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1. Introduction: We discussed the structure of ringoids with minimum
condition in [1] and proved the analogue of the Wedderburn theorem for
simple rings. Now we plan to take up the analogue of the Jacobson theory.
After the proper formulations of definitions and results the proofs mainly
copy the well known proofs for rings (see for example [2]). However, in
order to indicate how this is done some proofs are given in detail. In Sec-
tion 6, we take up a few elementary results on the representations of Bar-
ratt ringoids.

2. We recollect the definitions given in [l]. We call a 'collection' R of
elements with partially defined operations of addition and multiplication a
ringoid, if it satisfies the following axioms, for any a,b,c, in R:

a) i) a + (b + c)= (a + b) + c, if either side is defined, (i.e. if one side is
defined, the other is defined and equality holds.)

ii) Given aeR, there exists oa e R such that a + oa - a and oa + x = x
whenever for x e R, oa + x is defined. (We shall write o for oa

whenever no confusion is possible.)
iii) Given aeR, there exists b e R such that a + b = b + a = oa.
iv) a + b = b + a, if either side is defined.

b) a(bc) = (ab) c if either side is defined.
c) a(b + c ) = ab + ac } 7 ... ., . _ .. ,

v , } when either side is defined,
(b + c)a = ba + ca \

We further impose the conditions α), β) and δ) given below: Define for
aeR, L(a) = {x: xa defined], R(a) = {x: ax defined}.

a) For every aeR, L(a) £ φ£ R(a).
β) For every aeR, there is an element b ^ a of R such that a + b is de-

fined.
δ) If L(a) n L(b) έ φ, R(a) n R(b) £ φ then a + b is defined.

We observe that in a ringoid if a + b is defined then oa = Ob and oa and
additive inverse are unique. Suppose a + b and xa are defined then

xa - x(a + Ofy) = x(a + b - b), which implies xb is defined.

Received December 4, 1962



JACOBSON THEORY OF RINGOIDS 207

Thus we see that a ringoid also satisfies the property:

γ) Ifa + b is defined then L(a) = L(b) and R(a) = R(b).

If a + b is defined then oa = ob = oa+b. Conversely if oa = ob we can write
as above a - a + oa = a + ob = a + (b - δ), which means α + δ is defined.
Hence α + b is defined if and only if oa = ob. This divides R into a union of

disjoint abelian groups R = U A, .
z ε I

We also recall, a Barratt ringoid G is a 'collection' (G Z / ) Z J 7 of disjoint
abelian groups, written additively, one for each ordered pair of symbols
(i,j) in some indexing set, such that there is defined a bilinear product
GijθGjtk -*Gjk, for every triple (i,j,k) and every G» has an element U
such that

h Sij = gij = 5",•/1/ for ^ .y eGz/ .

For a number of interesting examples of ringoids we refer the reader to

M
We do not explicity require that in a general ringoid if ab and be are

defined then a (be) is defined. We do not know if this property is a conse-
quence of the other axioms. However, we have proved in([l], lemma 2-2)
that if a2, a3, ab, be are defined then (ab)c is defined and hence a(bc)is
defined and a(bc) = (ab)c.

I C R is said to be a left ideal in the ringoid R if

I - I = {x - y: x,y e I, x - y defined^ C I

R I = {xi: xeR, ie I, xi defined} C I

One similarly defines right and two sided ideals. An ideal consisting of
zeroes alone is called a null ideal and denoted by N.

The Wedderburn theorem for ringoids now reads:

Let R be a simple ringoid, in the sense that
1) R contains no proper two sided ideals,
2) R satisfies the minimum condition for right ideals,
3) R 2 = N , φ .
Then R is isomorphic to the matrix ringoid

M = ^ ^ Mβmrβn(O), where

1) D is a division ring,
2) I is a finite set9

3) am , an are integers,

4) Mα,fc (D) stands for the set of all ax b matrices over D.

It should be remarked that subscripts am, an are used instead of m,n
in order to allow for matrices of same dimensions but of different colors.
Then an am X an matrix is addible to an αux αv matrix if and only if m =n,
n-v and a n « m x a n matrix multiplied by an. αn xαp matrix on the right
gives an αm x αp matrix. Of course one easily sees that, conversely, the
matrix ringoid M is simple.
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3. In this section R will always denote a ringoid. We make a few defi-
nitions.

Definition 1. M = U Mz, a disjoint union of additive groups is said to
i € I

be an R - module if given r e R , there is a unique i,je\ such that

r: M Z ^ M 7 i.e. Mzr C M;

and for m, w'eM, r, seR we have

(m + m')r = mr + mxrs

rn(rs) = (πιr)s if either side is defined.

m(r + s) = mr + ms

Definition 2. Mf is a submodule ofhA= y Mz if N/P = U M\9

t\A\ C Mz and M f is an R - module.

Then M/Mf = y Mz/Mf

z becomes an R - module by setting mr - mr when

ever the right hand side is defined, for reR, meM.

Definition 3. Let M and Mf be two R - modules. A map θ : M —» Mf is
called an R - homomorphism if for all mx ,m2 in M, re R we have

θ(mx + m2) = θimj + θ(m2))

θ(tnr) = θ(m)r ) if e i t h e r s ί d e ίs defίned'

We observe that in the definition of M, and R - module, the uniqueness of i
is equivalent to:

For m,neϊsA, m +n is defined<$Φthere is an reR such that mr + nr are
defined.

Thus in general a ringoid R is not an R - module. One may think that
therefore the definition is unsatisfactory. But we shall see that the follow-
ing theory does not work unless one makes such a definition. Moreover if
R, in particular, is a ring then it is an R - module in the ringoid sense. We
also have:

A minimal right ideal I of a ringoid R is an R - module.

Proof. We know I = xR = {xr: reR, xr defined}, for some xeR. We
have only to show that if two elements of I have a common right multiplier
they can be added.

xlr, xmr defined => I + m defined => x (I + m) defined =>xl + xm defined.
This completes the proof.

Remark - With a Barratt ringoid R = U Gz;, we can associate an R -

module R* in a natural way by setting R* =2^/Qky where G^ = A^Gki and rg

is defined in the natural way for reR, geGk.
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To continue the remark, in case R is a ring, R* = R.

Lemma 1 (Schur). R - endomorphίsms of an irreducible R - module M
form a division ring.

Proof: Let xebA and a,β be two R - endomorphisms of M. Since there
exists an reR such that xr is defined and oι(xr) = a(x) r (if either side is
defined), a(x) r is defined. Therefore by the definition of an R - module,
a(x) + x is defined. Similarly β(x) + x is defined and thus a(x) + β(x) is
meaningful. Thus we can define

(en + β) (x) = a (x) + β(χ).

Now, as usual, since o?(M) = M and kernal α = N, α is 1 - 1 and onto and has
an inverse.

This proves Schur's lemma.

Definition 4. A ringoid R is said to be primitive if it has a faithful ir-
reducible R - module.

Theorem 1. (Jacobson Density Theorem). Let R be a primitive ring-
goid with an irrdeucϊble faithful R - module M. By Schur9s lemma, the R -
endomorphisms ofM form a division ring, say Δ. Suppose vif . . . , vn are
mutually addible elements of M and wif . . . , wn are mutually addible ele-
ments of M. Further suppose Vi are linearly independent [in the vector
space sense) with respect to Δ. Then there exists an element r of R such
that

vi/y ~ wί for i = 1,2, . . . , n.

Proof: We first prove:

1) If V is a finite dimensional vector space over Δ , contained in M and
rneUi, m^V then there is an reR such that Vr = o, mr fi o. We shalluse
induction on the dimension of V. We can write

V = Vo + Δw,wjίVo

Let */(V0) = {reR : V0r = o}.

Because of the induction assumption we have

υ cA (Vo) = o<=>veV0

Now suppose the assertion 1) is not true, i.e.

Vr = o => mr = o.

Observe that w J (Vo) C M => w J (Vo) = M.

Define θ : M —» M as follows:

If x =wa, at cA (Vo), set θ(x) = ma.

θ is well defined as wa = wb^>w (a - b) = o=> V (a-b) = o^>m{a -b) = o

θ is an R - endomorphism of M i.e. θ e Δ .
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For ae <A (Vo), ma = θ(wa) = θ{w)a=>(m - θ{w)) a = o i.e. (m - θ(w))
<Λ(Vo) = o

Therefore m - θ(w) e Vo and raeVo + Aw = V which is a contradiction,
proving the assertion 1).

2) Now to complete the proof, suppose r is got by 1)

mr + o=> mrR Φ N =Ξ>rarR = M.

Thus there exists seR with mrs arbitrary but Vrs = o.
Therefore choose w{ such that

VjWi - o j 4 i and vι r^ -wt, i - 1, . . . , n

then

Vi(rx + . . . + Tn) = ViYi =U)4

{rγ + . . . + rn is defined because of the distributive law).
This proves the theorem.

4. Now we shall deduce the Wedderburn theorem from the Density theorem.

Lemma 2. Let R be a simple rίngold with descending chain condition on.
right ideals then R is primitive.

Proof: We only have to exhibit a faithful irreducible R - module. By
the chain condition, R contains a non null minimal right ideal, say I. Then
I is an irreducible R - module. We claim that I is also faithful. Let

J = {αeR : \a C N}.
J is a two sided ideal of R.
I C {#:*.J C N}, which implies that {x:χj C N} = R

Therefore J ̂  R because otherwise R2 C N. Hence J = N i.e., I is faithful.

Theorem 2 (Wedderburn) Let R be a simple ringoid with descending chain
condition on right ideals. Then R is isomorphic to

Wam,an ( D ) : m , W € l } ,

where I is finite, aι are integers and D is a division ring.

Proof: Let D be the division ring of R - endomorphisms of a faithful

irreducible R - module M (which exists by the lemma 2). Then M = U Vz,

where Vt are vector spaces over D. By theorem 2, R consists of all linear
transformations θ : Vz -> V; for all ije I.

It remains to prove

1) All the Vz have finite dimension, and
2) I is finite.

To prove 1), suppose one of the Vz say Vx has an infinity of linearly inde-
pendent elements say,Uι,u2 jut, then cA (uι) D c4 (ul7u2 )
J cA {Ui,u2,uz) D where cA (uly . . . ,uk) = {reR : U(r = o
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i = 1, . . . ,k} is an infinite chain of ideals and containment is proper at
each step by theorem 2. This is forbidden.

To prove 2) suppose I contains a countable infinite set say Z, the natu-
ral numbers, then

Then again there is an infinite chain of ideals:

JJ,M«,,«JD^ m ^ M ^ " J D ) D JΛ,M^«« ( D ) : ) '
m ^ l m^l,2 m^l,2,3

which is not permitted.
This completes the proof of the theorem.

5. Definition 5. Let \,J be two right ideals of the ringoid R. Suppose for
every r e R ,

i) either r = ί + j , ie\9 j e j
or r - iy ie I

orr=j, jeJ

ii) I n j c N.

Then we say R is a direct sum of I and J and write R = I + J.

Definition 6. If M is an R - module, <A (M) = {xeR : Mx C N }. Clearly
c4(\sA) is a two sided ideal of R.

Definition 7. The radical of R, J (R), is n A (M), where this intersec-
tion runs over all irreducible R - modules M. If R has no irreducible R-
modules, we define J (R) = R. The radical is thus the annihilator of all
irreducible R - modules.

D e f i n i t i o n 8 . We shall say R is semisimple if Δ ( R ) C N .

One can easily prove now, following the standard arguments, with slight
modifications, of for example [2]:

1) J(R/J(R)) is null.
(Factor ringoid is defined infl])

2) J(R) = intersection of its primitive ideals.

Some other characterisations of the radical in the ring sense also hold for
ringoids.

3) If R is a semisimple ringoid with descending chain condition on two
sided ideals then R is a direct sum of simple ringoids.

6. In this section we formulate the elementary concepts of the matrix rep-
resentations of a ringoid and a ringoid from now on stands for a Barratt
ringoid.

Definition 9. Let G = V Gz/ be a ringoid we say M = V , M Z is a repre-

sentation (space) ofG if each Mz is a finite dimensional vector space over a

field F and for every geQ, there is a unique pair i,j such that a product
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ug is defined for all ueMi and ugelAj and has the following properties for
uly u2ehΛ, geG, α e F .

1) (uλ + u2)g = utg + u2g ^
2) (au) g = a(ug) I .
3) «(ff Λ ) = (t^fc, [ ^ eZther Slde lS dφned

4) u (gx + g2) = ugλ + ug2 J

We r e m a r k that if M = U Mz i s a r e p r e s e n t a t i o n space of G, suppose

g : M z —>M; and {ul9 . . . ,wM } and {z^, . . . yvm } a r e F - b a s e s of M z a n d

M ;. Suppose uxg = ^ a{j (g) ujm i = 1, . . . ,n. Then g^Δ(g)* {atj) m,n

has the properties:

Δ (gί +g2) = Δ (gl) + Δ fe) Ί w h e n e . t h e r s . d e

Δ te ^ a ) = Δ (gl) Δ te 2) J is defined,

i.e. Δ is a matrix representation. Conversely, having a matrix representa-
tion one can construct a G - module M as in Definition 9, having properties
1) to 4).

Definition 10. Let M = V Mj be a representation space of G = >r G-ij

U i.h

πii, is said to be an invariant subspace if each mi is a subspace
i

of Mi and m is a representation space (with respect to the induced multipli-
cation). In this case we write M Dm.

Let M = U M J , a representation of G = U G,7 contain an invariant subspace

m = U mz . Then M/m = U Mz/mz becomes a representation space by de-
i i

fining ug = ΰg, geG, ύehλj/mj.

Definition 11: We shall say two representation spaces M = U Mz and

m - U m{ ofG = U Gij are equivalent if for each i, there is a vector space
i i,j

isomorphism θi : Mz —> m{ and the diagrams

M f > nij

Ψ ψ
Mt > mi

commute whenever they can be drawn.

In other words if we define the map θ= { 0Z} on M, it is required that

(θu)g= θ(tΛg),

whenever either side is defined.



JACOBSON THEORY OF RINGOIDS 213

Definition 12. By a reduction of a representation space M of a ringoid
we mean a sequence of representation spaces'.

M = Mo D Mx D . . . D Mn = 0

We call the spaces M z /M i + 1 the components of the representation.

Definition 13. We say two reductions

M = Mo D Mx D . . . D M B = 0

M = m0 D mx D . . . J mk = 0

of a representation space VA of a ringoid R are isomorphic if there exists a
one to one correspondence between the representation spaces M.z /M.ί+1 and
m{ /mi+ιsuch that the corresponding representations are equivalent.

Theorem 3. Jordan-Holder-Schreier Theorem— The irreducible com-

ponents of a xepresentation M = U Mr of a ringoid G = v On are unique up
ί € I i,j '

to order and equivalence.

Proof: Let

M = M° DM1 3 M2 D . . . D hAn = 0

M = m° Dm1 1 m2 J . . . D mk = 0

where Mr = U M<, ms = U mj , M^ C M2, m^ C M ,

be two reductions of M. In other words,

Mx = M£ D Mj D . . . D M^ = 0 Mx = nzj D mi ] . . . ] m J - - 0

M2 = M0
2 D Mf D . . . D M^ = 0 M2 = ml J m\ D . . . 3 mf = 0

As is customary, we shall exhibit isomorphic refinements of these reduc-
tions. Set

U\. = Mz
r (M; χ nm

r.) i = l,2, . . . ,n

m^ = m;- (mj_ i n mT) j = 1, . . . ,k

rel.

We claim Mz/ = U M[; and mZ; = U m\. are isomorphic reductions.

We know by the Zassenbaus Lemma, there exist vector space isomor-
phisms

θ : Mr . /Mr . - N/Γ Im..

It suffices for us to prove the commutativity of the diagram
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Mr. /U\. θ mr /mr. .
«./-i hJ i,j ί-i.y ι Ί

g g geG.

v ψ
Ms. /M s . >ms /ms,

θ((a+c)g)=cg=cg Λ€M, , ceM ί - 1 n m ; .

γ γ

θ (a+c)g= θ (ag + cg)= eg (because agebΛi).

This completes the proof.

Definition 14. A representation space M = U Mi of a ringoid R is said

to be a direct sum of representation spaces hAa = vJ Mz a = 1, 2 (written
M = M1 +M 2 ) if each

Mi = M] + Mf

Definition 15. A representation M = U Mz of G = U ^u ^s s a ^ t° be
i i,j

unital if for each identity ^ e G^ we have

ue{ - u for uehΛί.

Let a representation space M of a ringoid G be the direct sum

M = M1 + M2.

Let u = Uι + u2,uebλ, uιeM1, u2eM2,

define

θi(u) = ux, Θ2(u) = w2

Then θi are operator homorphisms in the sense that

θi(u+ υ) = θi(u) + θi (v)

θi (ug) = θi(u)g geG

when either side is defined.

Theorem 3. Every unital representation M = U Mz of a semisimple

ringoid G = vJ Gzy is fully decomposable.

Proof: Let G = Li + . . . + L r be a decomposition of G into minimal
right ideals. Suppose m ; 1 , m / 2 , . . . , m-β is an F-basis of M7. We write
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M j = < m ; i > >™jk>

M = U <mμ, . . . ,mik >

= U <. . . mμ G. . .>

Since Lz is a minimal right ideal, so is L^m^. Therefore

m; L| r^mst Lr = Empty or null for distinct m/Lz and L r m s / .

M = U (m.fc L, n M . )

after omitting the ideals occuring more than once and reindexing the m ; .
Observe

(mfc L i Π M ^ C ^ L f n M r

m.Λ Lz n M.^ θ =ί>m^ L ^ M p ^ 6>for all/).

Hence if we write

Mik = U (mk Lf) n M

M is the direct sum of representation spaces, M^. Since M^ are minimal
ideals of G, they are irreducible representation spaces. Hence the theorem.

Theorem 4 (Krull-Remak-Schmidt) Let M be a representation space of

G = U 0 . such that
ι,1 lJ

M = Ax + . . . + A f = Bx + . . . + B s

with each Aj, Bs indecomposable representation spaces, then after re-
arrangement of indices each A2 is equivalent to Bz and r = s.

The proof is identical with the standard proof.
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