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A SYSTEM OF QUANTIFICATIONAL DEDUCTION1

THOMAS E. PATTON

I. Introduction. This paper will describe a simple system of quantifica-
tional deduction and give proofs of its soundness and completeness. The
latter proof will be put in terms of a device to be introduced in a later sec-
tion, the quantifier game. This expository gambit, which leads to a rather
simple proof, permits an independent treatment of key semantic principles
prior to the details of their application. Elsewhere, the device may be put
to work both as a pedagogical ploy and in theoretical arguments, which lends
it an interest that extends beyond the scope of its uses here. The present
completeness proof carries over to most systems of natural deduction, since
the deductions permitted by the system whose completeness is proved are
easily seen to have counterparts in these other systems. However, this
system is a clumsy one to use, and so for practical purposes its equivalence
to a more workable system will be sketched in a final section.

II. The system of deduction. This system is designed to prove the incon-
sistency of single quantificational formulas in prenex normal form. It also
provides for a reductio ad absurdum proof that an argument is valid, since
it may be used to prove that a prenex normal form version of a conjunction
of the premises and the negation of the conclusion is inconsistent.

The system has just two rules of derivation, called Ul and El. Let Fm
be any formula in which 772 occurs free and let Fn be like Fm except that Fn
has free n everywhere that Fm has free m. Then Ul and El are the rules
whereby we respectively pass from a formula of form (m)Fm or (^m)Fm to the
corresponding formula of form Fn. Starting with a single formula in prenex
normal form, these rules enable us to write down a sequence of lines each

1. This system, which relates closely to the "more economical one* of Quine [3],
p. 254, and, more remotely, to Method A of Quine [4], derives from Herbrand's
Theorem, as may be seen from the version of this given in Hubert and Bernays
[2], pp. 157-163. For more light on these historical roots, also see Dreben[l].
I am grateful to J. S. Ullian and P. J. S. Benacerraf, who read an earlier draft
of this paper and made helpful suggestions.
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of which follows by Ul or El from some predecessor. But we impose the
restriction that the variable n of the formula Fn gotten by an El step mustn't
be free in any previous line of the sequence.

We will say that a set of formulas is derivable from S if there is a se-
quence as above that has S as its top line and has each formula of the set
as one of its lines. (It might be said here that the union of two such de-
rivable sets may itself not be derivable from S, due to our El restriction.)
The system works on the principle that a formula S is inconsistent just in
case a truth-functionally inconsistent set of quantifierless formulas is de-
rivable from S. Thus in using the system, we try to derive such a set. E. g.
suppose we wish to prove the validity of the syllogism that has (x)(Fx D Gx)
and (^x)(Fx. Hx) as premises and (^x)(Gx. Hx) as conclusion. The follow-
ing derivation, whose top formula is a prenex normal form version of a con-
junction of the premises and the negation of the conclusion, accomplishes
this, since lines (4) and (7) are truth-functionally inconsistent.

(1) (x)Qy)(z)[(FxD Gx).Fy.Hy.~(Gz.Hz)]

(2) Qy)(z)[(FxD Gx). Fy. Hy .~(Gz. Hz)]

(3) (z)[(FxD Gx).Fw.Hw.~(Gz.Hz)]

(4) (Fx D Gx). Fw. Hw.~(Gw.Hw)

(5) (3y)(z)[(FwDGw).Fy.Hy.~(Gz.Hz)]

(6) (z) [(FwD Gw) .Fy.Hy. ~(Gz. Hz)]

(7) (FwD Gw). Fy. Hy .~(Gz. Hz)

III. Interpretation and soundness. As we will use the term, an interpreta-
tion of a quantificational formula S assigns a universe to the quantifiers of
5*, a set of ordered k-tuples of members of the universe to each &-adic predi-
cate-letter of S, a particular member of the universe to each free variable
of S, and finally a truth-value, either T or F, to each statement-letter of S.

What it means for a formula to be true on an interpretation, and thus to
be readable as a true statement about the members of the assigned universe,
may be seen in terms of an example. The formula *p v (x) [(^y)Fxy ^ Gzx]'
is true on an interpretation if either the statement-letter *pf is assigned the
truth-value T or else for each member of the universe X, if a member V
exists such that the pair X, Y is in the set of ordered pairs assigned to the
predicate-letter *F', then the pair Z, X is in the set of ordered pairs as-
signed to the predicate letter XG\ where Z is the member of the universe
assigned to the free variable *z\

To prove soundness, we must establish that if a formula S is consistent,
then every set of quantifierless lines derivable from S is truth-functionally
consistent. This makes the system sound in the sense that it never leads
us to call a consistent formula inconsistent or an invalid argument valid.

Suppose that a formula S is consistent, and thus comes out true on
some interpretation, whose universe let us call U. Then S may be read as
a true statement about the members of U, along the lines just sketched.
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But if S is of form (m)Fm, then a line Fn derivable from S by Ul is obviously
also a true statement, if we take the free variable n to name some member
of U. Moreover, if 5" is of form (^m)Fm, then a line Fn obtained from S by
El is a true consequence of S if we take n to name one of the members of
U whose existence is asserted by S. The same arguments apply to a line
derived by Ul or El from a line derived from S, and so on as the derivation
grows. Hence on this reading of their free variables as names, every quan-
tifierless line in a set derivable from S becomes a true statement about the
members of U.

It might seem that a set of truth-functional formulas which all qualify
as true on such a reading must be truth-functionally consistent. In fact this
principle can fail if the truth of the formulas depends upon homonymy. E.g.
the two formulas *Fxf and 'n^Fx' might both be true statements, granted a
homonymous use of the variable '*'. However, it is clear that the principle
holds when homonyms don't occur, for then the reading on which all the
formulas are true, like a truth-table analysis, assigns the same truth-value
to each occurrence of any given atomic component.

Finally, let us note that the quantifierless formulas of a set derivable
from S don't depend for their truth upon homonymy. A line Fn gotten by Ul
will be true no matter what member of the universe we take n to name, so
this free variable needn't be read as a homonym when we read the line as a
truth. Moreover, due to our El restriction, the free variable win a line Fn
obtained by El will be a new name and thus not a homonym on the reading
that makes this formula true. But since homonyms don't arise, we see by
the principle stated above that the set is truth-functionally consistent.
This completes the proof that the system is sound.

IV. The quantifier game. The equipment used for a quantifier game is a
quantifi cation al formula S in prenex normal form, an interpretation of Sin a
finite or denumerable universe, and a set of symbols M the same size as the
universe. These symbols, which must be distinct from the variables of S,
will be used as one—one names of the members of the universe. Much as
the board is set up for a chess game, each free variable of S is replaced
before the game begins by the symbol of M that names the member of the
universe assigned to it by the interpretation. This new formula is then
transformed by stages as the game goes on.

The game is played by two players, P (for positive) and N (for nega-
tive). It is P's turn to move whenever the formula at hand is of form Qm)Fm.
P's move is to write down a formula Fn that follows from this one by El,
where n is a symbol of M. In parallel fashion, N's move, which comes when-
ever the formula at hand is of form (m)Fm, is to write down a formula Fn
derivable from this one by Ul, where n is again a symbol of M. The earlier
restriction on El steps won't be imposed in this context.

The game ends when neither P nor N has a move, the formula then at
hand being a truth-function whose atomic components are statement-letters
and &-adic predicate-letters followed by rows of k symbols of M. The inter-
pretation determines a truth-value for each of these atoms, in obvious fash-
ion, so the truth-value of the final formula may now be worked out. P wins
the game if this formula comes out true, while N wins if it comes out false.
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The sequence of four formulas at the right below marks the stages of a
quantifier game played with the topmost formula, an interpretation in a uni-
verse with two members, and a set M that contains the two symbols *a9 and
*b\ The sets assigned to the predicate-letters *F* and 'G* are here shown
by the truth-values assigned to the atomic formulas listed at the left.

p F Gaa T (x) (3 y) [p v (Fx 3 Gyz)]

z b Gab F (*)(3y)I> v (FxD Gyfc)]

Fa T Gba T (3y) t f v (FaD Gyb)]

Fb F G6& T p v ( F Λ 3 G6fc)

P wins this game since the final formula comes out true on this as-
signment of truth-values.

In general, either P or N may be able to win a given game if the other
plays badly enough. But while the mere outcome of a game thus tells us
little, the quantifier game is governed by the following two useful principles:

(1) If N plays optimally and P wins, then the given formula comes out true
on the interpretation at hand.

(2) If P plays optimally and N wins, then the given formula comes out
false on the interpretation at hand.

These two statements are easily established by proving two others
that are equivalent to them in light of truth-functional equivalences and the
dualities of truth and falsity and winning and losing. Omitting a similar
proof of (1), we will prove (2) in this manner, the equivalent statement
being the following:

(3) If the given formula comes out true on the interpretation at hand, then
P wins if P plays optimally.

If we suppose that the formula comes out true, we may then regard it
as a true statement about the members of the universe of the interpretation.
Moreover, this same truth remains after we replace free variables. But at
any later stage of the game, if the formula at hand is a true statement of
form (^m)Fm, then P will be able to pick a member n of the universe such
that the formula Fn that results from his move is also a true statement,
while if the formula at hand is a true statement of form (m)Fmy then N will
be unable to select a member of the universe n such that the formula Fn
that he writes down as his move is a false statement. Thus the truth of
the original formula is preserved at every stage of the game, granted that P
plays optimally, and P will win the game, since the final formula will come
out true on the assignment of truth-values fixed by the interpretation.

V. The completeness of the system. We show that if a formula 5" in prenex
normal form is inconsistent, then some finite set of quantifierless lines
derivable from S will be truth-function ally inconsistent. Hence the system
is complete in the sense that it allows us in every case to prove that an in-
consistent formula is inconsistent or that a valid argument is valid.
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The first stage of the proof is most perspicuous if we use a quasi-
example. Suppose that S is of form (w)Qx)(y)(^z)Fwxyz. Then where V
is an infinite set of variables which contains all free variables of S but
none of the bound variables of S, it is plain that there is a set D of quan-
tifierless formulas derivable from S which meets the following condition:

(4) For every variable a of V there is a variable b of V such that for every
variable c of V there is a variable d of V such that the formula Fabcd
is in D.

Now suppose that all the formulas of D become true on some assign-
ment of truth-values to their component atoms. Then where V, which is
obviously denumerable, serves as the set M, it turns out that however well
N plays, P can win a quantifier game using S and an interpretation that
corresponds to this assignment. By quantifier game principle (1), therefore,
S is consistent.

P wins by playing in such a fashion that the final formula of the game
is a formula of D, which, by our supposition, comes out true on the inter-
pretation at hand. That P can manage this is evident, since (4) entails
the following statement:

(5) For every first move by N there is a first move by P such that for every
second move by N there is a second move by P such that the final
formula of the game is in D.

This argument shows that if S is inconsistent then the set D is truth-
functionally inconsistent. As a second stage of the proof in progress, we
show that in this case some finite subset of D is also truth-functionally in-
consistent. However, what we prove won't be just this, since our argument
also establishes a more general law. Let R be an infinite set of truth-
functional formulas whose atomic components are ql9 q2, . . . . This law
then tells us that if R is truth-functionally inconsistent then some finite
subset of R is also truth-functionally inconsistent.

The proof of this will be carried out in terms of a binary tree with
labelled nodes. The top node is labelled qχ and each node labelled qi

branches into two nodes each labelled #z , 1 . A finite top part of this tree
is shown below:

0 ® Q ®
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By a path in this tree will be meant the sequence of nodes encountered
if we start at the top node and move downward along the lines that connect
the nodes, going either left or right at every juncture. A path is finite if
this descent stops at some stage and is infinite otherwise. If we now con-
strue going left and going right from a node labelled qi as the assignments
of a T and an F respectively to q^ each path in the tree becomes an assign-
ment of truth-values to the q's—an infinite path assigns truth-values to all
the q's, on this construction, and a finite path with n+l nodes assigns
truth-values to qί9 . . . , qn>

Now suppose that R is inconsistent. This means that every infinite
path, regarded as an assignment of truth-values to the q's, falsifies some
formula of R. Given any one of these paths and a formula it falsifies, more-
over, it is plain that a finite front end of the path falsifies the formula.
For every formula is such that for some index r, qr+1, <2r+2, don't occur
in it, and whether it comes out true or false on a given assignment is de-
termined just by the truth-values assigned to ql7 . . . , qf. On this basis,
we now erase as much as possible of each path still leaving it a path that
falsifies some formula of R. The result of these erasures will be a tree
every path in which is finite.

It remains to prove that this tree is finite in the sense that it has a
finite number of nodes. This means that for some integer s, no path has
more than s+l nodes, which tells us that every assignment of truth-values
to qί9 . . . , qs falsifies one or another formula of R. For if some such as-
signment falsified no formula of R, then by the manner of its construction,
some path in the tree at hand would have more than s+1 nodes. It follows
from this, however, that a subset of R that contains at most 2s formulas
is truth-functionally inconsistent.

As the last part of this argument, then, we establish that if a tree as
above is infinite in the sense defined then it has an infinite path. The
finiteness of the tree at hand will then follow from the fact that every path
in this tree is finite.

Let a node be called productive if the subtree that it tops is infinite.
In these terms, we define a particular path P in a tree labelled as above
as the sequence of nodes met in a descent from the top node which is guid-
ed by the following instructions:

(6) Descend to the left from a node labelled qi to a node labelled ^z + 1 if
the latter node is productive,

(7) Otherwise, descend to the right from the node labelled qi to a node
labelled q^χ if the latter node is productive,

(8) Stop if neither node labelled qi+ί is productive.

Suppose now that the tree in which P is a path is infinite. Since the
top node of this tree is then productive, we see from the definition of P
that every node of P is productive. But it follows from this and the defi-
nition that P is infinite. For P will have a last node just in case neither
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node into which this node branches is productive. In such a case, however,
the last node itself won't be productive, which is impossible.

On the basis of these soundness and completeness proofs, it is easy
to establish Lόwenheim's Theorem, which states that if a formula is con-
sistent, then it is true on some interpretation in a denumerable universe.
Since the system is sound, we know that if a formula S in prenex normal
form is consistent, then the set D, which is derivable from it, is truth-
functionally consistent. In that case, however, as was seen in the com-
pleteness proof, S comes out true on an interpretation in a universe no
larger than the denumerable set of variables V.

VI. An equivalent system of deduction. We next present a more workable
system of deduction than the one defined in Section II. The new system
differs from the old in that it allows us to use a finite set of formulas in
prenex normal form as premises in a derivation. The rules of inference are
the same as before, and again the object is to derive a truth-functionally
inconsistent set of quanti fieri ess lines, which will indicate that the set of
premises is inconsistent. Thus an argument may be proved valid, in gen-
eral with less effort than before, by establishing that a set of formulas that
comprises prenex normal form equivalents of its premises and the negation
of its conclusion is inconsistent.

Let S±, . . . , Sn be formulas in prenex normal form and let S be a prenex
normal form version of a conjunction of these. The new and old systems
will be shown to be equivalent in the sense that an inconsistent set of
quantifierless formulas is derivable from 51, . . . ,5" in the new system
just in case another such set is derivable from S in the old system.

The soundness proof of Section III applies mutatis mutandis to the new
system. Hence Sλ, . . . , Sn form an inconsistent set if a truth-functionally
inconsistent set of quantifierless formulas is derivable from them. But in
this case, S is inconsistent too, which means that another such set is de-
rivable from S in the old system, since the old system is complete.

To establish the converse implication, suppose we are given a deriva-
tion in the old system which proves S to be inconsistent. Our argument
remains fully general if we assume that no variable of S1, . . . , 5" occurs
free here. With this derivation as a guide, however, it is easy to construct
a derivation from Sι9 . . » , S in the new system whose quantifierless lines,
put into conjunctions of n terms each in a suitable fashion, become the
quantifierless lines of the given derivation. The trick here is simply to
copy Ul and El steps in the obvious sense. Thus a truth-functionally in-
consistent set of quantifierless formulas turns out also to be derivable
from S1, . . . , Sn in the new system.

2. The general law here proved is essentially the nontrivial half of what is called
the Law of Infinite Conjunction in Quine L3J, pp. 254,5. The fact used in prov-
ing it, that if every path in a tree as above is finite then the tree is finite, is a
special case of the Brouwer Fan Theorem. What has just been proved is the
contrapositive of this, a special case of Konig's Lemma.
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