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RELATIONS IRREDUCIBLE TO CLASSES

F. G. ASENJO

1. Purpose. Relations are usually considered as two-place predicates
with variables ranging over a certain object domain. Every relation can be
interpreted, then, as a class of ordered pairs of objects that satisfy a given
two-place predicate. This approach follows Wiener's well-known idea and
reduces relations to terms [14], namely, the class of ordered pairs just
mentioned. Bradley ([2], [3], [4]) and Whitehead ([11], [12], [13]) have criti-
cized the reduction of relations to terms. Explicitly, Bradley distinguished
between "external relations'' (e.g., the aforementioned variety of relations
reducible to classes) and "internal relations," i.e., relations irreducible to
terms. According to Bradley, every internal relation modifies the terms
related, but the relation itself is not modified by the terms. Whitehead ac-
cepted Bradley's terminology, but took the position that internal relations
and terms not only should be mutually irreducible but also should be mutu-
ally modifiable ([13], [5]). The purpose of this paper is to formalize White-
head's concept of internal relation, presenting it as a kind of variable in-
dependent of the two-place predicate definition of relation.

2. Logical symbols and formation rules. Terms and internal relations
(henceforth called "relations") will be considered different formal symbols.
Following Kleene's symbolism and terminology (Cf. [7]), we may describe
the formal system we intend to form as containing: (1) Logical symbols:
D , &, v, T, V, 3 (the propositional connectives and quantifiers). (2) Pred-
icate symbols: = (equals). (3) Function symbols: + , . , ' (plus, times,
successor). (4) Individual symbols: 0, 0 (zeros). (5) Term variables: alf

blf clf .... (5) Relation variables: a2, b2, c2, .... (7) Parentheses: (,).
As subcategories of the formal expressions we can form with these

symbols, we will distinguish among "terms," "relations," and "formulae"
according to the following formation rules:

al. 0 is a term. a2. A term variable is a term. a3 - a5. If xx and yx

are terms, then xλ + ylf xx yu x^ are terms. a6. If xx and yx are terms
and xz is a relation, then xxx2yx is a term. a7. al to a6 determine the only
terms. _

bl. 0 is a relation. b2. A relation variable is a relation. b3 - b5. If
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x2 and;y2 are relations, then x2 + y2, x2 ' 3>2, x2* are relations. b6. If x2

and y2 are relations and*! is a term, thenx2xιy2 is a relation. b7. bl to
bβ determine the only relations.

(By aβ and bβ, terms and relations play the role of function symbols in
a manner analogous to +, ., \)

cl. If Xi and 3^ are terms, then*! = yx is a formula. c2. If x2 and;y2

are relations, then x2 = y2 is a formula. c3 - cβ. If A and B are formulae,
then A D B,A & B,A v B, ΊA are formulae. c7 - c8. If ΛΓX is a term
variable and A is a formula, thenV^A and a ^ A are formulae. c9 -
clO. If x2 is a relation variable and A is a formula, thenYx2A and3#2A
are formulae, e l l . cl to clO determine the only formulae.

Application of these formation rules results in the following formal ex-
pressions. Terms: aubucuaιa2au aγ{b2 0 c2)bίf a1(b2(dι Q(aιe2aι))b2)cι,
etc. Relations: a2, b2(dιe2((a1b2c1)) (e2aχb2), etc. Formulae: a1=bl}

axa2ax - alf a1(b2(d1e2{aιb2{aι))b2)cι = aιa2bli a2 = b2dιe2, etc.
(Note: Tar ski's introduction of relations as relation variables in [9]

has nothing to do with the present approach. His variables are intended to
be external relations, their properties essentially coinciding with the prop-
erties of the two-place predicate definition of relation.)

3. Term formulae, relation formulae, and term-relation formulae.
The system we intend to form is a kind of two-sorted predicate calculus;
i.e., a calculus whose predicate formulae are defined in two categories of
fundamental objects, terms and relations. These will be represented re-
spectively by two kinds of informal variables: xXi yίf zί9 ... (terms);
#2, y2, z2, ... (relations). The general category of terms has a subcategory
of terms that are obtained by applying formation rules al - a5 only. Let us
represent this subcategory of terms with the symbol T*. Analogously, the
symbol R* will represent the subcategory of relations obtained by applying
rules bl - b5 only. If terms are of T*, they will be represented by the sym-
bols mlf nί>pί, ... (m2, p2, q2, ... for relations of #*). The symbols may
then represent either a formal term variable ax or a term mx of T*; or, to
be more general, a term obtained by applying rules al - aβ. This is simi-
larly true for relations (indicated by "s.f.r." for the rest of the paper).

According to this classification of terms and relations, predicate form-
ulae can be divided into these five subcategories. (i) Formulae with only
terms ranging in T*, with the use of rules cl, c3-cβ, c7-c8 only (term
formulae), (ii) Formulae with only relations, these relations ranging in R*,
with the use of rules c2, c3-cβ, c9-clθ only (relation formulae), (iii) Form-
ulae with terms only or relations only, these terms or relations ranging
respectively beyond T* or R*. (iv) Formulae with terms and relations
ranging in T* and R* respectively, (v) Formulae with terms and relations
ranging one or both beyond T* and R*. Formulae of kinds (iii), (iv) and (v)
will be called "term-relation formulae." Examples of term-relation form-
ulae follow: Vxi 3x2(xi = X1X2X1); 3x2(x2 + y2 = y2 * (y2XiZ2)); 3xi VX2
ΓΊ(x2xiX2 = X2), etc.

4. The term-relation number theory.
The predicate calculus for term formulae is the same as the predicate

calculus for relation formulae. For the purpose of outlining such calculi,
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we shall assume Kleeneτs postulates 1-12 (see [7], p. 82), which will apply
independently to term formulae on one hand, and relation formulae on the
other. Let us also include Kleene's postulates 13 - 21, so that the system of
term formulae and the system of relation formulae will be formally equiv-
alent (respectively) to one and the same number-theoretic formal system,
For a term-relation number theory, let us now add the following definitions,
postulates, and theorems.

For postulates PI - P21, see Kleene's [7], p. 82. (From P22 on, even-
numbered postulates—also definitions and theorems—will refer to terms and
odd-numbered ones to relations.)

P22. x1θx1=x1. P23. s.f.r.

TO (Theorem 0). Every term of the form^iO^iO xx... xxQxx with any
arrangement of the corresponding parentheses, but with no left parenthesis
immediately preceding any occurrence of 0, equals xx.

Proof: By iteration of P22. T1. s.f.r.

By applying postulates P22 and P23, terms or relations in which ex-
pressions of the forms xji x1 or x2θ x2 appear can be simplified by substi-
tuting Λrx and x2, respectively, for such expressions. This leads to the fol-
lowing definition:

DO. A term will be said to be written in the reduced form if and only if
it does not contain any expression of the forma^O*!, or the form x2θ x2.
D1. s.f.r.

D2. Two terms are called equal if and only if after writing them in the
reduced form they are identical formal expressions, i.e., if they are formed
by occurrences of the same logical symbols in the corresponding places in
each one of both expressions.

Hence, for example, a1a2b1 = a\a\b\ if ax = a\, a2 = α'2, δi =b\.
a1a2((b1b2(cίc2dί)) d2et) = a\a'2{(b\V2{c\c'2d\))d'2e\) if ax =a\, a2 = α τ

2 ,

etc., with the parentheses occurring in the corresponding places. (These
examples use equality of terms in T*, the latter equality now being a parti-
cular case of equality of terms in general.) D3. s.f.r.

D4. A term will be called of order n if and only if written in the re-
duced form it reads: p^ £ 2

( l ) qx^ qjz\.. s/""1* s^'1) t ^ (with some
arrangement of the corresponding parentheses). D5. s.f.r.

As a consequence of D4, terms of T* are all of the first order, 0 in-
cluded. ax 0«! is an example of a term of the first order not originally in
T*. (fliόαi) 0 ((αiα2δi) Oδi) is of order four, provided that ax £ bu etc.

D6. T^n> represents the category of terms of order n. D7. R^n' repre-
sents the category of relations of order n. (T* andE* are subcategories of
Tv1) and io1) in principle. But because of the reduction of terms and rela-
tions that is possible with P22 and P23,T* coincides with T^1), and#* coin-
cides withiΐί1).)

D8. Given a term XιX2yι, xx and;yx will be called components oίx1x2y1.
If, furthermore, either (i) x2 φ. 0 or (ii) xx φ yx whenever x2 = 0, then xx and
y-i will be called proper components. D9. s.f.r.
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D10. A term XγX2yx will be called normal if and only if its components
are proper. D11. s.ϊ.r.

T2. If ^i is a term of order m, yx a term of order n, x2 a relation of
order p (m, n, p> 1), and x1x2y1 is not normal, then the order oίxxx2y\ is
m = n.

Proof: D4, D10 and P22. T3. s.f.r.
T4. If χλ =y1x2z1 is normal of order n\ then the components y i and

zx of xx are of order k, h respectively, with&, h< n.
Proof: This is a corollary of D4 and T2. T5. s.f.r.
P24α. If alfbl9 ... are terms (of T*), anda2,b2, ... are relations (of

R*), thenaxa2bi +Cιb2dι = {aγ + d ) (a2 + b2)Jpλ + dγ). P25α. s.f.r.
In particular, in P24a, if cx = dγ and b2 = 0, then axa2bλ + c1 = {ax + cx)

a2φ1 + Ci).

P24b. If X\X2yι is a normal term of order mτ and £i3>2^i is a normal
term of order n\ with#2 a normal relation of order p* (m> pr > 1) and y2

a normal relation of order q1 (n> q' > 1), such that both x2 and y2 are either
inR* or areof the form s2sxt2, u2u1v2^ with sx a term of order h{p> h> 1),
and ux a term of order k (q > k > 1), then

xtx2yι + zιy2wι = (xι + zj (x2 + y2) (JΊ +^0,

where xx + zx and yλ +wx are sums of terms xlf y1 of order less than or
equal to m and terms z^w^oί order less than or equal to n, and

X2 + yz - SzSrfz + UzU&z = ( s 2 + ̂ 2) (si + Uι) (t2 + f 2 ) ,

where s2 + u2 and t2 + z;2 are sums of relations s2 and ί2 of order less than
or equal to p and relations u2y v2 of order less thanor equal to qf and where
sx + ux is the sum of terms sx (of order less than or equal to p <m) and ux

(of order less than or equal to q < n). P25b. s.f.r.
P24 determines addition of terms by induction on the maximum order

of their components first, and on the maximum order of the components of
the relations x2 and y2 second. Similarly, this is also the case with P25.
After these postulates have been stated, we can compute the sum of any
given pair of normal terms or normal relations through a finite number of
steps. Addition of normal terms of mf-th and wτ-th order, for instance, is
recursively computable through m or n steps at most. Let us consider the
following sum, for example: (d^O^) a2cγ + c1(a20(a2d1b2))e1. This is of
the form x1x2yί + z1y2w1 witn XχX2yλ of order 3 and zιy2w1 of order 4,
both terms normal. Recursively we obtain:

((aiObJ + Cy) (a2 + {a2Q{a2dιb2)){c1 + ej (first step),
((«i + C\) 0 (&! + C!))((β2 + a2) 0 (a2 + (a2dίΰ2)))(c1 + ej (second step),
((#i + c θ 0 (bx + cθ)((α 2 + a2) 0 ((a2 + a2) dλ{a2 + b2)))(c1 + ex) (third andlast

step).

Every term and relation in the final normal term, which is of order less
than or equal to 5, is directly computable in T* andi?*.

If terms and relations are not normal, they can be reduced from forms
XxΰXi, x2θx2 to forms xlfx2 respectively. If, in turn, x1 and x2 are not
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normal, or if some of their components are not normal, we can reduce every
non-normal term or relation to a term or relation that is normal or, even-
tually, to a term of T* or a relation of R*. There is then no lack of gen-
erality is assuming in our postulates P24 and P25 that every term and re-
lation we operate upon is normal.

T6. The sum of a normal term of order n and a term of order 1 (or
vice versa) is a term of order n.

Proof: By induction on n. We assume the statement to be true for
every h<k\ and take the terms XγX2yγ of order k' and 2^ of order 1. In
X\X2yi > χι is of order m < k and so is yx. By P24, X\X2yι + Z\ = (#1 + £1)
χz{yι + %i)> where xλ + zλ is the sum of a term of order m < k and zλ, and
where yλ + zγ is the sum of a term of order p < k and zλ. T7. s.f.r.

T8. The sum of normal terms of order raf and ny is a term of order k
such that 1 < k < (m + n)\

Proof: a) That 1 < k is easily inferred from the case a^bγ + bλ0aι =
#i + bλ. b) That k may assume the value (m + nY is shown by T6. c) That
k cannot be greater than (ra + w)1 can be proved in the following indirect
way. Let us assume in XιX2yi, Xι of order e, x2 of order k, and yx of order
h; also, in z1y2wι, zx of order s, y2 of order t, and wλ of order v. ByD2
a n d D 3 , e + k + h - l = m τ a n d s + t + v - l = n \ N o w f o r ( x 1 + z x ) ( x 2 + y 2 )
(yi + H>I) to be of order (m + w)ττ (hypothesis of the indirect proof), either
the order of xx + zx has to be greater than e + s - 1, or the order of yx + w1

greater than h + t - 1, or the order of x2 + y2 greater than k + v - 1. We
already know by b) that the order of xλ + zγ may be e + s - 1 and that the
order of x1 +wι may be h + v - 1. By similar reasoning carried out for
relations, we can show that the order of x2 + y2 may be k + t - 1. Let us
assume now, for instance, that the order of χ1 +yx is (e + s - ί)1. This is
the same as the hypothesis of the indirect proof, but for orders e < mf and
s < n \ Repeating this process we arrive at the sum of a pair of terms or
relations of the form a1 + βx or a2 + β2, where either aί or βλ on one hand,
or a2 or β2 on the other, will be of order 1. If ax is of order v and βγ of
order 1, for instance, the order of 0^ + βι cannot be 1/ (T6); or if a2 is of
order η and β2 of order 1, the order of a2 + β2 cannot be 77' (T7). There-
fore, some of the remaining terms or relations must satisfy the hypothesis
of the indirect proof. Repeating the analysis as many times as necessary,
we see that the hypothesis necessarily contradicts theorems T6 and T7.
Hence, k < (m + n)\ T9. s.f.r.

Multiplication of terms and relations can be introduced in a way that is
analogous to the introduction of addition in postulates P24 and P25. The
general forms for multiplication will be:

P26. {XiXzyi) (£13^1) = (xxzj (x2y2) (yiwj.
P27. (^^1^2) (£23^2) = (# 2£ 2) (#i3>i) (y2w2).
T10. Xix2y! +zχ = (xi + zι) x2 (yx + zγ).

P r o o f : P 2 4 , TO. T1Ί. s . f . r .

T12. Xχx2yι - zx = (tfxSi) 0 (3>i*i) T13. s.f.r.
T14. ΛΓJ. +yi = yι +xλ. T15. s.f.r.
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T16. #! 3Ί =3>i #i TΊ7. s.f.r.
T18. (xi+yi)+*i=xι +(yi+Zi). T19. s . f . r .
T20. (Xl y1)z1=x1(y1 zx). T 2 1 . s . f . r .
T 2 2 . (xi +y1)zί= xxz! +y1z1. T23. s.f.r.

T24. (ΛΓiAΓa yO^Vtfa Vx'. T25. S.f.r.
T26. (x

x
x

z
y

x
 + *i)' = {Xι +z

1
)x

2
(y

1
' +Zχ) T27. s.f.r.

T28. {xιX
2
yιY *i = (XiZχ) 0 (yi^i) + *i T29. s.f.r.

T30. ((*i*
2
3>i):y

2
£i)' = ( V ^ i O ^ i ' . T31. s.f.r.

Proofs of theorems T14 - T23 can be obtained by double induction (on
the maximum order of terms and on the maximum order of relations), since
in T* and R* commutative, associative, distributive, and well-ordering laws
are all valid. Proofs for T24 - T3Ί are straightforward. In general, there
is no well-ordering law for either terms or relations beyond T* ) and R^\
for it is clear that the trichotomy law does not apply in such cases.

If we now write 0, 1, 2, 3, ... for terms, and 0, 1, 2, 3, ... for relations
in T* and R*9 respectively, we can present the following examples of the
arithmetic of the term-relation number theory:

E1. 4_= 404 =J40(404))04 = 40((404)04) = 40(40(404)), etc.
E2. 123.4= 4012. _
E3. 4729^81 = 245629.
E4. 0_= 000._
E5. 202 > 201^
E6. 201 and 102 are not comparable in the sense of order. In general,

it is not true that a1a2(bιb2(c1c2d1)) = a1a2((b1b2c1)c2dι) = ((a1a2b1)b2c1)c2d1,
and operations involving any two of these three terms will produce, in gen-
eral, different results. For example:

E6. 234 + 45(612) = 68(lθΊ6); 234 + (456)12 = (6~58)46.
E7. 234 45(612) = 8Ϊ5(2408); 234 (456)12 = (8012)28.

0 is the identity element for addition of terms; hence, the totality T ' 0 0 '
of terms of any order and the operation of addition, form a semi-group with
identity. However, 1 is not an identity for multiplication in τ W ; τ'°°' and
multiplication of terms form a semi-group without identity.

5. Logic of two-sorted theories. At this point, the question about the
consistency of the system of term-relation predicate formulae arises. The
general problem of consistency for systems of many-sorted theories has
been studied by Herbrand [6J, Schmidt [8], and Wang [10]. Following Wang's
approach to this problem, let us call T2 the theory outlined above, and Tlf(2)
the theory formed in the following way: we put together terms and relations
as being parts of one single kind of variable x, and introduce two predicates,
Si and S2, such that x is a term if and only if Sι(x), and x is a relation if
and only if S2(x). Adding these two predicates to the predicates of T2y we
obtain a one-sorted logic, L 1 ? ( 2 ), by requiring that for every i{i- 1,2),
ΆxSiix) is a theorem. Since L2 is the logic for theory T 2 , every statement
of L2 can be translated in Z»i,(2) whereas, on the other hand, some state-
ments of £i,( 2 ) have translation in L2. Under these circumstances (see
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Wang [10]), we may make the following statements, (i) A statement in T2 is
provable if and only if its translation in the corresponding theory 7\ ,/2\ is
provable, (ii) If T2 is consistent, then 7\ (2) is consistent, (iii) If T 1 ?( 2) is
consistent, then T2 is also consistent, (iv) Given a statement of T 2 and a
proof for it in T 2, there is an effective way of finding a proof in 7\ (2) for
its translation in T1 (2y, and conversely, given a statement of T1?(2 j which
has a translation in T2, and given a proof for it in T1 (2), there is an ef-
fective way of finding a proof in T2 for its translation in T 2 (Schmidt).

6. Interpretation. The totality of objects that satisfy a given term-
predicate formula is usually called a set. Let us give the name of "net" to
the totality of objects that satisfy a relation-predicate formula. Sets and
nets have no formal differences apart from interpretation. With respect to
the interpretation of term-relation predicate formulae, we may now intro-
duce the following terminology. Let us apply the term "organism of order
m xn11 (employing a word used by Whitehead in [12] that does not have too
different a meaning, we believe) to the totality of terms of order m and re-
lations of order n which satisfy a given term-relation predicate formula.
With this definition, a theory of organisms could be developed that would
contribute to the interpretation of the term-relation predicate calculus.
Typical problems of this theory would be of this nature, for example: For
a given set of terms of order m and a net of relations of order n, how many
organisms of order m xn are possible? If T* is {aλ, bx} and R* is {a2, b%
c2 }, we should in this case form first the set of terms T^00' = {aίf bl9 d\a2bXi

axdzdi, bxa2a^, ..., (aλa2b^) a2cλ, etc.}. and the corresponding net of rela-
tions R(°°\ A proper subset of r ' * ' is T ' m\ the collection of terms of order
m\ s.f.r. An arbitrary term-relation predicate formula P(xi,x2) divides
T( OT) and R(n' into two subsets and subnets, those of terms of order m and
those of relations of order n, which may or may not satisfy the predicate
formula P. It is an elementary problem of combinatorial analysis to obtain
in every case, for m and n fixed, the number of possible different organisms.
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