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A PROPOSITIONAL CALCULUS INTERMEDIATE BETWEEN

THE MINIMAL CALCULUS AND THE CLASSICAL

CHARLES PARSONS

1. Introduction. As is well known, the minimal calculus can be simply

formulated by adding to the positive propositional calculus ([1], pp. 140-41)

a symbol / to represent a statement supposed to be false, and the standard

definition of -S as S D / . This makes its incompleteness immediate: the

theorems of the minimal calculus are not only valid in the ordinary sense,

with / interpreted as false, but they are also valid if / is interpreted as

true. If the minimal calculus is formulated alternatively with negation as

primitive and the axiom p D q . D: p D q .'Dp, this is tantamount to inter-

preting — as expressing not negation but the tautological truth-function of

one argument. Let us call a formula (whether formulated with / or with

'—') pseudo-valid if it is valid under this queer interpretation.

Evidently any negation-free formula of propositional logic is valid if

and only if it is pseudo-valid. The class of formulae which is both valid and

pseudo-valid is thus larger than the class of. theorems of the minimal cal-

culus and includes some formulae not intuitionistically valid. It is the

purpose of this note to obtain an axiomatic characterization of this class

(theorem 2). As one might expect, it is related to the class of negation-free

tautologies in the same way as the class of theorems of the minimal cal-

culus is related to the class of theorems of positive logic. We obtain on

the way an axiomatization of the negation-free tautologies (theorem 1).

2. We consider formulations of the propositional calculus with the

rules of substitution and modus ponens. By PC (positive propositional cal-

culus) we mean the system with the axioms1

1. p D. q Dp

2. p D. q D r :D: p D q . D . p D γ

3 . p D. p v q

4. q D. p v q

5. pDr.D.'.qDr.D-.pvq .D r

6. pqD p

7. p q D q

8. pD.qD pq
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The minimal calculus MC is obtained by either adding/ and no axioms
or — and the axiom

9. p D q .D: p D q . D p

The system resulting from PC by adding the axiom

10. p v. p D q

will be called PCC The system resulting from adding axiom 10 to MC will
be called MCC.

Lemma 1. In PCC or MCC, axiom 10 may be replaced by Peirce's law
pz)q .-Dp : D p.

Proof. First, Peirce's law is provable in PCC. For by axiom 1,

\-p D. . p D q . D p :Z)pin PC.2 [i]

Assume p D q and p D q . D p . By modus ponens p follows, and by the
deduction theorem

p ^ q \—p D q . D /> :D /> in P C

By the deduction theorem we have

\-p-Dq .Ώ.'.pΏq . D p :D />

and therefore by axioms 5 and 10 and [i]

|—/> D q . D p : D /) in PCC.

Conversely, assume p v. p a q :D q. Now assume />. Then p v. p Ί)q
follows by axiom 3, and # by modus ponens. Therefore by the deduction
theorem

p v. p D q \~D q \—p D g in PC and by axiom 4
pv.p^>q:^q\—pv. p^)q in PC and therefore by the deduction theo-

rem

|— p v. p Ώ q :Ό q .".D: /> v. p D # in PC

and hence by modus ponens

/> v. /> ̂  q \^ q r.^'.p v.p ^ q : :D: /? v. p Z) q

\—p v.pΊ) q in PC.

The premiss is an instance of Peirce's law.

Theorem I . All tautologies without negation are provable in PCC.

Proof. According to a well-known result of Tarski and Bernays ([4], p. 52),
all tautologies containing only the conditional are provable by means of
axioms 1 and 2 and Peirce's law, and therefore in PCC. Theorem 1 will
follow easily from this fact and the following two lemmas.

Lemma 2. Let S' be the formula obtained from S by eliminating alternation
by the explicit definition T v U for T D U . D U([l], p. 78).3 Then S = S' in
PCC, or, if S contains negation, in MCC.
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Proof, It can be shown in the standard way that MC and PC satisfy the

usual replacement principle: If \—S1 = S2, and T2 is like 7\ except for

containing occurrences of S2 at one or more places where 7\ contains Sλ,

then | -Ti = T2> It then suffices to show that \-T v U =: T o U. D U in

PCC.
By axiom 1

and by modus ponens and the deduction theorem

\-To: TD U .D U

and hence by axiom 5 we have even in PC

\-T v U .zx T D U .DC/. [ii]

Assuming T D ί ί o C/and T D U, U follows by modus ponens and there-

fore by axiom 4, T v U follows. By the deduction theorem

T D C / . D C / I - T D C / . D . T V C / .

By axiom 3, \-T D .T v U . Hence by axioms 5 and 10, T D U .D U\-

T v U, and by the deduction theorem, \~T D U .D ί/ :D. T v U. Hence by [ii]

and axiom 8, \-T v U .= : T D ί/ .DC/, q.e.d.

Lemma 3. Let S be any formula without negation. Then there is a formula

S' which is a conjunction of formulae containing neither negation nor con-

junction, such that \—S Ξ sf in PCC.

Proof. By induction on the structure of S.

1. S is a statement letter. S' = S. Since \—p D p in PC, f— P Ξ />, and

h S = S ' .

2. Sis T Z7. Then there are T', C/' of the required form so \—T = V

and \—U = U\ Evidently T' U' is of the required form, and by the replace-

ment principle \~T U = T' U'.

3. S is T v U. Then there are T', U' of the required form so \-T =Tr

and \— U = U\ Let Sr be the result of distributing alternation through con-

junction i n T ' v C/'. Evidently \—S =Sr if the distributive laws hold in PCC

I t s u f f i c e s t o s h o w \—p v q r . ^ . p v q . p v r a n d | — q r v p . = . q v p . r v p .

In fact it is easy to show that these hold for PC.

4. S is T D U. Again, there are T', U' of the required form so

\-T = Tf and h ^ Ξ U'.

Suppose T' is A x . — ,An and C/' i s B2. — . £OT , w h e r e the A, and

Bj do not contain conjunction. Since evidently \—p Oqr.= .p^>q.p^ r

al ready in PC, by repeated subst i tut ions and applicat ions of the r e p l a c e m e n t

pr inciple

\ - S = . T' D U' Ξ . T' D B x . - - - . T r Z ) B m . [iii]

But since evidently |—p q D γ .= ; p D. q D r in PC, by substitutions and

replacements we have for each j

\-T' D Bj = (Λ D [A2 D ( . . . D. Λw D By .. .)])
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where the right side does not contain conjunction. If we write this right
side as Sj, then by [iii] and the replacement principle

M Ξ Sx Sm

where the right side is the required 5 ' .
We note that the argument shows that if S does not contain alternation,

t h e n h 5 =S' in PC.

Proof of theorem 1. Let S be a negation-free tautology. By lemma 3,
I—S Ξ . A i. — . An in PCC, where Ax — An do not contain conjunction. In
view of lemma 2 and the replacement principle, they can be assumed not to
contain alternation either. Hence each Ai contains only the conditional.
Since evidently it is a tautology, it is provable in PCC. But then by r e -
peated applications of axiom 8, \—Aχ An , and therefore \—S, q.e.d.4

Theorem 2. Let S be any formula of propositional logic. Then S is both
valid and pseudo-valid if and only if S is provable in MCC.

Proof. The ' i f is obvious. Conversely, consider first the case where
negation is expressed b y / . S ;s being both valid and pseudo-valid is equiv-
alent to the validity of S where / is viewed as an ordinary statement letter.
But in that case, by theorem 1, S is provable in MCC. Now supposes is a
formula in the — formulation which is both valid and pseudo-valid. S is
provable in the classical calculus, i.e. the result of adding to MC the axiom
ft 3 p. Hence there are formulae Bx.. ,Bm such that

- - 5 1 D 5 1 . . . - - 5 B 3 Bm h S [iv]

in MCC. Now let A±... An by the outermost negated formulae in S. From
the pseudo-validity of S it follows that if each—A,- is replaced by a distinct
statement letter α, , then the resulting formulas ' is implied by GΊ. — . an

and does not contain negation. By theorem 1

aλ . . . a n h - S '

in PCC, and therefore

- Ay . . . - An \~S

in MCC.5

From this and [iv] we can infer

— Ax 3 Ax . . . — An 3 An , -.- Bx 3 Bλ . . . -- Bm D Bm \S

-A, . . . -An, -5i . . . - Bm \-S

and therefore by the deduction theorem and axiom 5

~Aχ V . - - A 1 D A 1 i , , - A β V . —An D An ,
- Bx v. — B,Z) Bλ . . . - Bm v. —Bm 3 Bm \-S

To obtain |—S, it suffices to show \—p v. p D p. By axiom 9,f—p D p . D: p iyp
. 3 p and hence \—p 3 p . D p . By axiom 3,j—p 3 : p v. p 3 p, and hence
\-pip. D:pv.$^p . [v]
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By axiom 1, p \-p D p and hence by axiom 4

p\-pv.pz)p

and therefore by the deduction theorem and [v]

\—p v. p D p :D: /> v. p D />

Since by axiom 10 p v. p ^ p, we have pv. ]) D p, q.e.d.

3. If either p v p or p D p is added as axiom to the intuitionistic prop-
ositional calculus, the classical is obtained. The same is true if p D p is
added to the minimal calculus. But since p v p is pseudo-valid, its addition
to MC does not yield the full classical calculus, but a subsystem of MCC.
That it does not include all of MCC follows from

Theorem 3. Let S be a formula without negation and suppose S is provable
in the system MC+ obtained from MC by adding p v p as an axiom. Then S
is provable in PC.

(Thus, for example, p v. p D q is not probable in MC+.)
Proof. If S is provable in MC+, there are formulae S1.. ,Sn such that
Sx v - S1.. ,Sn v - Sn \—S in MC. Let a be a statement letter not occurring
in any S, or in S. Then Sx v. S1 Z) a --- Sn v. Sn D α f-S in PC. But for
each z, α |—S; v. S; D α in PC by axioms 1 and 4. Therefore a \—S in PC.
In this deduction, a provable formula, say a D a, could have been sub-
stituted for a, leaving S unaffected. Therefore \—S.

Remark. Relative to some intuitionist concept of model (e.g. that of [3]) we
could define intuitionistic pseudo-validity. Theorem 3 could have been
proved by observing that since p v p is intuitionistically pseudo-valid, so is
every theorem of MC+; therefore every negation-free theorem of MC+ is
intuitionistically valid.

Every theorem of MC is intuitionistically valid and pseudo-valid, but
the converse does not hold. To see this intuitively, consider the / formula-
tion. If S is intuitionistically valid, it is valid modulo the interpretation of
/ as absurd; if it is pseudo-valid, it is valid moduls the interpretation of /
as true; but if S is provable in MC it can be seen to be valid without the
assumption that / is either true or absurd. Thus we would not expect
/ v./ D p, which is intuitionistically valid and pseudo-valid, to be provable
in MC Indeed it is not, for if it were q v. q D p would be provable in PC,
which it is not since it is not intuitionistically valid. In the — formulation,
p v: p 3 . p 3 q is a ready example of a formula which is intuitionistically
valid and pseudo-valid, but not provable in MC, for if it were
p D r .v: p D r . 3 . p D q would be provable in PC, but tt is not intuitionisti-
cally valid. A less contrived example is - (p ^ q) D p. If it is provable in
MC, p ^ q . D r : D : p D r . D r is provable in PC. But then so is

p D q .D : p v. p D q . ' . 3 : : p : | ) v . p g .'.^: p v. p D q.

But since \—p D q . D : p v. p D q and \—p z>: p v. p D q by axioms 4 and 3,
this implies \—p v. p D q, which is impossible.
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Evidently the formulae which are intuitionistically both valid and
pseudo-valid are exactly those provable in MC with the additional axiom
/ v. / D p in the/ formulation or/>v:/>D./>D#in the — formulation.

We note finally that the full classical calculus is obtained from MCC by
adding the intuitionistically valid axioms p D. p D q or / D /> according as
the — or the / formulation is chosen.

NOTES

1. We omit axioms for the biconditional, since it can be introduced by the explicit

definition S = T for S D T T D S.

2. The symbol ' \-' is used on the model of [1], pp. 82-83, 86-87.

3. Note that £ D q . v p becomes Peirce's law under this definition, while p v . p D q

becomes p Γ>./> D # : D . / > 3 # , which is provable in PC.

4. Theorem 1 could have been proved in the following fashion: If S is a tautology

without negation, it is provable by Gentzen rules (e.g. in the classical system Gl

of [2], pp. 442-43) without the use of the rules for negation. One can show by

induction on the derivation that if Si Sn -*• T x T^ is provable in this

system, then Sx Sn h Tx v v Tm in PCC. p v.p Z) q is needed to cover

the rule -• D, i.e. to show that if

U,SX Sn h V vW

in PCC, then 5X . . Sn h Vv.UOW, In dealing with formulae without conjunc-

tion, one can replace PCC by the system with axioms 1 and 2 and Peirce's law by

defining alternation as in lemma 2. One obtains in this way a proof of Tarski-

Bernays theorem.

5. This shows that if S is pseudo-valid, S is provable in MCC with the additional

axiom ζpf*
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