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FRANCO MONTAGNA and ANTONELLA MANCINI

Abstract The central idea of this paper is to perform Nelson's program
starting from an extremely weak set theory instead of Robinson's Q. Our
theory, which is called N after Nelson, has two non-logical axioms; one
asserts the existence of an empty set, the other one asserts that, given two sets
x and y, we can form the union of x and the singleton of y. A strictly finit-
istic proof of the Herbrand consistency of N is given. Moreover, it is shown
that Q, and therefore Nelson's Q*, is interpretable in N. Thus Q* is proved
by strictly finitistic means to be consistent relative to N.

0 Introduction It is well known that traditional mathematics can be done
by means of set theory. However, the usual set theories, like ZF or GB, can be
criticized from many points of view: constructivists can complain that many axi-
oms guarantee the existence of sets for which no construction is produced; finit-
ists disagree on the existence of infinite sets, and formalists can doubt about
consistency, because of GόdeFs Second Incompleteness Theorem. In this paper
we present a theory, suggested to us by Edward Nelson, and called N after him,
that is probably the weakest theory in which some mathematics can be done; this
theory is so weak that its axioms should be accepted without problems by any
logician, but it is also so weak that mathematics that can be done directly inside
it is very poor. N has only two nonlogical axioms: the first one guarantees the
existence of a set without elements, and the second one allows us to add to an
already existing set x the singleton of another already existing set y. In N, we
can construct all hereditarily finite sets, but we cannot prove, e.g., that x U {y} =
(x U {y}) U {y}. The theory N has been studied in a different context by other
authors (cf. Belle and Parlamento [1] and Omodeo, Parlamento, and Policriti
[3]), and is called NW by them.

Even if N is so weak, we can try to realize Nelson's Program starting from
this theory; in other words, we can try to produce a finitistic consistency proof
for N, and then to interpret in it a mathematically strong theory; this is reason-
able from the point of view of Hubert's Program, because if a theory T is inter-
pretable in N, then there is a finitistic proof of the consistency of T relative to
the consistency of N. This kind of work has already been done by Nelson in [2],
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but starting from Robinson's theory Q. Nelson interprets in Q a rather strong
theory, called Q* by him; moreover, Nelson gives a proof of restricted consis-
tency of Q that is not only finitistic according to all traditional criteria, but can
be also formalized in predicative arithmetic, and is therefore finitistic according
to Nelson's point of view. The advantage of the theory N is that first it is even
simpler than Q, and second it is a set theory, and therefore it is perhaps more
natural for the foundations of mathematics. However, we have not been able to
develop Nelson's Program in N in an independent way; therefore, we first inter-
pret Q in N, and then we borrow from Nelson's results, getting an interpreta-
tion of Q* in N. In his [5], Tarski shows that N plus extensionality is interpretable
in Q; however, N plus extensionality is not only stronger, but also slightly more
problematic from the point of view of the consistency, because it is not an open
theory. (Of course, it can be transformed into an open theory by means of some
Skolem functions, but this is completely unnatural.) We will not use Tarski's
result here, because it is not easy to interpret extensionality in N (it is possible
a posteriori by our result, because it is easily seen that N plus extensionality is
interpretable in Q). Last, we shall prove that if we drop any of the two nonlog-
ical axioms of N, or if we weaken the second one, we get a theory that is still
undecidable, but not essentially indecidable (therefore Q is not interpretable in
it). So, N is in a sense a minimal set theory in which Q is interpretable.

As regards to the consistency problem, we shall prove the Herbrand consis-
tency of N; this proof is, we believe, finitistic also in Nelson's sense, and can be
formalized in predicative arithmetic; when doing it, we produce an interesting
model of N, which we call "canonical", because all atomic formulas valid in it
are provable in N. In order to get a full consistency proof for N, we need Hilbert-
Ackermann's Theorem. However, this theorem seems to be more problematic
from the point of view of Nelson's Program: its proof requires the totality of
superexponential; therefore, its proof cannot be formalized in predicative arith-
metic (cf. Remark 1.3).

Some months after finishing this paper, we learned that interpretability of
N in Q was proved first by Jan Krajicek. Since Krajicek's proof is unpublished
and our proof is completely independent from his, we present it here, but we
acknowledge Krajicek's priority about this result.

/ The theory N and a consistency proof for it The language of N consists
of one constant symbol, φ, for the empty set, two binary predicate symbols, G
(for membership) and = (for equality), and a binary function symbol U repre-
senting the function that associates to x and y the union of x and the singleton
of y. In the following, we writer U [z] for U(x,y). The words "the empty set"
and "the union of x and the singleton of y" have been used somehow improperly,
because, in absence of the axiom of extensionality, we cannot prove that there
is only one empty set, or that the union of x and the singleton of y is uniquely
determined by x and y. The axioms of N are logical axioms (including identity
and equality axioms) plus the following ones:

1.

2. vxvyvzixeyU [z]++xeyvx = z).

In this section we present a finitistic restricted consistency proof for N.
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Definition 1 A finitely axiomatized theory T is said to be Herbrand consis-
tent iff no disjunction of substitution instances of Herbrand matrices of nega-
tions of axioms of T (including equality and identity axioms) is a tautology.

By Herbrand's Theorem, a finitely axiomatized theory is Herbrand consis-
tent iff it is consistent. If a theory is axiomatized by universal formulas (as in
the case of N), then the Herbrand matrix of the negation of any axiom of T coin-
cides with its matrix (i.e., the quantifier free part of it that follows the stack of
existential quantifiers in the prenex normal form of the negation of the axiom
taken into consideration). Moreover, we do not need the full Herbrand Theo-
rem in order to prove that Herbrand consistency of T is equivalent to consistency
of T (Hubert Ackermann's Theorem, cf. Schonfield [4], is enough). So, in order
to prove Herbrand consistency of N, it suffices to prove that there is no tautol-
ogy which is a disjunction of negations of substitution instances of the follow-
ing formulas: x = x;x = y^y = x;x = yAy = z^x = z'9 (x = y ΛU = v) ̂ >
(xGu^yEv); (x = yΛU = v)-+xU {u]=yU{v}; -*xGφ; (xeyl) [z}++
xGyvx = z).

To this purpose, we first define a map Φ from atomic formulas of N into
{0,1}, as follows: let t, t' be arbitrary terms; we define Φ(t = t') to be 1 if t and
t' are syntactically equal, and 0 otherwise; note that, if Φ(t = t') is 1, then N h
t = t'. In order to define Φ(/ G t')9 we start from the following observation: for
any term t, there is a unique sequence tQ,tx,... J2n such that t2n is t, t0 is either
φ or a variable, and either n = 0 or, for all / < n, t2i+2 is t2i U {t2i+\}. We call
this sequence "the constructing sequence of V\ Now, let to,tι,... 9t2n be the
constructing sequence of /'; we define Φ(/ G t') to be 1 if n φ 0 and there is an
/ < n such that t is syntactically equal to t2i+{. Note that, if Φ(t G /') is 1, then
N h / G / ' . Thus, our interpretation has the property that each atomic formula
that is true according to it is provable in N. Now, we extend Φ to all Boolean
combinations of atomic formulas according to truth tables for classical propo-
sitional logic (thus, e.g., Φ(A ΛB) is 1 iff both Φ(A) and Φ(B) are 1, Φ(-u4)
is 1 iff Φ(A) is 0 and so on). It is clear that each theorem of propositional cal-
culus receives value 1; we prove that, if φ is a substitution instance of any of the
formulas x = x;x = y^>y = x;x = yΛy = z-+x = z; (x =y ΛU = v)-* (xE

u-*y G v), (x = yΛU = v)->xU{u]=y\J{v}9 ->xE Φ, s E tU {u} <-+ s E

tvs = w, then Φ(φ) is 1; the claim is immediate if φ is a substitution instance
of any of the formulas x = x;x = y-+y = x;x = yΛy = z^>x = z; (x = y Λ
u = v)-+(xEu-+yEv), (x = yΛU = v)-+xU[u]=yU{v};let φ be a sub-
stitution instance of -*x G φ; since the constructing sequence of φ consists of only
one element, Φ(t G φ) is 0 for any term /, therefore, Φ(φ) is 1; last, for any tri-
ple s, t, u of terms Φ ( 5 r G / U { w } ^ 5 G ί v 5 ' = w ) i s l ; t o s e e this, it is enough
to prove that Φ(s G t U {u}) is 1 iff either Φ(s G t) is 1 or s is syntactically equal
to w; to do this, simply note that the constructing sequence of tU [u] consists
of the constructing sequence of t followed by u and t U {u} thus, the terms of
the constructing sequence of / U {u} having an odd index are those of the con-
structing sequence of t having an odd index plus u, and the claim follows from
the definition of Φ(s G t U {u}). Note that incidentally we have proved that our
interpretation constitutes a model of N in which only provable atomic formu-
las are true. Our proof of Herbrand consistency of N follows from the simple
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observation that Φ maps every instance φ of an axiom into 1, and that the prop-
erty "being mapped into 1 by Φ" is preserved under propositional deduction.
Thus, we have shown:

Theorem 1.2 N is Herbrand consistent.

Remark 1.3 Even if we did not check details, it should not be difficult to for-
malize our Herbrand consistency proof in predicative arithmetic; the map Φ we
were speaking about is Δo definable (here, Δo refers to a language with sum,
product, 0, 1, <, and the smash function as primitive symbols), the proof that
each substitution instance of an axiom receives value 1 can be done by Δo induc-
tion on the size of the terms occurring in the formula; that any disjunction of
negations of substitution instances of axioms of N is mapped into 0 by Φ is
proved by Δo induction on the number of disjuncts; moreover, we do not need
the totality of rapidly growing functions in our proof. However, the reduction
of consistency to Herbrand consistency in the usual sense requires the use of Hu-
bert Ackermann's Theorem, whose proof requires in general the totality of the
superexponential function; thus, the above argument does not show that a full
consistency proof for N can be formalized in predicative arithmetic. In fact, full
consistency of N cannot be proved even in IΔ0 + Exp, because otherwise, by our
interpretation of Q in N, IΔ 0 + Exp would prove the consistency of Q, which
is impossible (cf. Wilkie and Paris [6]).

2 An interpretation of Q into N Our plan in order to interpret Q in N is
the following: we first restrict our universe to a subuniverse in which one can per-
form some very basic set theoretical operations; then, we construct the class of
natural numbers (i.e., we produce a formula that is satisfied by sets having most
of the properties of natural numbers). Since our theory is very weak, we cannot
define sum and product directly in our natural numbers; however, we can restrict
the class of natural numbers to subclasses in which sum and product are well-
defined total operations and satisfy the axioms of Q.

Notation (a) x » y: W(v G x <-> v G y) and (b) z « x U y: w(υ G z «•> v G
xv v Gy).

First of all, we restrict the universe Fof N to a subuniverse Vλ closed under the
"operation" U. The name "operation" is between " ", since there can be many
z such that z^ xU y (because of the absence of the axiom of extensionality).
Since if x » x\ y » y\ z « x U y, and z' « x' U y' then z » z\ we can consider U
as a partial function modulo «; we write, e.g., x U y » x' U y' instead of
3zlz'[z « J t U . y Λ Z / * j t U . y Λ Z » z ' ] * a s well as w » (Λ: U y) U z instead of
3u[u sz x U y Λ w ~ u U z] and finally w G (Λ: U y) U z instead of 3u3u'[u «
xUyΛu' — uUzΛWE u']; note that even if there can be many sets w such that
w « x U j > o r w « (x U y) U z, all such sets have the same extension.

Definition 2.1 In the following, V\ (x) denotes the formula Vy3z[z « x U y].

In the sequel, we write x G V\ instead of V\ (x) because we like to think of
V\ (x) as of the universe of all x such that Vx (Λ:) . Of course, this does not mean
that such universe is a set. According to an old tradition in set theory, we shall
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adopt this abuse of notation also in the following, and we shall prove several
theorems of N in the metalanguage. We start from the following properties:

Proposition 2.1 (Vx\)φeVx.

Proof: Obvious, since y « φ U y.

Proposition 2.2 (VX2) x,y G Vx -> Iv G Vx [v « x U y].

Proof: Since * G Ki, there is a t; such that v = A: U y. We prove that i G F i . Let
A be any set; since y G Fi, there is a z such that z * y U A; since xGVΪ9 there
i s a z ' such that z' « xU Z. SO Z' « ΛΓU (y U A), z' « (JCU j>) U A « υ U A. By
the arbitrariness of A, we conclude i E Fj.

Proposition 2.3 (VX3) x,y G Vx -> x U {j>} G Vx.

Proof: Let Λ be any set; since x G Fi, there is a z' such that z' « x U h; now,
consider z' U {y}. It is easily seen that z' U ( . y ] « ( ^ U {̂ }) U Λ.

Notation (a) z « x Π ̂ : Vt>(ι; G Z ^ Γ G X Λ I G ^ ) and (b) t; G JC Π J : v G
Λ: Λ i; G ^.

We restrict again our universe Vx to a subuniverse Fi of it which is closed
also under Π.

Definition 2.4 F2 = [x G Fί: Vy G Fi 3z G Fi [z «

We prove the following properties:

Proposition 2.5 (F2 1) φ G F 2.

Proof: Obvious, since, for all y G F2, φ « φ Π j , and 0 G Fi.

Proposition 2.6 (F22) Λ:,^ G F2 -> 3f G F2[y « x U j ] .

Proof: Since Λ:, .y G F^, there is a t; G Vx such that y « x U j>. We prove that any
such v belongs to V2. Let uG Vx\ since xG V2, there is a z' G Ki such that zf «
jίΠw, and since j> G F^, there is a z" G F! such that z" ~ y C\u. Furthermore,
from z' G Vx and z" G Vx it follows that there is a z"' G Fi such that z'" « z' U z";
so z " / * ( J c Π w ) U ( > y Π w ) * ( j c U j ) n w * ι ; n w.

Proposition 2.7 ( F 2 3 ) Λ : , J G F 2-*3t;G F 2 [ ι ; « x ( Ί j ] .

Proof: SincexG F2, there is a v G Fi such that υ « Λ:Π J . We prove that ί;GK2.
Let ΛG FΊ; since j> G F2, there is a z' G Vx such that z' « J Π Λ; since j ί E F 2 ,
there is a z G Fί such that z « xΠ z'. So z G f i a n d z « x Π ( j Π A) » ( J C Π ^ ) Π
h ~ v Π h, therefore t; G F2.

Proposition 2.8 (F24) x,yGV2-+xU [y] G F2.

Proof: We have already seen that xU [y}EVx.We prove that xU {y] G F 2.
Let Λ G Fi.; since Λ: G V2, there is a z' G F! such that z' « x Π h; if j> ̂  Λ, it is
easily seen that zf « (A: U {J^}) Π Λ; if ^ G Λ, it is easily seen that z' U {̂ } «
(Λ: U {̂ }) Π A; moreover, z' U {^) G F1 ? by Theorem VX3).

Notation (a) z~ x-y:Vv(vGz++vGxΛV^y) and (b) y C Λ: : vυ(υ G j



MINIMAL PREDICATIVE SET THEORY 191

Definition 2.9 V3 = {xe V2:Vye F2[>> c x-> 3z G V2[z~x-y]}.

We prove the following properties:

Proposition 2.10 (F31) φ G F3.

Proof: Of course, φE V2. For all .y G V2,ifycx, then φ» φ -y and </> G F2;
s o φ G F3.

Proposition 2.11 (F3 2) x, j G F3 -* 3z G F3 [z * x U j ] .

Proof: We have already seen that there is a z G F2 such that z * x U j \ We
prove that z G F3. Let A G Ĵ> be such that A C x U y; let A', A" G F2 such that
A' * x Π A and A" «.y Π A; since Λ ' C J C and A" C y, there are zU / r G V2 such
that z' ~ x - A' and z" « j> - A", so there is a z G V2 such that z « z' U z/r. It
is easily seen that z « (xU.y) - Λ.

Proposition 2.12 (K33)x,^G F 3 -^xU {j} G F3.

; We have already seen that x U {y] G F2. We prove that Λ: U {jj G K3.
Let h G F2, Λ C x U {^}; if y £ h, then Λ C x, and by our assumption there is
a z' G F2 such that z' « x - A. So, zr U {̂ } G ί̂  and is easily seen that zr U
{j} « x U {̂ } —Λ if^GΛ then, by our assumption on x, there is a z' G V2

such that z' ~x-h. But then z' G K2, z' « x - Λ « (x U {̂ }) - A. So, x U

Proposition 2.13 (F3 4) x,y G F3 Λ ^ C X-> 3Z G F 3 [ Z « x - ^ ] .

Proof: Since xG V3 and j> G J^, there is a z G P̂  such that z « x — y. We prove
that z G F3: if h G F2 and Λ C z, since A C x, there are a z' G F2 such that z' «
x - A and a z/r G F2 such that z" « z Π z7. It is easily seen that z'r * (x - y) Π
(x - A) « (x - j ) - A « z - A; so z G F3.

Proposition 2.14 (F3 5) x, j G F3 -> 3z G F3 [z « x Π j ] .

Proof: Since J C G F 2 and j G F2, there is a z G F2 such that z * xΠ j . We prove
that z G F3: if A G ̂  a n d A C J C Π J , then A C x and h C y, hence there are
z,z' G F2 such that z « x - A and z' ~ y - h. From the properties of F2 it fol-
lows that there is a t; G ί̂  such that v « z Π zr; it is easily seen that y « z Π ^ «
(x Π ̂ ) - A « z - A; so, z G F3.

Now, we try to define the class N of natural numbers in N.

Notation

a. Trans(x) denotes the following formula:

Vw, v G

b. "a is well ordered by G" denotes the conjunction of the following formulas:
(i) Vx,y G a(y G x v x G ^ v x = ̂ ) ; (ii) Vi; G V3[(v C a A 3U(U G y)) ->

ev ~ (t;"Gι;'))].

Definition 2.15 Â  = [xG F3: (i) Trans(x); (ii) Vw Gx(Trans(u)ΛMG F3);
(iii) "xis well ordered by G"; (iv) Vw(w = XVMGX-> (U = φvlv[u = i U
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Thus, N is the class of all sets that are hereditarily transitive and in V3, are
well ordered by E, and which are either empty or the "successor" of some set;
note that from Definition 2.15 it follows that the unique element of N without
elements is φ. Note also that, if x G Nandy E zGuGx, then Trans(u) (by Def-
inition 2.15), therefore y E u. So E is a transitive relation on x; from Definition
2.15 it follows also that E is total, antireflexive, antisymmetric (the last two
claims follow from the condition (ii) in the Definition of "# is well ordered by
E'\ cf. the proof of Proposition 2.16 and the subsequent Remark).

Notation In the following we use [x] and [x,y] as abbreviations for φ U [x]
and (φ U [x]) U {y], respectively.

We prove the following properties:

Proposition 2.16 (Nl) x E N-+ x £ x.

Proof: If x E x, then {x} E V3, [x] C x and for all u E [x] there is a w E [x]
such that wGu (indeed the unique element of [x] is x, therefore, if u, w E [x],
then w = x, u = x, and w E w), against our assumption that x is well ordered
by E.

Remark 2.17 From Proposition 2.16 and from the transitivity of E on the
elements of TV, it follows also that there are no x,y G N such that x E y E x,
otherwise by transitivity we would obtain x E x, against Proposition 2.16.

Proposition 2.18 (N2) φ E N.

Proof: Obvious from Definition 2.15, since φ has no elements.

Proposition 2.19 (N3) x E 7V-> x U {x} E TV.

Proof: First, x U {x} E F3 by the properties of F3; i) x U [x] is transitive:
indeed if uGyGxU {x}, then eithery G x or y = x; in the former case wGx,
by the transitivity of x; in the latter, uGy = x and again u G x; in any case,
M £ X , therefore u G x U {Λ:}; ii) if t; E x U {#}, t; is transitive and v G F3:
indeed, if t; E A: U {X) , then either i; E x or i; = x\ in both cases the claim fol-
lows from condition (ii) in the Definition 2.15; (iii) x U [x] is well ordered
by E: let us verify the condition (i) in the Definition of well ordering: if α, b G
x U [x] and a Φ b, then either a,b G x in which case, from x G Nit follows
a G b or b G a, or else a G x, b = x, in which case a G b, or a = xy b G x in which
case b G a; let us verify condition (ii) in the definition of well ordering: suppose
yG V3,y not empty, y CxU {x];if x£y, thenyCx, therefore the claim fol-
lows from the assumption that x is well ordered by E if x G y, then either the
unique element of y is x and the claim follows from the fact that x £ x, or there
is a u E y such that u Φx, in which case there is a u Gy such that uGyΠx. Note
that there is a z G V3 such that z «.y Π x, by the properties of K3. Clearly, zCx
and z has at least one element. So, there is v G z such that for all υ' Gz, v' £ v.
If υ' G y, then either v' Gz, and then υ' ί v, or ι/ = x and again */ £ t; other-
wise j f = i / ' e i ; E z * J c n j ; , x G y G x and by transitivity, x E x, against Propo-
sition 2.16; iv) x U {Λ:} and any element v Φ φ of x U {x} are of the form
ί/Uji/j for some u G v: this is obvious for xU {x} if v G x U {x}, no matter
that v Gxor v = x9 fromxGNand from condition (iv) in Definition 2.15 it fol-
lows that v has the required form.
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Notation In the following, if x E TV we write Sx instead of x U {x} by Theo-
rem 2.19, 5 is a total map from TV to TV.

Proposition 2.20 (TV4) XEN-+Sχφφ.

Proof: x E Sx.

Proposition 2.21 (TV5) Vx,j E N(Sx « Sy ̂  x = y).

Proof: Since x E Sx, if Sx « Sy then x E Sy, therefore either Λ: E J> or JC = y. Sim-
ilarly one can prove that under the same assumption, either y E x or y = x. From
xEy and j E x, it would follows J E J (by the transitivity of x) against Prop-
osition 2.16. So, x = y.

From Proposition 2.21 it follows:

Proposition 2.22 (TV5'): VΛΓ, y E N(Sx = Sy -+x = y).

Proof: Obvious.

Proposition 2.23 (TV6) Vx,y E N(x « y -> x = y). (In other words, TV is
extensional.)

Proof: Sincex,y EN, x = φv3u[x = Su], a n d y = φ v3w[j> = Sw]. If x«.y,
then either x = φ = j , or x - Su ~ Sv = y from which, by Proposition 2.21,
u = v and, finally, x = y.

Proposition 2.24 (TV7) TV is transitive, i.e., x E y E 7V-> x E N.

Proof: S u p p o s e x E y E N ; t h e n x E V3 by condition (ii) in Definition 2.15; fur-
thermore: i) x is transitive, since the elements of an element of TV are transitive
(cf. part (i) in Definition 2.15; ii) since trans(y), each element of xis an element
of y and is, therefore, transitive and in V3, by condition (ii) in Definition 2.15;
iii) x is well ordered by E: first of all, the property (i) in the definition of well
order follows from xCy a n d y E N ; let us verify condition (ii) in the definition
above: if z C x, z E F3 and z has at least one element, then zCy, since x C y;
so, there is a υ' E z such that if v E z, v £ v'; iv) if v E x or v = x, then from
xEy and trans(y) it follows v Ey. By condition (iv) in Definition 2.15, it fol-
lows that either v = φ or v = Su for some w E ι>.

Remark 2.25 If y E TV and y Φ φ, there is aw such that y = Su; such u
belongs to TV, as TV is transitive, and is uniquely determined, by Proposition 2.22;
we express this saying that the predecessor of a natural number different from
φ is a natural number.

Notation If y E TV, Py denotes φ if y = φ and the unique z E TV such that
Sz = y otherwise. Note that, if y E TV, then PSy = y and if y Φ φ, then SPy - y.

Proposition 2.26 (NT) Vx E TV(x Φφ-+φEx).

Proof: Since x is well ordered and xφφ, there is a z E x such that, if v E x, then
v£z. Such z is an element of TV, as TV is transitive; so, either z = φ, in which case
</> EΛ:, or z = Sv for some v. But in this last case we would obtain vEzExand
v E x, a contradiction.

Proposition 2.27 (NS)Ifx,yEN and xEy, then either SxEyorSx = y.
(So Sx is the smallest natural number y (with respect to E) such that xEy.)
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Proof: Sx C y, since x C y (y is transitive) and x E y; if Sx Φ y, x and y have
not the same extension, therefore, since Sx C y, there is a i; E >> - Sx such that,
if 1/ E y, then */ ίέ y - Sx, therefore, υ' EyΠSx^ Sx; it follows v C Sx; from
i; E y - Sx it follows also vΦx,v£x, therefore, since x,vEy and E is a total
order on y9 we obtain x E v; by the previous argument, SxC v; so Sx ~ v by
the transitivity of N, i GiVand by the extensionality of N, Sx = v Ey.

Proposition 2.28 (N9) E is a total (strict) order on N, i.e., (a) Vx,y,z E
N(xEy Ez^xEz) and (b) VJt,j> E N(xEy vy E XVJC = j ) .

Proof: (a) is obvious, since, if z E N, then z is transitive; (b) if x,y E TV, then
either JC = j>, or x = φ, j> Φ φ, in which case x E y, or x Φ φ, y = φ in which case
j Ex, or x ^ φ,y Φ φ. In this last case, one cannot havex^y (otherwisex = y,
by Proposition 2.23); so there is a u such that (uExΛU^y) or (u^XΛUEy).
Suppose w.l.o.g. u E XA U £ y; consider avEV3 such that v « x - x Π j ; since
y C Λ: and Λ: is well ordered, there is mEv such that for all v' Em,v' £ υ; cer-
tainly mΦφ since φ ExΠy and / w G y * x - x f l j ' . But then there is w Em
such that m = Sw; since wG m, w£ v » x - x Γ\ y; so, W E A T Π ^ , W Ey EN
and then (by Proposition 2.28) either Sw = y or Sw E y9 i.e., either m = y or
m Ey. Moreover, from mEx — xΠywe obtain that m φ x Π y and m Ex,
therefore, m £ y. So m = y, and then, from m E x we get y E x. Similarly, if
u£xΛuEy,we can prove that xEy. Concluding, Vx, y E N(x EyvyExv
x = y).

Now, we try to define the sum in TV; we shall define it first as a partial func-
tion, and then we shall restrict ourselves to a subuniverse of Nin which this oper-
ation is total.

Notation In the following, we write (x,y) as an abbreviation for {{A:},
{*,.)>}}. Note that {x,y) = {u,υ) iff x = u andjy = v. We also write "Fis a func-
tion from x to y" as an abbreviation for:

vu E F3v E xlw Ey[u = (v,w)] A Vt; Ex3w Ey((v,w) EF)

A VυExVwVw'((υ,w) EFA{V,W') EF^> W = W').

Definition 2.29 Constr + (F,x,y,z) denotes the conjunction of the fol-
lowing formulas: (i) F E F3 Λ X, y,z E N; (ii) F is a function from Sy to Sz;
(iii) (φ,x)EF; (iv) VuW(uEyA(U,V) GF->{Su,Sυ) EF); (v) {y,z)EF; (vi)
if (u,v)EF, (u',v'> E Fand uEu', then vE v'.

In the following, Add(x,y,z) denotes the following formula: 3F[Constr +
(F,x,y,z) A VF'Vz'(Constr + (F',x,y,zf) ->F« F')].

We prove the following properties:

Proposition 2.30 (Addl) Add(x,y,z) A Constr + (E,x,y,t) -+z = t.

Proof: From Add(x,^,z)3F[Constr + (F,x,y,z) A vF'Vz^Constr + (F',x,y,
z')-*F~F')] follows. Thus, if Constr + (E,x,y,t), then Constr + (F,x,y,z) A
F»E,(y,z)EFand (y,t)EE; sinceFand E are functions and F»E,we con-
clude z — t.

Proposition 2.31 (Add2) Kdd(x,y,z) A Add(x,y, t) -+z = t.
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Proof: Obvious, by Proposition 2.30.

Notation By Proposition 2.31, the predicate Add defines a partial binary map
on TV; we denote such a map by 4- and we adopt the terminology of partial maps
when using -h e.g., we write x + y = z for Add(x,y,z), x + y G V (Vany defin-
able class) for 3z[Add(x9y,z) ΛZE V], x+ (y + z) = v for lw[Add(y,z, W)Λ
Add(x,w,v)]9 etc.

Proposition 2.32 (Add3) Vx E N(x + φ = x).

Proof: Let F = {<Φ,JC>}; one has: FG V3, since φ9xG V39 V3 is closed under the
operations < , > and { }; φ9x E N; Fis a function from Sφ to Sx; (φ,x) E F,
therefore (iii) and (v) in Definition 2.29 are satisfied; the other conditions in Def-
inition 2.29 follow from the fact that Fhas only one elements. Thus, Constr +
(F,x,φ,x). Furthermore, if Constr + {F'9x9φ9t)9 then, since φ is the unique ele-
ment of Sφ, the unique element of F' is {<</>,x>}; so, F « F'.

Proposition 2.33 (Add4) Constr + (H9x9Sy9 υ) -> 3z E y[t; = Sz].

Proof: From i; = φ and Constr + (H9x9Sy9v)9 we would deduce Constr +
(H,x,Sy,φ)\ by Definition 2.29, we would have <φ,x> E //; since φ E Sy, by part
(vi) in Definition 2.29, we would obtain x E φ, a contradiction. Thus, t> =£ φ, and
since, again by Definition 2.29, vGN,we conclude that there is a z E v such that

Lemma 2.34
(a) [Constr + (F,x,y,v) ΛH = FU [<Sy,Sv»] -> Constr + (H,x9Sy9Sv).
(b) [Constr + (H'9x,Sy9v) ΛV EV3ΛA~ H' - [<Sy,v}}] -> Constr + (,4,x,

PAΌO/: (a) (i) From Constr + (F,x,y, v), it follows F E V3,H = FU {<Sy9Sv} E
F3, and x9 Sy9 Sv E Λ̂ ; (ii) since Sy φ. Sy and F is a function from Sy to Sv9

H = FU {(Sy,Sv}} is a function from SSy to SSv; (iii) <φ,jc) E /f since <φ,x> E
F; (iv) if w E Sy and (U9Z)EL H, then, since w Φ Sy, one has <u,z) E F. If w E j ,
then <Sw,Sz> E F; if w = y, since (y9v) GFand Fis a function, one has z = v,
and then (Su9Sv) = <Sy9Sz> E //. In any case, (Su,Sv) E i/. (v) <Sy9Sz> E i/.
(vi) Property (vi) in Definition 2.29 is satisfied by F and, if {u\ υ') GH- F,
<u9 υ) E F, then uGu' = Sy9 and y £ i / ' = Sz.

(b) (i) Suppose that the assumptions of the implication (b) hold; then H' E V3

and x9y9Pv E N; note also that from Constr + (H',x>Sy9 v)9 and from the prop-
erties of V3 it follows that there is an A E F3 such that A « //' - {<Ŝ , f» ;
(ii) since if' is a function from SSy to ι>, and A « //' — {<Sj, ι>», it is easily seen
that 4̂ is a function from Sy to Py; (iii) <φ,x> E //, <Φ,Λ:> ^ <S ,̂ υ)9 so <φ,x> E
4̂ (iv) if u E y and <w, w> E ^4, then <w, w> E /Γ and u Φ Sy (so w Φ v); it fol-

lows (Su9Sv) E /Γ; but from uGy it follows Su E S^ (by Theorem 2.27); so
<Su9Sυ) Φ <Sy,v}9 therefore <Su9Sv)GA; (v) <y,Pv) GA; indeed, there is a
wGv such that <y9 w) G A thus {Sy,Sw) GH'9 Sw = v, sinceH' is a function,
and finally w = Pv, and {y,Pυ) G H'\ moreover, (y,Pv) Φ (Sy,v), therefore
(y,Pv) G A. Condition (vi) in Definition 2.29 is obvious.

Proposition 2.35 (Add5) x + y = z -+ x + Sy = Sz.
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Proof: Let FG V3 be such that Constr + (F9x,y,z), and let H = FU [(Sy9Sv)}.
By Lemma 2.34(a), Constr + (H,x9Sy,Sz). If Constr + (H'9x9Sy9 v)9 let A E V3

be such that ,4 « if' - [<Sy9υ}}. By Lemma 2.34(b), Constr + (A,x9y9Pv).
Now, from x + y = z, Constr + 04,x,y9Pv) and Constr + (F9x9y9z) we deduce
F~A (hence z = A/); last, fromi/ = F U {<Sy,Sz», /Γ * A U {<5y,t;>} =
4̂ U HSy,Sz» and F « A9 we conclude if « H'. So x + Sy = Sz.

Proposition 2.36 (Add6) x + Sy = Sz->x + y = z.

Proof: Let F G F3 be such that Constr + (F9x9Sy9Sz). Let if E F3 be such that
H » F - {<5y,5z». By Lemma 2.34(b), Constr + (H9x9y9z); moreover, if
Constr + (H\x,y9 w)9 letting G = if' U {<Sy,Sw» we get, by Lemma 2.34(a),
that Constr + (G9x9Sy9Sw). From x + S)> = Sz it follows F ~ G9 therefore
Sw = &; from this we conclude H » F - {<5y,&» * G - {(Sy9Sz)} » ^ ' . So
x + ̂  = z.

Definition 2.37 Let U be a subuniverse of Λf defined by a formula; we say
that ί/is ΛΓ-like if φ e U9 x e U-+Sx e U9 and SxeU^>xeU.

Lemma 2.38 Let U be an N-like subuniverse ofN;letU+ = {xeU:Vye
U((y + x)G £/)}; then U+ is N-like.

Proof: φ E U+ is obvious since, for all y E U9 y + φ = y. If x E ί/+ then
Sx E £/+. Indeed, let y E ί/; y + x E £/, since x E C/+. But then y + Sx =
S ( j + x) E (/; so SxE U+. Finally, if SxE (7+, thenxE U+. Indeed, let j E ί/;
then, j + Sx E £/, since Sx E £/+; but then P(y + Sx) = PS(^ + x ) = j + xEC/
as C/ is closed under P. It follows x E ί/+.

Definition2.39 Nx = {xe (N+)+:\/y9zeN+ [zH-(j + x) = (z + ̂ ) + x ] } .

Remark 2.40 If x9y9zG (N+) +

9 then z + j> EΛf+ and j + xGiV+, therefore
z + (y + *) E N and (z + j ) + x E JV.

We prove that N\ is N-like:

Proposition 2.41 (Nxl) φeNλ.

Proof: φ E (N+)+; moreover for y,z E (N+)+

9 (z +y) + Φ = z+ (y + Φ) =
z + y.

Proposition 2.42 (N{ 2)IfxGNί9 then SxGNx.

Proof: If y9ze (N+)+

9 then (z + y) + Sx = S[(z + y) +x] = S [ z + (y + x)]
(the last follows f r o m x e N i ) =z +S(y + x) = z+ (y + Sx); so, SxGNi.

Proposition 2.43 (Nx 3)IfSzEN{ then zGNx.

Proof: If y9z E (N+)+

9 then S((z + y) + x) = (z + y) + Sx = z + (j ' + Sx)
(since Sx E M ) = z + S(j> + x) = S(z + (^ + x)), therefore z + (y + x) =
P S ( z + (y + x)) =PS((z + y) + x) = (z + y) + x; so XGNX.

Definition 2.44 N2 = {x E Nx: φ + x = x).

We prove that 7V2 is N-like:

Proposition 2.45 (N21) φ E N 2 .
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Proof: Obvious.

Proposition 2.46 (N22) IfxGN2 then SxEN2.

Proof: First of all, Sx E Nu as Nx is closed under S. Moreover, φ + Sx =
S(φ + χ) = Sx, since x E N2.

Proposition 2.47 (N23) If Sx E N2, then x E 7V2.

Proof: First of all, x E NΪ9 as N\ is closed under P. Moreover, φ + Sx = Sx,
since Sx G N2. So Sx = φ + Sx = S(φ + x) E Nι. Thus, φ + x = PS(φ + x) =
P&t = A:.

Definition 2.48 7V3 = {x E N2: Sφ + x = Sx).

We prove that N3 is TV-like:

Proposition 2.49 (N31) φeN3.

Proof: Obvious.

Proposition 2.50 (N32)IfxEN3, then SxGN3.

Proof: First of all, Sx E N2, as N2 is closed under S. Moreover, Sφ + Sx =
S(Sφ + x) = SSx, since x E iV3.

Proposition 2.51 (N3 3)IfSxSN3, then xGN3.

Proof: First of all, x E N2, as 7V2 is closed under P. Moreover, Sφ-\- Sx = SSx,
since SxGN3. So SSx = Sφ + Sx = S(Sφ + x) GN2; so, Sφ + x = PS(Sφ + x) =
PSSx = SΛΓ. Thus, xGN3.

Definition 2.52 7V4 = {x E TV3

+: Vy E 7V3

+ (^ + x = x + j>)}. (Note: since x, j E
7V3

+, we obtain j> + x E 7V3, and x + y E: N3.)

We prove that N 4 is TV-like:

Proposition 2.53 (Λ 4̂1) φGN4.

Proof: Clearly, φ E JV3

+. If y E Λ 3̂

+, then y=y + φ = φ+y, since jGiV 2 .

Proposition 2.54 (N42) IfxGN4, then Sx E Λί4.

/: First of all, Sx E 7V3

+, as 7V3

+ is closed under S. If y E iV3

+, then y + Sx =
(sincexeN4)=x + Sy = x+ {Sφ + y) (since .y EΛΓ3) =

(Λ: + Sφ)+y (since j € M ) = S

Proposition 2.55 {N43) If Sx G N4, then xeN4.

Proof: First of all, x E iV3
+, as 7V3

+ is closed under P. Ifjμ E N3

+, then S( y + x) =
j> + Sx = Sx + y (since SxGN4) = (x +Sφ) + y = x+ (Sφ + j ) (asy E

Lemma 2.56 If U is an N-like subuniυerse ofN4, then U+ is an N-like sub-
universe of N4 closed under +; moreover, + is commutative and associative
on U+.

Proof: That U+ is iV-like follows from Lemma 2.38; if x,y,z, x + y, y + x,
(z + y) + x belong to U+, then x + j = y + x and (z + j ) + x = z 4- ( j + x),
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because U+ is a subuniverse of 7V4 (hence of N{). We prove that U+ is closed
under + ; if y,x E U+ and z E U then z + y E £/ (as ̂  E t / + ) , therefore,
(z + j Ί + J c G C/(asxE U+); but then z + (.y + x) = ( U j ) + JCG ί/; by the
definition of ί/+, we conclude that y + x E C/+.

In the following, we shall construct iV-like subuniverses U of 7V4 that have
some additional property, but that can possibly loose closure under +; Lemma
2.56 tells us that we can always save closure under +, simply taking U+ instead
oft/.

Definition 2.57 N5 = {x E Nf : Vy,z E Nf y E z -> x + y E x + z).

We prove that Ns is TV-like:

Proposition 2.58 (N51) φ E N5.

Proof: Clearly, φ E Λf4
+. If y,z E Nf and y E z, then φ+y = yez = Φ + z,

since y,zEN2.

Proposition 2.59 (N5 2) x E N5 -> Sx E Λf5.

/ ; Clearly, 5x E ΛΓ/. If y,z E Λ 4̂

+ and yEz, then JC + j E X + z, as x E Λf5;
so, SΛ: + y = j + Sx = 5(j ; + x) = S(x + j;) E S(x + z) = S(z +x) = z +Sx =
5x + z.

Proposition 2.60 (N53) Sx e N5-+x e N5.

Proof: Clearly, x E 7V4

+. If y9z E A 4̂

+ and j E z, then, 5(JC + y) = S(y + x) =
y + SΛ: = Sx + y E Sx + z (as Sx E iV5) = S(x + z), therefore Λ: + y E x + z.

Remark 2.61 (a) If y Φ φ and yEN5, then </> E ̂ , therefore, for all xEN5,

(b) lϊx,y,y\z E 7V5 and χ + ;; = χ + j / ' = z, then j ; = y'\ indeed, if y E y\
then jί + ̂ G x + Z , and if y' E ^ , thenx + y' Ex + y.

Notation We define a binary partial map - on N5 letting x - .y = z if either:
(x E j> or x = ̂ ) and z = Φ or: y G x and j> + z = x By the Remark above, -
is a partial function. Note that, if x,y E Λf5

+, then (Λ: + y) — y = x, and that, if
y Ex and x - j G JV5

+, then (x - j>) -h y = x.

Lemma 2.62 Let Ube an N-like subuniverse ofN5 let: U~ = {Λ: E U+: Vy E
ί/+[(ΛrGj^^^-xE C / + ) Λ ( J E Λ Γ ^ J C - ^ E C/+)}. ΓAe« U~ is N-like and is
closed under + tfjztf — (which is total on U~).

Proof: Throughout this proof, we tacitly use the fact that U+ contains φ and
is closed under S,P, 4-, therefore in parts a), b), c), d) below we do not need to
prove that the desired elements are in U+. We prove successively:

a) φ E ί/-.

Proof: Let y E ί/+; j> E φ is impossible; if φ E .y, or φ = y, then φ + j ; = y.

Proof: Let y E C/+; if SJC E .y, then Λ: E y, therefore there is a w E t/ + such that
x + >v = j ; w Φ φ, since x + φ = x ^ y; so, SPw = w; it follows Sx + Pw =
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pw + Sx = S(Pw + x) = S(x + Pw) = x + SPw = x + w = j>, and Pw E £/+ is
the required element; if yE Sx, then either y E x or y = x; in both cases, from
x E £/- it follows that there is a z E ί/+ such that y + z = x; therefore, j> +
Sz = Sx, and Sz E U+ is the required element.

C)SXE ί/--^jcG t/-

Proof: Let .ye U+; if xEj>, then SxEy or Sx = j>; in both cases, from SxE ί/~
it follows that there is a z E U+ such that Sx + z = y therefore x + Sz =
S(x + z ) = 5(z + x) = z + Sx = Sx + z = y, and Sz E U+ is the required ele-
ment. ΠyEx, then y E Sx therefore, there i s a w G U+ such that y + w = Sx;
w Φ φ, since j> + φ =y Φ Sx; so SPw = w; it follows S(y + Pw) = j + SPw =

j ; + w = Sx, therefore y + Pw = x, and Pw E U+ is the required element.
ά)x,yE U'^x + yE U~.

Proof: Let υ E U+; it x + y Ev, then, by part a) of the Remark preceding this
Lemma, xEv andy E v, therefore, fromxE U~ it follows that there is a w E U+

such that x + w = y; it is not the case that w G ^ o r w = j , otherwise it would
follow respectively v = x+wEx + y or v = x+w = x + y; so j E w . Since
w E C/+ and j G ί / " , there is a z E t/ + such that y + z = w; it follows (x + jO +
z = x + ( j + z ) = x + w = f, and z E ί/+ is the required element. Now, suppose
v E x + y; if v E x or v = x, there is a w E U+ such that t> + w = ΛΓ, therefore
v+(w + y) = (υ+w)+y = x + y and w + j G C/+ is the required element; if
xEv, from x E U~ it follows that there is a w E C/+ such that x + w = u; it is not
the case that yEworw=y, otherwise we would get respectively x+yEx+w = v
or v = x + w = x + 7; so w E j>. Since w G ( / + and j E t/~, there is a z E ί/+

such that w + z = y. So, v + z = (x + w) + z = x + (w + z) = x + y, and z is
the required element.

e) Ifx,y E U~, andy E x, then x - y E U~.

Proof: First of all, x — y E U+; this follows from the definition of U~. Now,
suppose v E U+, v E x — y; then by the Remark preceding this Lemma, v E
x - yE (x - y) + y = x; since x E t/~, there is a w E ί/+ such that υ+ w = x;
if w E j> or w = j>, it would follow either Jί = y + w E ( j ί - j ) + w G ( x - j ) +
j = x or A: =f + w E (x - y) + w = (Λ: - j>) + j ' = x. So, j E w, and from
y E U~ it follows that there is a z E £/+ such that y + z = w; thus, x = v + w =
^+(.y + £) = (^ + £)+.y;sox-.)> = ί; + z and z E U+ is the required element.
Now, suppose x — y E v; then, x = (x - y) + j = y + ( ^ - J ) G J + t;; since
y + v E U+ and x E ί/~, there is a zE U+ such that x + z = y + v, therefore
((x - y) + z) + j> = ((x - j ) + 7) + z = x + z = y + t> = v + 7, and finally
(x - J) + z = v, by the Remark preceding this Lemma, and z E U+ is the
required element.

Lemma 2.62 allows us to obtain, from any TV-like subuniverse of N5, an
TV-like subuniverse closed under -I- and - , and in which + is associative, com-
mutative, and compatible with the order. Such subuniverses have all desirable
properties of -I- and — thus, we are ready first to define the product as a par-
tial map on Nf, and then to obtain a subuniverse of Nf closed also under
product.
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Definition 2.63 Constr* (P,x,.y,z) denotes the conjunction of the following
formulas: (i)PG F3,xj,zGΛ^5"; (ii) Pis a function from Sy to Sz; (iii)<φ,φ>GP;
(iv) (ueyΛ(u9v)eP^>v + xeNΛ(Su,v + x)eP]); (v)(j/,z>GP; (vi)
ΦΛ(U,V) G P Λ ( M ' , I ; ' ) G P Λ M G M V ^ V.

Definition 2.64 Prod(x,j>,z) denotes the following formula:

We prove the following properties:

Proposition 2.65 (Prodi) Prod(x9y,z) A Constr*(F,x,.y, t) -* z = t.

Proof: From our assumptions it follows that there is an F such that Constr *(F,x,
y9z) and for all F\z\ if Constr^F',*,;/,*') then F « F' ; from this and
Constr*(F,x,.y,0 we get F « F; from Constr*(F,x,.y,z) and Constr *(F,x, j , 0
we deduce < J > , Z > E F Λ < J , O € Ξ F ; since F and F are functions and F « F, we
conclude z = .̂

Proposition 2.66 (Prod2) Prod(x,.y,z) Λ Prod(x, y91) -+z = t.

Proof: Obvious, by Proposition 2.65.

Notation. By Proposition 2.66, Prod defines a partial function, which will
be denoted by *; we shall extend to * the terminology of partial functions, exactly
as we did for + and for —.

Proposition 2.67 (Prod3) Vx G Nf(x*φ = φ).

Proof: Let F = {<φ,φ>}; we get: FE V3, since φ G V3, and V3 is closed under
the operations < , > and { }; x,φ G Nf; F is a function from Sφ to Sφ;
<φ,φ> G F; the other conditions in Definition 2.63 follow from the fact that F
has only one element. So, Constr *(F,x,φ,φ). Moreover, if Constr*(F',x,φ,0
then, since φ is the unique element of Sφ, the unique element of F' is {{φ9φ)}\
so F~F'.

Lemma 2.68
(a) Constr*(F,x, y, z) A H = F U {<Sy, z + x>} -> Constr*(H,x, Sy, z + x).
(b) CθΏStr*(H'9x,Sy,z) AAELV3AA~H' - {<Sy,z>} -> Constr *(^,x, y,z - x).

Proof: (a) Suppose Constr*(F,x,y,z) AH = FU [<Sy,z + x»; then: (i) He V3,
and x,Sy,z + xG Nf; (ii) since Sy £ Sy andFis a function from Sy to Sz, and
z + x G S(z + JC), // = F U {<S ,̂z + JC» is a function from SSy to S(z + JC);
(iii) <</>,</>> G //, since (φ,φ) G Fand <φ,φ> Φ (Sy,z + x>; (iv) if u e Sy and
<#, v)GH, then, since uΦSy, one has (u9v}eF. If wEj, then <Sw, f + x>GF;
if u=y, since < j>, z> G Fand Fis a function, we get v = z, therefore, (Su, v + x) =
<Sy9z + x) G i/. In any case, <S«, i; + x) G //. (v) <Sj,z + x) G if. (vi) If * * φ,
<w,ί;> EH, (u',vf) Gi/and wG i/', then, from u G wr G SSj, it follows w G j
and either ur G Sj or u' = Sj; in the first case, (u, υ) G F, <w', ι;'> G F, there-
fore v G t/; in the second case, (u, v) G F, therefore i; G Sz G S(z + x) and
y G z + x. On the other hand, from u' = Sy it follows υ' = z + x; thus, f G v'.
We conclude Constr*(H9x,Sy,Sz).

(b) Suppose Constr*(H'9x,Sy,z), A e V3 and A ~ H' - {<Sj>,z>}; then:
(i) note that, by the properties of F3, if H' G F3, there is an A G F3 such that
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A « if' - {(Sy,z)}; moreover, x,y, z - x E Nf; (ii) let w be such that <y, w) E
H'\ then, (Sy,w + x) E i/', whence w + x = z, w = z - * (as H' is a function);
if <y', w'> E ^4, then either j>' = j>, in which case W = z — x, or y' E j>, in which
case w' E w = z — x; in any case, w' E S(z — x)\ thus, yl is a function from Sy
to S ( Z - Λ Γ ) . (in) (φ,φ>EH' and <Φ,Φ)Φ <Sy,z>, therefore (φ,φ}<ΞA; (iv) if
w E ^ and <u, w) E A, then <w, w> E if' and Su E Sy; so, <Sw, w + x> E // ' and
<Sw, w + x> t̂ <Sy,z>, therefore <Sw, w + x) E >4; (v) we already saw that
< y,z - x> E ^4; (vi) follows from Constr*(Z/',x,Sy,z).

Proposition 2.69 (Prod4) x*y = z^> x*Sy = z + x.

Proof: Let F be such that Constr*(F,x, y9z), and let // = F U {<Sy,z + JC>}.
By Lemma 2.68(a), Constr*(//,x,5y,z + x); now, if Constτ*(H'9x9Sy9v), let
A E F3 be such that A ^ H' - {(Sy9v)}. By Lemma 2.68(b), Constr*(^4,x,^,
y — x); from this, from Constr*(F,x, y,z) and from x*j = z we deduce T7 « A
(so, z = i; - JC); since H« F U {<Sy,z + x>}, i/ ' « ^ U {<Sy,ι;>} = Λ U {<Sy,
(y - x) + x>} = ̂ 4 U [(Sy,z 4- x>}, we conclude H « i/'. Thus, we have proved

X*Sy = z + x.

Proposition 2.70 (Prod5) jc*Sy = z -> Λ:*J = Z - JC.

PAΌO/: Let F be such that Constr*(F,x, y,z), and let H E F3 be such that
H ~ F - {<Sy,z>}. By Lemma 2.68(b), Constr*(i/,x,^,z - x); moreover if
Constx*(H\x,y, w), letting G = H'U {(Sy, w + Λ:>} we get, by Lemma 2.68(a),
Constr*( G, x, Sy, w + x). From χ*Sy = z it follows F~ G, therefore w + x = z;
from this we conclude // « F - [<Sy,z» « G - {<5y, w + x>} « if'.

Lemma 2.71 Z^ί t/6e α« N-likesubuniυerse ofNf, and let U* = {v E C/~:
vw E C/- (w*y E U~)}\ then, U* is N-like, and, ifv,wG U*, then v*wG U~.

Proof: (a) φ E U*, since v*φ = φ for all f E t/".
(b) If v E C/*, then, for all w E t/~, w*ι;G C/~, therefore by Proposition

2.69 w*Sv = w*v + w E U~, as U~ is closed under +.
(c) If Sv E (7*, then for all w E U~, w*Sv E C/", therefore by Proposition

2.69 w*v = w*Sv "WE U~, as U~ is closed under —.
(d) That, if υ, w E £/*, then v*iv E £/~ follows from the Definition of U*.

Definition 2.72 Λ̂ 6 = (Nf)\

N7= {xeNβ :vy,zeN(~(y*(z + x) =y*z + y*x)}.

Remark 2.73 By Lemmas 2.62 and 2.71, if x,y,z E 7V6~~, z + x E Λ 6̂", and

y*z, y*x E iV5~, therefore y*(z + x) and y*z + J*x E A 5̂".

We prove that Â 7 is TV-like:

Proposition

Proof: \ϊy,

Proposition

2.74

2.75

(Nη\)

if, then y

(NΊ2)

Φ

X

GΛΓ7.

z + Φ)

SN7^

= y*z

>Sxe

= y

N7.

*z + Φ =

Proof: If y,z E 7V6~, theny*(z + 5ΛΓ) = y*S(z + x) = y*(z + x) + y = (y*z +
y*x) + y (since xGN7) =y*z+ (y*x + y) =y*z+ (y*Sx).
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Proposition 2.76 (N73) Sx G N7^x G N7.

Proof: Let y,zGN$\ then y*(z + Sx) =y*z+ (y*Sx) (since SxGN7). It fol-
lows y*(z + x) = y*(z + Sx) -y = (y*z+ (y*Sx))-y= (y*z+ (y*x + y))-
y = ((y*z + y*χ) + y) - y = y*z + j * χ .

Definition 2.77 7V8 = (iV7")*.

N9={xe Ns : Vy,z E Nf(y*(z*x) = (y*z)*x)}

Remark 2.78 (By Lemma 2.68, ifx,j,zE7V8~thenz*jtEAr7~, and.y*zE7V7~,
therefore y*(z*x) and (y*z)*xG Nf.)

We prove that N9 is TV-like:

Proposition 2.79 (N9I) φGN9.

Proof: If y,z G TVf, then y*(z*Φ) = (y*z)*Φ = φ.

Proposition 2.80 (7V92) xGN9-+SxGN9.

Proof: Let ̂ z G JVf; then, y*(z*Sx) = y*(z*x + z) = J*U*x) + >>*z (as
)* and zGN7) = (y*z)*x + y*z (as x

Proposition 2.81 (N93) Sx G N9-+x e N9.

Proof: If y,z E 7V8~~, then y*(z*Sx) = (y*z)*Sx (since Sx E JV9). So, (y*z)*x =
(;;*Z)*SJC - j * z = y*{z*Sx) - y*z = >>*U*x + z) - j * z = j*(z*x) + y*z -

y*z = y*(z*x).

Definition 2.82 7V10 =

Theorem 2.83 Λ̂ io is N-like and closed under + and *; moreover Nχ0 is a
model of Q (more precisely, if NχO(x) defines Λ 1̂0, then the relatiυisation to

of all axioms of Q is provable in N). Thus, Q is interpretable in N.

Proof: That 7V10 is TV-like follows from Lemma 2.68. We prove that 7V10 is closed
under +; let x,y E Nw, and let z E Λf9" Then, z*(x + y) = z*x + z*y9 and
z*x,z*y E Λ̂ 9~; since 7V9~ is closed under +, z*(x 4- y) E Â 9~; so, x + y E Λ 1̂0.
Now, we prove that iV10 is closed under *; let x,y E Nϊθ9 and let z E iV̂ "; then,
(z*y) E Λ̂ 9~ (since x e N 1 0 ) . So (z*x)> E 7V9~ (since ^ E Nl0), and finally

Z*(Λ:*J) = (z*x)*y E Â 9~ Thus, Λ:> E 7V10. Last, the operations +, *, 5, P sat-
isfy the axioms of Q on their domain (each axiom of Q is satisfied in a universe
of which iV10 is a subuniverse), therefore iV10 is a model of Q.

Remark 2.84 If either we drop one of the axioms of N or we replace the sec-
ond axiom by either VxVyVz(x E j U [z] -+ x E; y v x = z) or vx\fy\fz[(x E
yvx = z)^xGyU {z)], then we get theories that are undecidable (as N is
hereditarily undecidable), but not essentially undecidable; indeed, let T!,T2,
denote N minus the axiom on the empty set, and N minus the axiom of addition
of one element, respectively, and let T3,T4 denote T2 plus Vx\fyVz(x E y U
[z] - > x E y v x = z) andT2plus vxVyVz[{xGyvx = z)-+xEyV {z}], respec-
tively; then, T! plus VΛ:V^(X = y) is consistent and complete (its only model has
only one element x such that x E x); hence T! plus VxVy(x = y) is consistent
and decidable. T2 plus VxVy(x = y) and T3 plus V#Vy (x = y) are consistent and
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complete (their only model has only one element x such that -ιχEx). Thus, these
extensions of T2 and T3 are decidable. Finally, T4 plus VxVy[(x Φ φ Ay Φ φ) -»
x = y] is consistent and complete: its only model consists of φ plus another ele-
ment x such that φ G x, x E x and, for any u, v in the model, u U {v] = x. So,
Q is not interpretable in any of T l f . . . ,T4. This justifies the adjective "minimal"
occurring in the title of this paper.
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