(t)$ such that

$$
x_{r}=\tau_{r}^{(n)} f(t), r=1, \ldots, n .
$$

Proof: Putting $y=p_{n}\left(x_{1}, \ldots, x_{n}\right)$ and $a=p_{n}\left(a_{1}, \ldots, a_{n}\right)$ we have $x_{r}=\tau_{r}^{(n)} y$ so that if we write

$$
\rho\left(\tau_{1}^{(n)} y, \ldots, \tau_{n}^{(n)} y\right)=\sigma y,
$$

the n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ satisfying $\rho\left(x_{1}, \ldots, x_{n}\right)=0$ are just given by $x_{r}=\tau_{r}^{(n)} y, r=1, \ldots, n, y$ satisfying $\sigma y=0$. These numbers y are all given by the formula

$$
y=z(1 \doteq \sigma z)+a \cdot \operatorname{sg} \sigma z=\chi(z)
$$

Now $\chi(z)$ is usually not a l.el. function, but according to Th. 2 there is a l.el. function $f(t)$ taking the same set of values as $\chi(z)$. Therefore every n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ such that $\rho\left(x_{1}, \ldots, x_{n}\right)=0$ and only these are given by

$$
x_{1}=\tau_{1}^{(n)} f(t), \ldots, x_{n}=\tau_{n}^{(n)} f(t)
$$

letting t here run through all non negative integers.
I shall give some concluding remarks.
If we possess l.el. functions f_{1}, \ldots, f_{n} enumerating respectively the sets M_{1}, \ldots, M_{n}, it is trivial to find a l.el. function enumerating the union
of these sets. The same must be said for the intersection, provided of course that it is not empty. Let however M_{0}, M_{1}, \ldots be a l.el. enumerated infinite set of sets that is we have a l.el. function $f(x, y)$ such that for any given x the set M_{x} is enumerated by putting $y=0,1, \ldots$ in $f(x, y)$ for this x. Then it may be noticed that the elements of the union of M_{o}, M_{1}, \ldots, M_{x-1} will for arbitrary x be enumerated by the l.el. function

$$
g(x, z)=\sum_{r=0}^{x-1} f\left(r,\left[\begin{array}{l}
z \\
x
\end{array}\right]\right) \delta(\mathrm{rm}(z, x), r) .
$$

Let us further assume that 0 belongs to all $M_{r}, r=0,1, \ldots, x$. Then the intersection of these sets consists of the numbers z for which for some u

$$
\sum_{r=0}^{x} \bar{\delta}(z, f(r, e(u, r)))=0
$$

Indeed if z is in the intersection, then there are numbers $y_{0}, y_{1}, \ldots, y_{x}$ such that

$$
z=f\left(0, y_{0}\right)=f\left(1, y_{1}\right)=\cdots=f\left(x, y_{x}\right)
$$

and putting

$$
u=p_{0}^{y_{0}} \cdots p_{x}^{y_{x}}
$$

we obtain for $r=0,1, \ldots, x$

$$
z=f(r, e(u, r)),
$$

whence

$$
\sum_{r=0}^{x} \bar{\delta}(z, f(r, e(u, r)))=0
$$

Let on the other hand the last equation be valid. Then the preceding one is valid for $r=0,1, \ldots, x$ which means that z is in the intersection. Now the z for which the last equation is valid for some u are enumerated by the 1.el. function

$$
g(x, v)=\tau_{1}^{(2)} v \cdot\left(1-\psi\left(x, \tau_{1}^{(2)}(v), \tau_{2}^{(2)}(v)\right),\right.
$$

where

$$
\psi(x, z, u)=\sum_{r=0}^{x} \bar{\delta}(z, f(r, e(u, r)))
$$

Finally the union of the infinitely many sets M_{o}, M_{1}, \ldots, where M_{x} is enumerated by $f(x, y), y=0,1, \ldots, f(x, y)$ being a l.el. function of x and y, is enumerated very simply by the l.el. function $f\left(r_{1}^{(2)} z, r_{2}^{(2)} z\right)$.

It has been asked whether the recursively enumerable sets are all of them diophantine sets (see [6], Chapter 7). A diophantine set of numbers x is the set of x^{\prime} 's such that numbers y_{1}, \ldots, y_{n} can be found such that a given diophantine equation in x, y_{1}, \ldots, y_{n} is satisfied. I regret not having had the opportunity yet to study this question seriously.

REFERENCES

[1] L. Kalmár, Egyszerü pelda eldönthetetlen aritmetikai problémára, Matematikai és fizikai lapok, vol. 50 (1943), pp. 1-23.
[2] Th. Skolem, Remarks on "Elementary" Arithmetic Functions, Det Kgl. Norske Vid. Selskabs Forb. bd 27, Nr 6, Trondheim 1954.
[3] Th. Skolem, The Development of Recursive Arithmetic, 10. Skandinaviske Matematikerkongres, Köbenhavn 1946.
[4] Th. Skolem, Über die Zurückführbarkeit einiger durch Rekursionen definierter Relationen auf "arithmetishe". Acta Litterarum ac Scientiarum, Szeged, vol. 8, 1936, pp. 73-88.
[5] P. C. Rosenbloom, The Elements of Mathematical Logic, Dover Publications, 1950.
[6] M. Davis, Computability and Unsolvability, McGraw Hill Comp., 1958.

University of Oslo
Oslo, Norway

