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PROOF OF SOME THEOREMS ON
RECURSIVELY ENUMERABLE SETS

TH. SKOLEM

In this paper I shall first define a class of functions which I call lower
elementary, abbreviated Lei. functions in the sequel, and after some pre-
liminary considerations prove that every recursively enumerable set of in-
tegers can be enumerated by a Lei. function. All variables and functions
shall here take non-negative integers as values. L. Kalmar defined the no-
tion elementary function (see [l]). These are the functions that can be con-
structed from addition, multiplication and the operation ~ by use of the
general sums and products

x x

2/ω d̂ TT/(r)'
r=o r=ό

where / may contain parameters, together with the use of composition. If
we omit the use of general products, we get what I call the lower elemen-
tary functions. The definition is therefore:

Df 1. The Lei. functions are those which can be built by starting with
x

the functions 0, 2, x + y, xy, x ~ y and using the summation \\ f (r)> where
*=o

/ may contain parameters, besides use of composition. By the way, instead
of x — y one can choose S (%, y), the Kronecker delta (see [2]). As to the
summation schema it can be shown that it is sufficient to require its use in
the case that / contains one parameter at most. Of course xy can be omitted
as starting function.

Clearly every polynomial is an Lei. function. Further every Lei. func-
tion can be majorised by a polynomial. This is seen immediately to be true
for the starting functions and it is easily seen to be hereditary with regard
to summation and composition. If for example f(x, y) is always ^ Ψ(x, y),
where φ is a polynomial, then for all x and y

x x

Σttr,y)<Σφ{τ,y)
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and the right hand side here is again a polynomial. In order to prove that
also composition leads from functions which can be majorised by polynom-
ials to functions of this kind we may first suppose that /(*, y) increases
steadily for increasing x and y, that is f(x, y) £. /(x1, y%) when x £ AT1,
y = y' Then we have for all x and y, supposing that /, g, h are majorised
by the polynomials φ, γ, η,

/(*(*, y), *>(χ, y)) £ /<y(*, y), i?<*, y» £ *(y<*, y), *?(*, y))

and the last function is a polynomial. However, if f(x, y) is not monotonous,
we have in any case

x y x y

/<*, y) i Σ Σ /(r»s ) ^ Σ Σ ^(r'5) = φ(x'y)

and the polynomial ^(ΛΓ, y) is of course monotonous with regard to x and y.
Therefore

/(*<*, y), *(χ, y» £ ψ(g(*, y), * U , y)) £ ^(y(χ, y), r/(χ, y)),

where the last function is a polynomial. Of course these proofs can be car-
ried out just as well for functions of more variables.

Lemma 1. Let / and g be Lei. functions and always f(x) > y when x >
g(y). Then the greatest x such that f(x) 1 y is a Lei. function of y.

Proof: As a matter of fact this greatest x can be expressed so:

g(y) g(y)
x = Σ r' **wr) ~y) δ"Σ 5" ̂ (/(s) ~y) >

where Tgz as usual means 1 — z. Indeed, letting r take success ive ly the

values g(y), g(y) — 1, g(y) -1- 2, . . . we will once for the first time reach an

r such that /(r) — y i s = 0 so that rsg(/(r) — y) i s just = r which i s the de-

sired x. Still s s g ( / ( s ) — y) i s = 0 for greater values of s than x so that

g(y) s(y)
sg \ ^ ^sgί/ί5) - y ) = I- For smaller values of r than x we have sg \^

ssξ(f(s) - y) = 0. Therefore the value of the whole double sum is x as
asserted.

Lemma 2. Putting for r = 2, 2, . . . , m

χr-τ<r>y

when y = £ m ( * i , - . . , * m ) , where ^ U i , - . . , xm) i s the polynomial

/ χ i + χ a + . . . + Xj|i + W | - Λ /x i + Xa + . . . + χ m ^ + w - 2 \

\ 772 /+ \ m-1 /

+ . . . + ( 2 ) + *i '

the functions r r

( w ) (y) are all of them Lei.
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Proof: As is well known (see [3]) the equation y = 'pm(x1, > x

m) yields
the simplest one to one correspondence between the integers y and the m-
tuples of integers xl9 . . . yxm. Putting for r - 1, 2, . . . , m xλ + x% + . . . +
xf - ξf we get that ξm is the greatest value of z such that

Therefore according to lemma 1 ξm is a l.el. function σ^ y Further ^
is the greatest z such that

\ m- 1 I = ' \ m ) ' yί

so that according to lemma 1 ξm is a l.el. function of yλ. But yχ is a l.el.
function of y. Therefore ^ ^ = σ ^ ( y ) , σ ^ χ ( y ) being a l.el. function of
y. This can be continued in an obvious way. We obtain for r = 2, . . . , m

χf=ξr^ ξ^ = σM(y) -i σ£Xy) = Γ0»>(y) and χχ = & - rf1"^) ,

where all the τ[m\y) are l.el.
In the sequel pn means the (n -f 1) th prime and e(m, n) the exponent of

the highest power of p dividing m.

Lemma 3. Both pn anάe(m, n) are l.el. functions.

Proof: According to a well known theorem of Tchebychef in elementary
number theory one has that

. . x
π(x)> c ,

log x
where π(x) is the number of primes ^ x and c some positive constant. It
follows that for x > g, g some positive integer,

π(x)> xV* ,

because g can be chosen such that ex 2 > log x for all x > g. Now if pn is
the largest prime ^ x so that n + 1 = 7r(x), we get

x < (n + 2)2 ,

whence

Pn < (« + ί)2

This is certainly valid for all n> g, because x > π(x) > n yields x > g.
b

Now d(a, b) = X^ 8(ar, b) is 2 or 0 according as a divides b or not.
r=i

Writing δX*, y) instead of I — δ(x, y) the function

α
P(β) = sg £ d ( r , *) δ(r, 1) δ(r, β) + 8(β, 1)

i s = 0 or 1 according as a is a prime or not. Hence
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max(g, (n+1)2) *-i

Pn= "£ ί ((1 - P(ί» * δ(β, 2 (1 - P(s») .
t=o s=o

Thus pπ is a l.el. function of «.
That the function e(m, n) is l.el. as well can be proved easier. The

l.el. function of a and n

a a

] £ £ (d< r ' *> ' d ( s ' β> d ( r' s ) " d ( 5 ' r» + ί(Pn' a>

is = 0 or > 0 according as a is a power of pn or not. Therefore the l.el.
function

a a
Q(α, m, n) = d(pπ, α) + ϊ(a, w) + ^ J](d(r, β) d(s, a) d(r, s) d(s, r))

is = 0 if and only ii a is a power of pΛ and divides 772. Then e(772, n) is just
the number of these a for which Q(<z, #z, w) = 0. Therefore

m
e(m, «) = ̂ ( 1 -Q(fl, TO, n))

and this is a l.el. function of m and n.
Df 2. A set shall be called 1. el.enum. (that is lower elementary enum-

erable) if its elements can be enumerated by a l.el. function.

Theorem 1. Let v(x, xt, . . . , xm) and λ1 (x), . . . ,λm(x) be l.el. func-
tions such that λr(x) ̂  x for r * 1, 2, . . . ,m. Further let the function f be
defined by the course of values recursion

f{n + I) = v{n, /(λ>)), /(λ») , . . . ,/(λm (»))), /(0) = a .

Then the set of values of f is L el. enum.

It ought to be remarked that / itself need not be l.el. which is already
shown by the very simple example f(n + 1) = 2/(w), f(0) = 1.

Proof: I consider numbers N with the following property

where eγ « e (N, r) = /(r). In other words, we put eQ - a and for r = 0, 1, . . . ,
72-1 successive

β m = / ( ' + D"v(r, /(\(r)), . ,/(λw(r))) .

Thus N has the property expressed by saying that F (N, n) = 0, where F (N,«)
is the l.el. function

5( (N, 0), α)+ £ 5 ( (tf, r+ 2), i/(r, »(N, \(r)), . . . , (N, λm(r))) .
r=o

It is therefore obvious that y = f(x) is equivalent the existence of an N
such that
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F(N, x) = 0 & y = e(N, x)

or in other words

F(N, x) + δ(e(N, x), y) = 0 .

The integers y for which this is true, that is the y which are values of
f(x)7 are now given by the following equation, where I have put F (N, x) +
δ(e(N, x), *) = G(N, x, z)7

y=z(l- G(N, x, z)) + asgG(N7 x7 z) .

Here the right hand side is a Lei. function and if we insert

N = rx

( l )«, x = τ2

{3)u, z-r^u,

it becomes a Lei. function of u which enumerates the considered numbers
y when u runs through all non negative integers.

Remark: If g(x) is Lei. we get of course a Lei. enumeration of the
values of f(g(x)) by replacing the x in G(N, x, z) by g(x) and after that
taking again N, x7 z as 7y'w, r = 1, 2, 3.

Theorem 2. Every recursively enumerable set is l.ehenum.

Proof: As I have explained in a paper published many years ago (see [4]) it
is possible to replace the system of equations defining a recursive function
by production rules for w-tuples. Indeed the definition of a function of rc-2
variables, say xn - f(xl7 . . . , x^^i * s equivalent the generating of a set
of π-tuples (xl7 . . . , xn) such that every (rc-l)-tuple (xχ, . . . yXnmmml) occurs
in just one of the 72-tuples. In the defining equation system some earlier
defined functions may be present, however we may introduce again the cor-
responding rules of production of 772-tuples for the actual values of 772. Then
we may assume that in the production rules we have only the successor
function left, but so strong a reduction is not always necessary. Every pro-
duction rule of ^-tuples then says that the n-tuples (bι9 . . . , bn)7 (cι7 . . . ,
cn)7 . . . 7(kί7 . . . 7kn) produce the 72-tuple (al7 . . . , an). Here aχ7 . . . , an

are some of the bl7 . . . , k or perhaps expressed by some of them by using
the successor function a given number of times or perhaps using even some
other simple functions which we may assume as Lei. functions. Instead of
trying to explain this further in a general way I shall give some examples
of the procedure.

That the values of the el. but not Lei. function x\ can be Lei. enumer-
ated is seen at once because of Th.l. Indeed this function f(x) is defined
by the equations

f(O)=l, / ( x + ! ) « ( * + ! ) • / ( * )

and this is a special case of the recursion treated in Th.l. In the same way
it is seen that although the functions 2X

7 x*7 (*!)* and similar ones are not
Lei. their corresponding sets of values are Lel.enum.

Let us however look at the function f(x) defined by

f(0) = 0, f(x + 1) = 2f(x) .
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This function is primitive recursive, but probably not elementary. It is here
convenient to replace also the function 2Z by a generating of pairs. We then
have to deal with 2 kinds of pairs, say (<z, b) and \ay b\. We start with (0, 0)
and {0, 2} and the production rules are

1) {a, b\ produces {a + 2, 2b\
2) (a, b\ {b, c\ produce (a + 2, c).

Remark: We could also remove the function 2n so that only the succes-
sor function is used inside the pairs, but that would require the treatment
of 3 kinds of pairs and that is not necessary because the function 2n is Lei.

We now introduce an enumerating function φ for the pairs letting φ(2rί)
enumerate the pairs (<z, b) and φ(2n + 1) the pairs {α, b\. This can be per-
formed so: We put φθ = £2 (0, 0) = 0, φ 2 = £2 (0, 2) = 2 and

1) as often as we have put φ(2n + 2) = £2 (α, 6) we put φ(2n + 3) = £a (Λ +
1, 26),

2) as often as we have put φ(2m) = £a(tf, 6) and <p(2n + 2) = £2(&, c) we
put <p(2 £2 (a*, 72 + 2)) = £a (* + 2, c),

3) similarly we write φ (2 £a (772, 72 + 2)) = 0 when φ(2m) = £)2(tf, 6) and
^(272+ 2)= ^ ( C , d)y b + C.

Remark: One may notice that 2 £2(τ?z, 72 + 2) is always > max (2772,
2τ2 + 2) and takes different values for different pairs m, n. Therefore these
argument values are always available without confusion.

The definition of φ can be written more concisely thus:

<P0 = 0, φl = 2 and for n> 0

φ(n+ 2 ) = $%(r[ι)φ(n- 2 ) + 2, 2 r2

(a) <fi>(τ2 - 2 ) ) rm(τ2+ 2, 2)

+ t),(,ω,(2/..[^)tI,f.v(2r,»[lii].,))

«-»(f' f!" [^). 'ί1' v fί' [^] -')) "•(-.«
It is obvious that this recursive definition is just of the form dealt

with in Th.l. Now y = f(x) means that for some 72 we have φ(2ή) = )02(x, y),
whence y = r2 φ (2n). However according to the remark to Th.l the set of
values of ra φ (2ή) is l.el.enum

Let us take as a further example the function of R. Peter which is not
primitive recursive and is defined thus:

ψ(0, n) = 72 + 2

ψ(m +1,0) = ψ(m, 1)

ψ(m + 2, 72 + 2) = ^r(772, ^r(τ72 + 2, 72)) .

The translation of this into a generation of triples is so: We consider a
set S of triples generated by following rules:
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1) Every triple (0, 72, n + 2) belongs to S
2) As often as we have got (a, 2, b) in S we put {a + 2, 0, b) in S
3) As often we have already {a + 2, b, c) and (β, c, d) in S we put (a + 2,

6 + 2, fiO in S

Clearly this generation of triples is just what the computation of the values
of if/ amounts to, the third element in any triple being the value of the ψ-
function of the first and second element. Here we may define a function
φ so:

φ(3n + 2) = £3(0, 72,72+ 2), φ{3n + 2) = £>3(a + 2, 0, b) when ^« = £s(β, 2, fc),

otherwise ^>(3« + 2) = 2,

φ(3n) = £ 3 (Λ + 2, 6 + 2, </) when ψr^n = £ 3 (Λ + 2, 6, c) and ^>r2

(a)/2 = f>3(a, c, cO,

otherwise φ(3n) = 2.

Then the values of φ are just £3 of all the generated triples. The value
2 = £3(0, 0, 2) is taken by φ infinitely often, the other values once each.
The recursive definition of φ can be written in concise form thus: φ 0 = 2
and

φ(n + 2) = 13, ίθ, [j-J , [j-] + ίj 5 (rm (•> + 1, 3), 1) + fc, ίr t

( ί V ί [ j ] )

.,,,,v,.»([iii]))δ(,v,<..([iii]),,».,)([^))

* Ϊ (f >*f > (pj-i). ί'**' (p^])) «»<» * i. Λ »
This is a recursion of the kind treated in Th.l according to which we can
find a l.el. function, say /(«), which takes the same set of values as φn.
Now the values of Pe'ter's function constitute the set of values of r3 φn
which again coincides with the set of values of r3 f(n) and this is a l.el.
function.

By the way there is another method of proof of which I shall give a hint.
E. L. Post has developed a theory on sets of strings of letters. In particu-
lar he has shown that the recursive sets can be conceived as the so-called
canonical sets in his normal systems (see [5], p. 170). In a normal system
one string of symbols 2 and b is given as axiom. Further there are say m
rules of production for strings of symbols 2 and b, say σ a -* or o , r —
2, . . . ,772, where the σ's are given strings, α arbitrary. Using the prime
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number decomposition of positive integers we can represent the strings by
numbers, letting the exponent of each prime be the number of letters in a
corresponding sequence of equal symbols in the string. Then it turns out
that the number corresponding to a σ2 r becomes a l.el. functionr say lf(x),
of the number x corresponding to σχ rce. If a represents the axiom, we thus
get generated the numbers a, lf{a)9 lslf{a), and so on. These numbers are
the values of the function φ defined thus:

J l Γ «Ί
<P(0)=a, φ(n+ 1) = V Iφ — δ(rm(rc + 2, m), r) .

ϊΞί Lro J

Since this recursive definition is of the kind considered in Th.l we have
according to this theorem a l.el. function f(n) whose set of values is the
same as the set of values of <pn.

Theorem 3. For any recursive relation

p(\, >*n) = 0

there is an equivalent parametric representation

where the fr are l.el. functions, provided that there is at least one n-tuple
(av . . . , an) satisfying the relation. Indeed there is a l.el. function f(t)
such that

\ = ^ } / ( 0 , r = 2 , . . . , 7 2 .

Proof: Putting y = $ ixι9 . . . , xn) and a = ^ ( ^ , . . . , fln) we have
xr = τ(n' y so that if we write

the w-tut)les (x i, . . . , xn) satisfying p(xχ, . . . , xn) = 0 are just given by
xr = rf1' y, r = 2, . . . , w, y satisfying σy = 0. These numbers y are all
given by the formula

y = z(ί - σ z) + <z s g σ z = X(z ) .

Now X (z) is usually not a l.el. function, but according to Th.2 there is a
l.el. function f(t) taking the same set of values as X (z). Therefore every
w-tuple (xl9 . . . , xn) such that p(xί7 . . . , xn) = 0 and only these are given

by

*1 = r<«>/(*),...,*„ = #>/(<)

letting / here run through all non negative integers.
I shall give some concluding remarks.
If we possess l.el. functions fχ9 . . . , / enumerating respectively the

sets M.χ9 . . . , Mn, it is trivial to find a l.el. function enumerating the union
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of these sets. The same must be said for the intersection, provided of

course that it i s not empty. Let however Λi , Ml9 . . . be a Lei. enumerated

infinite set of sets that i s we have a Lei. function f(x, y) such that for any

given x the set Mχ i s enumerated by putting y - 0, 2, . . . in /(#, y) for this

x. Then it may be noticed that the elements of the union of MQJ Mχ, . . . ,

M _ t will for arbitrary x be enumerated by the Lei. function

g(x, z) = £ / ίr, [£] J δ(rtn(2, x), T) .

Let us further assume that 0 belongs to all Mf, r = 0, 2, . . . , x. Then

the intersection of these sets consists of the numbers z for which for some u

x

]Γδ(z, f{r, e{u, r))) = 0.
r=o

Indeed if z is in the intersection, then there are numbers yo, yι9 . . . ,yχ

such that

z-H0,yo)-f{l,yι)-... = / ( * , yχ)

and putting

yo yx

u«po°...pχ*

we obtain for r = 0, 1, . . . , x

z = /(r, e(w, r)) ,

whence

x

£ δ ( * , fir, e(u, r))) = 0 .
r=o

Let on the other hand the last equation be valid. Then the preceding one

is valid for r = 0, 2, . . . , x which means that z is in the intersection. Now

the z for which the last equation is valid for some u are enumerated by the

Lei. function

g(x, v) = Γ l

( j ) v (2 ^ ψ(x, r<j) (v), r2

(l) (v)),

where

x

ψix, z, a ) = ^ 8 ( Z ) / ( f , e(u, r))).

r=o

Finally the union of the infinitely many sets MQ, Mχ9 . . . , where Mχ

is enumerated by /(AT, y), y = 0, 2, . . . , /(*, y) being a Lei. function of x

and y, is enumerated very simply by the Lei. function /(r̂  #, r̂  2r).
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It has been asked whether the recursively enumerable sets are all of
them diophantine sets (see [6], Chapter 7). A diophantine set of numbers
x is the set of x's such that numbers yι9 . . . , yn can be found such that a
given diophantine equation in x, yχ, . . . 9yn is satisfied. I regret not hav-
ing had the opportunity yet to study this question seriously.
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