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On General Boundedness and Dominating Cardinals

J. Donald Monk

Abstract  For cardinals «, A, & we let by ; ,, be the smallest size of a subset
B of * s unbounded in the sense of <, ; that is, such that there is no function
f e 11 such that {or < A : g(a) > f(a)} has size less than « for all g € B.
Similarly for d ; ., the general dominating number, which is the smallest size
of a subset B of *1 such that for every g € A there is an f € B such that
the above set has size less than x. These cardinals are generalizations of the
usual ones for k = A = u = w. When all three are the same regular cardinal,
the relationships between them have been completely described by Cummings
and Shelah. We also consider some variants of the functions, following van
Douwen, in particular the version bgq i of by 5, in which B is required to
consist of strictly increasing functions. Some of the main results of this paper
are: (1) 0y ety < Dty ctp,efps (@) for & <, bl,l,u always exists; (3) if

cfd = cfp < & < p, then Degy ey cfy = bI v 4) Do, = D,y p- For
background see Section | of the paper. Several open problems are stated.

1 Definitions

We make the standing assumptions that we have cardinals «, A, u with (1)« = 1 or
K is infinite, (2) k < A, and (3) X and p are infinite. Note in particular that we allow
for the possibility that A > . The definitions of our functions depend on some quasi
orders defined as follows. For f, g € *11 we write

f=eg it [{§ <A:fE)>g®} <k,

f<cg iff & <i:f()=g®} <k,
f=g iff VE<A[f() =g®)]
f<g iff V& <A[f(E) < g@)]

The following obvious proposition can be used to fill in some details below.
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Proposition 1.1
(@) If f <« § <« hithen f < h.
() If f <« & <k h, then f <, h.
(i) If f =< g, then f < g.
Gv) If f < g, then [ <, g.
W) If f <x g < h, then <, h.
i) If f < g <¢ h, then f <, h.
(i) If f <, g, then [ <, g.
(viii) f <giff f <1 &
@0 f<gifff <1 g o

Given B C *u, a <.-bound for B is an element g € *u such that f <, g for
all f € B. By Proposition 1.1(v), (vii), this is equivalent to saying that there is an
element g € *u such that f <, g forall f € B.

A subset B of * 1 is <,-dominating if for every f € *u thereis a g € B such that
f <« g. Again we can say f <, g here.

Some other notions enter into the definitions of some of our functions. We say
that B C % is < -unbounded on A € [A]* provided that for every f e *pu there is
ag € Bsuchthat [{« € A : f(a) < g(@)}| = k. A (k, i, A)-scale is a subset B of
A w which is <,-dominating and well-ordered by <.

Now we are in a position to define the various boundedness and dominating num-
bers. We do not discuss now when the indicated minimums actually exist.

b, = min{|B|: B isa <,-unbounded subset of)‘u};
Des.n = min{|B|: Bisa <,-dominating subset of)‘u};
hz,x,u = min{|B]| : B is a <,-unbounded subset of)‘u
consisting of strictly increasing functions};
DE’A’M = min{|B]: B is a <,-dominating subset of’\u
consisting of strictly increasing functions};
bffj\’ﬂ = min{|B] : B is a <,-unbounded subset ofku
and B is well-ordered by <,};
byfi’ﬂ = min{|B|: Bisa (k, A, u)-scale};
IJIV;\OM = min{|B|: B is a <,-unbounded set of strictly
increasing members of * 1 well-ordered by <, };
bzx(fﬂ = min{|B| : B is a <,-dominating set of strictly
increasing members of * 1 well-ordered by <, };
h;”gu = min{|B| : B is <,-unbounded on every A € [A]"}.

For 1 and v regular, the relationships between 0, ., D0 0.0, Dy,v v, and d,, ,, , have
been completely described by Cummings and Shelah [1]. The function b, ; , has
been investigated extensively by Szymariski [3]. He also gives some consistency re-
sults when u* < 2¢, extending results of Jech and Prikry [2]. Several of Szymarski’s
results generalize in an obvious way to D ;. To make this paper self-contained, we
give proofs for these results as well as our new theorems. We merely state some of
the main consistency results given in those papers, however.
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2 The Main Functions Dy, and Dy 3, g

Clearly AM itself is <,-unbounded and <,-dominating, so Dy ; , and D, ; , always
exist.

Proposition 2.1  Ifaset B C )‘,u is <,-dominating, then it is also <,-unbounded.

Proof Suppose not: say f <, g forall f € B. Define h(§) = g(&§) + 1 for
all & < A. Since B is <,-dominating, choose f € B such that i <, f. Thus
h <c f <cgsoby LIG, h < g But{ < & :h@ > g®) =2 = «,
contradiction. 0

Corollary 2.2 Dy, < Denp < . =
Proposition 2.3

(i) bir,pu is regular.

(ii) byep,pu < cfde i i
Proof (i) Suppose that D, , is singular, B C )‘,bL is <,-unbounded, and
|B| = Dy, . Write B = Ua<Cfb“M By with each |By| < Dy ;. Then there
is a <, bound gy for By. A <,-bound for {gy : @ < cfb; ; .} is a <,-bound for B,
contradiction.
(ii) By 2.2 we may assume that D, ; , is singular. Suppose that cfd, ; ,, < Di i u-
Let B C )‘,u be <, dominating with |B| = b ; ,. Write B = Ua<cfbkw Cy with

|Col < Dy, for each o < cfdy ;. For each o < cfd, ; , choose f* e * 1
such that f¢ £, g forall g € C,. Then choose & € B such that f* <, h for all
o < cfdey u. Say h € Cy. Hence f* £, h, contradiction. O

Proposition 2.4 Assume that k < k' < A, with each of k, k' satisfying the standing
condition for k, namely, equal to 1 or infinite. Then

(i) if B C A W is <,-unbounded, then it is <, -unbounded;
(i) if D C )‘,u is <,-dominating, then it is <,-dominating;
(1) Dieppo < bern s
(iV) bk’,k,u =< bk,k,p,-
Proof (i) Suppose that f <, g forall f € B. Then forany f € *u we have
Ho <2: fla) > g@)}] <k <«
and this contradicts B being <, -unbounded.

(ii)) Given f € *u, choose g € D such that f <, g. Clearly then f <, g, as
desired.

(iii) and (iv) are immediate from (i) and (i1). [l
For the next proposition, cf. [3], Lemma 2.3.
Proposition 2.5 Ifw < A < 1/, then b,/ ;, < by o and dic 0 < iy p-

Proof For b, suppose that B C * 1 is <,-unbounded, with |B| = by 5, For each
f €*u define £ e * 11 by setting, for any & < A/,

f(€) it <A,

0 otherwise

HeE =
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Let B = {fT : f € B}. We claim that B’ is <,-unbounded (as desired). For,
suppose to the contrary that f* <, g € 11 for all f € B. Thus forany f € B,

K> HE<A 1@ > g =1 < 2: &) > g®)),

contradiction.

For D, suppose that B C M s <(-dominating and |B| = D,/ ,. Let
B = {f | »: f € B}. We claim that B" is <,-dominating (as desired). For,
let g € *1u be given. Let gt be defined as above. Choose f € B such that g* <, f.
Then

k> <A gt &) > fEYN=HE <r:gE) > fE},
s0 g <, (f [A). O

For Proposition 2.6(ii), cf. Szymarski [3], Lemma 2.1.

Proposition 2.6

(1) bK,)\,/,L = bl(,)»,cf,w
(ii) bk,k,p, = bk,k,cfu-

Proof We may assume that p is singular. Let (vg : & < cfu) be a strictly increasing
sequence of cardinals with supremum s. Foreach f € *u andeach o < A let £~ (a)
be the least & < cfu such that f(o) < vg; and for each g € *cfp and each @ < A let
g1 (@) = vg(). Thusif f € *u, g € *cfp, and & < A, then

*)  fl@) > g™ ()iff f(a) > Ve(a) TV r=(o) > V(o) iff [ () > g(a);

it follows that f <, g* if and only if f~ <, g. Hence if B C )”M is <, unbounded,
then {f~ : f € B} is <, unbounded. This gives > in (i). Suppose that C C *cfu
is <,-unbounded; we claim that {g™ : g € C} is <,-unbounded, thus giving < in
(i). For, suppose that gt <, f € *uforall g € C. Define h(a) = f(a) + 1 for

all @ € A. Then g* <, h forall g € C, and then (x) gives g <, h~ forall g € C,
contradiction.

(ii) follows from (%) similarly. ]
By this proposition, we can restrict to the case p regular for most purposes.

As applications of these simple results we have the following inequalities, which
we will discuss later:
bl,Nw,w < ba),Rw,w <---=< bw,a)z,a) < bw,a)l,a) =< ba),w,a) < Cfbw,a),w
< ba),w,a) =< bw,a)l,w < bw,a)z,w <---= ba),Rw,w < bl,Nw,w-

Proposition 2.7  Assume that B C * with |B| < cfu. Then B is <-bounded, and
hence is not <-dominating.

Proof Define g(§) = sup{f(§) +1: f € B} forall £ < A. Since |B| < cfpu,
we have g(§) < pforall§ < A. Forany f € B, {£ : f(§) > g(§)} = 0, so
f < g. Thus g is a <-upper bound for B. So B is <-bounded. By 2.1 it is not
<-dominating. O

Corollary 2.8 If u is regular then b, ;. , > L. =
The following result is well known.

Proposition 2.9  For u regular we have by, ;, ;, > .
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Proof Suppose that B C #pu with |B| < u; we want to find a <,-bound for B. Let
B ={f¢:§ < u}. Forany n < p, let g(n) = supg, fe(n). Then forany § < u
we have {1 : fe() > g(n)} € & andso |{n: fz(7) > g()}| < . as desired. O

Proposition 2.10  Suppose that . < cfu. Then there is a set B C * 1 of strictly
increasing functions such that B is <-dominating, B is well-ordered by <, and
|B| = cfu.

Proof Let ag 1 p for & < cfu, the ag’s ordinals. We define a new sequence
(Bs 1 & < cfu) by recursion. By = 0; B is continuous; and B¢ 1| = max{ag, Bs +A}.
Now forall§ < cfu andn < Alet fe(n) = Bg +n. Let B = {f¢ : § < cfu}. To see
that B is <-dominating, let g € *u be given. For every n < A choose &, < cfp such
that g(n) < Bg,. Let p = sup, _; &,. So p < cfu by our assumption, and hence for
any n < x,g(m) < B, < Bp = fp(n).

Clearly f: < f,if§ < n < cfu. 0

Corollary 2.11  If w is regular and . < p, then by, = D p 0 = Dip 0 = I

Proof
w =< benp by28
< bx,)\,u by 2.2
< bl,l,,u- by 2.4
< u by 2.10

For the following result, cf. [3], Lemma 2.2.

Proposition 2.12  Every <,-dominating subset B of * i has size > .

Proof Suppose, to the contrary, that B C )‘,u is <,-dominating and B =
{ge : & < A}. Let k be a bijection from A onto A x A. For a member x of
A X A we write x = (xo, x1). Now we define f : A — u by setting, for any n < A,
£ = grem),(m) + 1. Choose & < A such that f <, ge. Now if k()9 = &, then
f() =ge(m) + 1. Hence |{n < A : f(n) > ge(n)}| = A, contradiction. O

Corollary 2.13 Dy p , > A =

We shall see that the situation is different for b, » ,. For the next result we need a
simple set-theoretic lemma.

Lemma 2.14  Suppose that | is regular. Assume that (I's : § < ) is a system
of subsets of A such that US<” Ie = A and for all & < n with both in  we have
e € I'y. Also suppose that one of the following conditions holds:

1) Kk, 0 < A
(i) « < u.
(i) pu <k = X and cfh # p.

Then there is a § < p suchthat |I'g| > k.
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Proof Suppose to the contrary that |I's| < « for all £ < u. If (i) holds, then

r=Jre=|JTe| =) IMel <<,
§<p §<p §<p
contradiction. For (ii) and (iii), first note:
(1) V& < pdn € (§, w[I's C T'yl. In fact, otherwise we get § < p such that
I = Un<u Iy, = A, while |T'¢| < k < A, contradiction. So (1) holds.

By (1) we may assume thatif § < n < p then I's C I'y. If (ii) holds, then
T« | > K, contradiction.

Now suppose that (iii) holds. If i < cfA a contradiction is immediate. So,
suppose that cfA < p. Thus A is singular. Let 8¢ 1 A for & < cf, the B¢’s
cardinals. If there is a cardinal p < A such that [T'¢| < p for all § < p, then
A < p - u, contradiction. Thus

(2) For every cardinal p < A there is a & < u such that [I'¢|] > p. For each
n < cfa choose oy < p such that [Ty, | = B. Lety = sup,_p an; so
y < w. Then [Ty | > A, contradiction.

Proposition 2.15  For p regular the following conditions are equivalent:
(a) conditions (i), (ii), and (iii) of 2.14 all fail to hold;
(b) k = X and p = cfi.

Proof (a)=(b) Assume (a). Suppose that k < . Since (i) fails, it follows that
A < w. But this contradicts (ii) failing. Thus x = A.

Suppose that u # cfd. If A < p, this contradicts (ii) failing. So u < A. Since
(iii) fails, 4 = A. But then . = cfi, contradiction.

(b)=(a). Assume (b). Clearly then (i) fails. We have u = cfA < A = «, so (ii) fails.
Obviously (iii) fails. O

Proposition 2.16  Suppose that A < p and that one of the following conditions
holds:
1) k,cfu < A;
(i) « < cfu;
(i) cfu < k = A and cfr # cfu.
Then thereisa B = {fs : § < cfu} C * v consisting of strictly increasing functions,
with fe # f, and fe¢ < f, for& < p < cfu, such that B is <,-unbounded.

Proof Let oz 1 p for & < cfu, the ag’s ordinals. For all § < cfu and n < A let
fe() = as +n. Let B = {f¢ : & < cfu}. We just need to show that B is <,
unbounded. Suppose that g € *1 and fe <« gforall§ < cfu. Foreach & < cfu
letI'e = {n < A : fe(n) > g(n)}. The conditions of Lemma 2.14 then hold,
contradiction. O

Proposition 2.17  Suppose that ju is regular and that one of the following conditions
holds:
1) K, 0 < A;
>i1) &« < u;
(i) u <k = X and cfh # .
Then by ). 0 = 1.
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Proof By 2.7 the inequality > holds. Now choose a singular cardinal p such that
p > Aand cfp = . Then by 2.6 and 2.16 we have by 3 , = Di 5, p = 1. O

Proposition 2.18  Suppose that  is regular, ;n < A, and cfA = . Then by ; ;0 > .

Proof Suppose that {f: : § < n} is a system of members of “. Let ve A
for & < w, continuous, with v9 = 0. Given n < A, choose & < u such that
Vg < n < Vg1, and define g(n) = sup, ¢ fr(n). We claim that f, <, g for
all p < p. For,if n < A and f,(n) > g(n), choose & so that v < n < veyy.
Then by the definition of g it follows that § < p. Hence n < vey1 < v,. So
{n:fo(m) > gm} S v,, which has size less than A, as desired. O

The following proposition summarizes our results so far for b, 3 , and d ; ,; recall
also 2.6.

Proposition 2.19  Let i be regular.
@) Ifr < p, then by, = 1.
(i) Ifu <randk < A, then Dy, = b
(iii) If p < A =k and pu # cfh, then by sy = 1.
@iv) If @ <A =« and p = cfk, then (1 < by 5 4
v) If)\ < WK, then DK,X,H« = U.
(Vi) If p < A, then A < Dy p

Proof
(1) 2.17(ii).
(i) 2.17(1) if u < A, and 2.17(ii) if © = A.
(iii) 2.17(iii).
Gv) 29ifu=x,2.18if u < A.
(v) 2.11.
(vi) 2.12. O

Thus it remains to indicate possibilities for b, » , in case (iv) and possibilities for
Di.2,u in case (vi). Note that case (iv) can be more simply expressed as concerning
by 5, with u = cfi. Some special cases are 0, , , with u regular and by, x, -
Also, the relationships between the numbers b, ; ,, as the subscripts vary, and simi-
larly for D, ;.. have not yet been fully described.

Proposition 2.20  IfcfA = u, then 0; 3 ;0 < Dy -

Proof We may assume that A is singular. Let v 1t A, & < u, be a sequence of
regular cardinals such that i < vg. Foreach f € #u we define f € *u as follows.
For any o < A, let & be the supremum of all ordinals such that v < «, and let
[H@) = f@&).

Now we prove <. Suppose that B C *u is <,-unbounded. For each g € A i we
define (Myz : & < ) and g~ € *p as follows. Write

vy \ve = |l € veyi\vg < g(@) = n}.
n<p

Since vg 11 is a regular cardinal greater than p, choose the least g~ (§) < u such that
the set

Mee & (o € veyr\ve : g(@) = g~ ()
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has size vg .
() Ifferu,gern, and ft<; g, then f <, g~

For, assume the hypothesis, and suppose that f £, g~. Thus N def {Eewu: f(&) >
g (&)} hassize u. If § € N and o € Mg, then

fH@ = [ >g € =g,

so|[{y < A: fT(y) > g(¥)}| = A, contradiction. So (1) holds. It follows that
{fT : f € B}is <;-unbounded, proving <. O

wo

Proposition 2.21 D5 = b7 .

Proof Let B C *u be <,-unbounded with |B| = b Write B = {fe 1 £ <
b an}. We now define (gz : & < Dy 5 ) by recursion. Suppose that gz has been
defined for all £ < 5. Then {g: : & < n} is <,-bounded; say that g¢ <, A for all
& < n. Define g, (o) = max{h(ax) + 1, f;(a) + 1} for all@ < A. Then g <, gy
for all ¢ < n. Since f, < g, forall n < A, clearly {g; : 1 < Db pu} is <i-
unbounded. O

The following lemma is due to Szymarnski [3], Lemma 4.

Lemma 2.22  Suppose that | is regular, k < A" < A, and v = by ,. Then
bl,k,v < bK,)n,lL'

Proof By 2.21 let (g4 : @ < v) be a <,-increasing, unbounded sequence of ele-
ments of )”/M- Let (Ry : o < A) be a partition of A into sets of size A’, and write
Ry = {yap : B < M'}. Now with each f € *11 we will associate a function iy € *v.
Let o < A. Foreach f < A’ let g4 (8) = f (yup). Thus @y € * 1. We let  f(c) be
the least y < v such that g, £« ¢q.

Let B C )”M be <.-dominating, of size d ; ,. We claim that {hy : f € B}is
<i-dominating; this will prove the lemma. Suppose that s € *v. Define t € *u
by setting #(yup) = &s()(B) foralla < A, < A’. Choose f € B such that
t <y f. Weclaim that s < hy. Suppose that o < A and s(a) > hy(a). Now
8hy(a) Zr Pas SO AlSO &s(a) Zx Pu- SO {B < Nt gs@)(B) > ¢a(B)} > «, that is,
{B <A :t(vap) > f(Yap)}l = &, contradiction. O

Corollary 2.23  Let pu be regular. If one of the conditions 2.19(i)—(iii) holds, then
b,(,)\”uzbl,)\,u. —

The remaining case concerns d; ; , with cfA = pu. Here we have the following
result.

Proposition 2.24  Suppose that  is regular, cfh = p, and A=* < d; 5 . Then
D =D

Proof By 2.4,D; 3., < Di ... Now suppose that X C *u is <;-dominating, with
|X| = by .. Let M be the set of all functions from a subset of A of size less than A
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into u. Then

mio= | U "

Ce[r]<*

r

< oy
Ce[a]<*

s
re[r]<*

— )»<)‘ X ’u<)» — )\<)‘ < DA,A,M )
Now for any g € X and i € M we define [(g, h) € * 1 by setting, for any o < A,
h(e) +1 if o € dmn(h),
g(a) otherwise.

I(g, h)(a) = !

LetY = {l(g,h) : g € X and h € M}. Clearly |X| = |Y|. We claim that Y
is <i-dominating (as desired). For, suppose that f € *u. Choose g € X such

that f <, g. Thus F dof o < p: f(a) > g(a)} has size less than A. Clearly
f=1lg f1F). O
Corollary 2.25 D, ;i 0 = D1 - =
Corollary 2.26 (GCH)  Ifcfh = p, then d; ), = D13 4

Proof By 2.13 we have At =2t < D;. 5., SO the result follows by 2.24. O
Proposition 2.27 (GCH) If k < u are infinite regular cardinals, then by, =
kPt <put =04 and de e =kt <put =Ddy —

We have now described our main results concerning these cardinals. Concerning
the inequalities mentioned in (x) following Proposition 2.6, we see now that all of
the cardinals up to and including b, ), are equal to w; then w < by 4, and
Do, n,,0 = D1.8,,0- Note that under CH, Dy 0,00 < Dy, e0y,00» DY 2.13.

The results of Cummings and Shelah completely take care of the important case
when all the indices are regular and equal. Their main result, in our terminology, is
as follows.

Theorem 2.28 (Cummings, Shelah)  Suppose that F is a class function assigning to
each regular cardinal k a triple (B(k), §(k), A(k)) of cardinals so that the following
conditions hold:
(1) « < cf(r(k));
(i1) ifk < K/, then A(k) < A(K');
(i) " < k) = cf(B)) < cf(8(x)) < (k) < Alk).

Then there is a class forcing poset [P preserving all cardinals and cofinalities such
that in the generic extension, by = B(k), D = 8(k), and 2 = A(k), for all
regular .
For example the following is relatively consistent:
ba),w,a) = w3, bw,w,w =ws, 2Y=uw;, ba)l,a)l,wl = wy,

w
bwl,wl,wl = w4, 2 I = w7.
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Two consistency results of Szymarnski are also relevant; they generalize work of Jech

and Prikry. Szymanski [3], Theorem 2.1 shows that if 2¢ is real-valued measurable,

o < A < 2% and A is regular, then D, ; ., = 2¢. In Theorem 2.3 he shows that if 2%

is real-valued measurable, v < u < A < 2, and A, u are regular, then d;, ; , < 2.
By the above, the main open problem concerning b, ; ,, is as follows.

Problem 1 For cfA = p, A singular, is b;  , = 0,017

In particular, we do not know whether by, x,.0 = bw,0,0. Under CH, this equality
holds.

Our results concerning D ;, , are fragmentary. We mention just one definite prob-
lem.

Problem 2  Is it consistent to have an uncountable regular cardinal x such that
Dy < D1pp?

! 1
3 bx,x,ﬂ and bx,x,ﬂ
Naturally we have to assume that A < p for most of the considerations in this section.

As a corollary of Proposition 2.1 we have

Corollary 3.1 Isz’)\’ﬂ exists, then so does p! and b' <ol —

oA Koh o — TR

Lemma 3.2 If A < cfu, and f € *u, then there is a strictly increasing g € *
such that f < g.

Proof Foralla < Alet g(o) =sup({f(a) +1}U{g(B)+1:8 <a}. ]

This lemma does not extend to the case cfu < A < . In fact, if cfu < A < u, then
there is an f € */u such that there is no strictly increasing g € *u with f <; g. To
see this, let & : cfu — p be strictly increasing and continuous with range cofinal
in u. We define f : A — u as follows. For each @ < A and each & < cfyu, let
f(cfu - a 4+ &) = h(&). Suppose that g € *pu is strictly increasing and f < g. For
each o < A, choose B, < cfu such that h(B,) > g(cfu - (o + 1)). Then for any
o < rand & € [By, cfi) we have

flefu-a+8) =h(E) = h(Ba) = g(cfi - (@ + 1) > glcfu - + ).
It follows that [{n < A : f(n) = g(n)}| > A, contradiction. Thus if cfu < A < p,

1 .
then bk,k,u does not exist.

Corollary 3.3 If A < cfpu, then bl,)\,ﬂ and bl,)\,ﬂ exist, and equal b 5, and D 5y,
respectively. —

By Corollary 3.3 and the above remarks, the study of bz’ 5., completely reduces to

that of b, 5 ,. Moreover, from 2.19(vi) we see that only in the case cfu = A is there
a possibility that the notion DI 5. 1s useful in studying Dic i

Propositions 2.7 and 2.16 give the following corollary.
Corollary 3.4  Suppose that A <  and that one of the following conditions holds:

(1) k,cfu < A;
(i) « < cfu;
(i) cfu < k = A and cfr # cfu.
(-

Then bf(,)\,u = cfu. —
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Proposition 3.5  Suppose that A < u and that one of the following conditions holds:
1) k,cfu < A;
(i) « < cfu;
(i) cfu < k = A and cfh # cfu;
(iv) k = A = cfu.

Then by ). 0 = bg’)\’ﬂ.

Proof If one of (i), (ii), (iii) holds, the conclusion follows by 2.6, 2.17, and 3.4. As-
sume that (iv) holds. Obviously Defyy cefye, 0 < b! Now assume that B C

cfp,cfu,
is <¢f,-unbounded and |B| = Defy cfu,u- By 3.2 we may assume that each member
of B is strictly increasing. So obviously bzm et = 1Bl (]

Suppose that (i) — (iv) of 3.5 fail. Then cfu < « because (ii) fails. Hence x = A since
(i) fails. Because (iv) fails, we have cfu < «. Hence cfA = cfu since (iii) fails. Thus
the case not covered by 3.5 is cfu = cfA < ¥k = A < u. Here the following result is
relevant.

Lemma 3.6  Suppose that u is singular, cfjn = cfh < A < w, and f € *u. Then
there is a strictly increasing g € * such that g %5 f.

Proof Let (p(§) : & < cfu) be a strictly increasing sequence of cardinals which
is continuous, with supremum X, and with ¢(0) = 0 and ¢(1) infinite. Then let
(m(&) : &€ < cfu) be a strictly increasing sequence of cardinals which is continuous,
with supremum g, with 7(0) = 0 and 7 (1) infinite, and such that ¢(§) < 7w () for
all & < cfpu.

For all £ < cfu let

P ={a<r:n@) =< flo) <7+ D}

IfIT() = A for some & < cfu,let g = (m(E +1)+n:n < A); clearly g is as
desired. So, assume that |[I"(§)| < A for all § < cfu. Note that A = U§<Cm reé).
Now we claim:

(1) V& < cfudn < cfu(E < nand (&) < [T1D).

For, otherwise there is a £ < cfu such that for every n < cfu, if £ < n then
Tl < ¢(&). So

r=1 U rm| =X Irmi+ Y Tl <i,
p<cfu p=<& E<p<cfu
contradiction. So (1) holds.

Now we define v € Cf“cf,u by recursion. First choose v(0) so that I'(v(0)) is
infinite. Now suppose that 0 < o and v(p) has been defined for all p < o. First let
& be minimum such that for all p < o we have v(p) < & and |I'(v(p))| < p(&).
Apply (1) to get v(o) such thaté < v(o) and ¢(§ + 1) < [T'(v(0))|. Thus we have

(2) v :cfu — cfuis strictly increasing.

(3) Ifp <o <cfu, then [T(w(p)|T" < |I'(v(0))]. and SUP, <y [IT(v(p)| = A.
For each & < cfu let B(€) be the least element of I"(v(§€ + 1)) such that

@ Ky <B@E) :y eTE+ D)} > [TWE)I

it follows that
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S Hy =2BE):y eCwE+ 1N} > [TwE)I
This is possible since |T'(v(€))|TF < |[T'(v(€ + 1))|. Thus

(6)  supg g, B(E) = A.

For, if § < X and B(§) < § for all £ < cfu, then
sup [{y <d:y e P(v(E + D)} < 18] <4,

E<cfp
while
sup [{y <d:y e (v + 1)}
E<cfp
> sup {y < p():y e T(w(E + )}
E<cfu
> sup [I'(v())| =2,
E<cfp
contradiction.

So itis easy to find p € “fitefy such that if o < 7 < cfp, then ¢(1) < B(p(1)),
p(6) < p(). and B(p(0)) < B(p(r)). Then sup, _cg, B(p(0)) = A. Thus

(7)  p :cfp — cfp is strictly increasing.
(8) P op:cfu — Aisstrictly increasing.

Foreach & < A let (&) < cfu be such that p(h(§)) <& < p(h(§) 4+ 1).
Now we define o : cfu — cfu. If o (n) has been defined for all n < &, let o (§)
be an ordinal greater than all o (1) and h(B(p(o(n)))) for n < &. Thus

(9) o :cfpe — cfp is strictly increasing.

Also, clearly SUPg _cfy B(p(o(&))) = A. Foreach& < XA let t(§) < cfu be minimum
such that § < B(p(0(7(£)))).

(10) Ifé <np < A, thent(§) < t(n).

For,& <n < B(p(o(z(n)))),s0 t(§) = t(n).
Now we define g : L — p by setting, for any & < A,

g&) =nm((p(a(r(§)))) +§.

We claim that g is as desired in the proposition. To show that g is strictly increasing,
suppose that £ < n < A. Hence by (10), t(§) < t(n). If 1(§) = (), clearly
g(&) < g(n). So assume that t(§) < t(n). Note that ¥ o v o p o ¢ is strictly
increasing. Hence

T(v(p(o(t(é)))) + £
T(w(p(o(t(m)))) + &
gm).

g(&)

A IA

We also claim

A1) If6 <ctu, & e T(w(p(a(0))+1)), and B(p(o(0))) <&, then f(§) <g(§).
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For, assume the hypotheses of (11). Now & < B(p(o(7(£)))), and hence it follows
that B(p(6(0))) < B(p(a(t(£)))),s0 0 < t(&). Therefore
g€) = m(p(o(t())))
> w(p(o))+ 1)
1@,

as desired in (11). Now the desired conclusion follows from (11) and (5). ]

\Y

Corollary 3.7  Assume that .. < w. Then the set of all strictly increasing functions
in )‘/L is <,-unbounded.

Proof Thisis true by 2.16 if its hypotheses hold. Otherwise, by 2.15 we have k = A
and cfu = cfi. So, if in addition A = cfu, then the conclusion holds by 3.2. In the
remaining case, with x = A and cfu = cfA < A < pu, 3.6 applies. O

Corollary 3.8  Assume that ). < p. Then bz)\ " always exists, and Dy, <
T
bk,k,u' —

Lemma 3.9  Suppose that k < cfA, B C )‘,u is <,-unbounded, and ¥V f € BV,
B era < B = f(ae) < f(B)]. Then B is <,-unbounded on every member A of
(A1,

Proof Takeany f € *uu; we define f € *u by setting, for each o < A,
f(a) = f(min{y € A:a < y)).

Since B is <,-unbounded, choose g € B so that g %, f Thus J & fo < A
g(a) > f(x)} has size > k. We claim

(%) Yo € J3B € Ala < Band f(B) < g(B)].
For, let = min{y € A : @ < y}. Then g(B) > g(a) > f(oc) = f(B), as desired.
By (%), {Be A: f(B) <g(B)}| = cfh > k, as desired. 0

Concerning the following result, recall 2.20.

Proposition 3.10  Suppose that cfh = cfpu < A < . Then
IJcf,u.,cf,u.,cf,u. = bI,)\,,u.'

Proof Let p: 1 A for& < cfu be continuous, each pg 41 a regular cardinal, pg = 0,
and cfu < py. Similarly get v 1 u for & < cfu, continuous each vg 1 a regular
cardinal, vp = 0, each pg < vg.

First we take <. Suppose that B C *11 is a <; -unbounded set of strictly increasing
functions with |B| = b; o For each f € B we define f~ e “™“cfu by setting, for
each & < cfu,

f7(§) = least n < cfy such that f(pz) < vy.

We claim that {f~ : f € B} is <cfy,-unbounded; this will prove <. For, suppose
that f~ <., g forall f € B. Define h € * 11 as follows. Suppose that & < A. Let
& be minimum such that @ < pg, and set h(a) = vg(e)41. We claim that f <; h
for all f € B (contradiction). For, suppose that f € B. Then f~ <., g. Choose
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o < cfpesuchthat f7(§) < g(§) forall £ € [o, cfu). Suppose that p, < . Choose
& minimum such that @ < pg. Thuso < &, so

fla) < fpe) < Vi—() = Vg(g) < Vg(&)+1 = h(a);

this shows that f <, h, as desired.

Now we turn to >. Let B C Cf"cf,u be an <cf,-unbounded set of strictly increas-
ing functions, with |B| = Dc¢fy,cfy,cfu, using 3.3. By 3.9, B is <cf,-unbounded on
each A € [cfu]“f“. For each f € B and o < A we define

hyla) =veern +a if o€ pepr\ps.
Note that for any @ € pg41\ps we have @ < pg11 < vey1 < vyey1y. Clearly each

hy is strictly increasing. It suffices to show that {hy : f € B} is <j-unbounded.
Suppose thathy <; g € *iu forall f € B. Foreach & < cfyu let

Mg ={a < X:g(a) €[ve, ve41)}).
Thus A = US<cfu M.

(1) VE < cfu(|Me| < 2).

For, suppose that [Mg| = A. Then for every a € [pg41,A) N Mg and all f € B,
there is an n > & such that hp(a) = vy +a@ > veern > veyr > gla), so
{a:hy(a) > g(a)}| = A, contradiction. So (1) holds.

By (1), an obvious construction gives an increasing sequence (ns : & < cfu) of
ordinals less than cfu such that for all § < cfu we have pg11 < |M;, | < A. Now if
& < cfu, then

My = | My, O lpe, pri),

T<cfu

and cfp < pg41, so there is a 7z < cfp such that My, N [pr,, pro+1)| = pe41-
(2) Foreacho < cfu we have [{§ < cfu : 7z = o}| < cfp.
For, suppose otherwise. Choose & < cfu such that 7z = o and 0 < &. Then

My, N [pres pre+1)| = P41 > Pot1 = Pre+1,

contradiction. So (2) holds.

By (2) we can define [ € “fiiefi such that for every o € rng(t) we have l(0) >
each ng such that 7z = 0. Now |rng(7)| = cfu by (2). The set B is <.f, unbounded
on rng(t), so choose f € B such that |[{o € rng(r) : f(o) > [(0)}| = cfu. Now
take any o € rng(t) such that f (o) > I(0), take any § < cfu such that 7z = o, and
take any « € My, OV [pr.s pre+1)- Then

hp(a) =Veet1) + 0 > Vi) = Vi) > Vi) = Vpe+1 > 8(a).
This shows that [{a : & () > g(a)}| = A, contradiction. ]

Proposition 3.11  Suppose that cfu < A < u. Then the set B of all strictly in-
creasing functions in * . is not <.-dominating, but it <.-dominates every strictly
increasing member of * 1.

Proof This is immediate from the remark following 3.2. O
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wo wo
4 bx,x,u and bx,x,u

Proposition 4.1  The following conditions are equivalent:
(i) Thereis a (k, A, jb)-scale.
(11) hk,k,p, = bk,k,u~
(iii) b?fi, 1 EXISTS.
(iv) Dy'S , exists and equals D). p.
Proof (i)<(iii) Obvious.

(iii)=>(ii) and (iii)=>(iv) Assume (iii). Clearly then b, ; , < bz‘i’ﬂ, so by 2.2 it
suffices to show that b?‘;\ u = by 5, u- Suppose that B C *u is <,-unbounded and
|B| < b,‘f"i’u. Let C be a («, A, u)-scale of size b,‘f"i’u. Clearly b,‘;“";hu is regular, so
we can take a cofinal subset in order to assume that C has order type by‘;\ M under
<. Foreach f € B choose gy € C such that f <, gy. Hence thereisan h € C

such that gy <, h forall f € B. But then & is a <,-bound of B, contradiction.
(iv)=(ii)) Obvious.

(i)=(@{) LetB C )”M be <,-dominating and of size b, ,. Listitas (fy : o <
Dic.x,u)- Now we define a new sequence (gq : & < D 5 ). Suppose it is defined for
all @ < B. Then {g, : @ < B} has size less than b, ; , by (ii), so it is bounded; say
that g, <, h forall @ < B. Let gg be any function such i <, gg and fg <. gg.
Then {go 1 & < D3, } I8 @ (k, A, p)-scale, as desired. 0

Corollary 4.2

(1) If 2 < cfw then there is a (k, A, L)-scale.
(i1) If cfp < X and k < A, then there does not exist a (k, A, )-scale.
(iii) If cfpe < A = k and cfu # cfh, then there does not exist a (k, ,, )-scale.

Proof By 2.19and4.1. O

The possibility not covered by 4.2 can be expressed, by 2.6 and 4.1, as the case
of scales (A, A, u) with u regular and cfA = w. Consistently there are no scales
in this case when A is singular, as by the Cummings, Shelah result we can have
by < Dy, for p regular, while for A singular with cfA = p we can have
baap < bppp = mt <t < by, by 2.13 and 2.20. In the other direction,
by their theorem it is consistent to have (i, i, pn)-scales for any regular . But the
following problem appears to be open.

Problem 3  Suppose that X is singular with cfA = p. Is it consistent to have a
(A, A, p)-scale?
Two Two
5 bx,x,u and bx,x,u

Fwo

Proposition 5.1 If A < cfu, then by =0, .

Proof Let B C AM be <,-unbounded with |B| = b, ,. Write B = {f, 1 o <
b xu}. Now we define (g4 : o < by 1 ) by recursion. Suppose that g, has been
defined for all < B, with 8 < by ;. 1. Then {gy : @ < B} is <,-bounded, say by A.
Now we define

gp(§) = max{sup{gp(n) + 1 :n < &}, h(§) + 1}.
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Clearly then {gq : o < Dy 5} satisfies the conditions defining bz‘zou O

Proposition 5.2 Assume the following conditions (i) — (ii):
1) cfu <A < u;
(i) k < X, orelse k = A and cf) # cfu.

Then DEX?# = cfpu.

Proof Letv: 1 u for & < cfpu, the ve cardinals, with v + A < vgyy for each &
(ordinal addition). Define f:(n) = ve + n forall £ < cfiu and n < A. Clearly each
fe is strictly increasing, and ( fz : & < cfu) is <j-increasing. By the proof of 2.16,
{fe : & < cfu} is <,-unbounded. 0

The following two situations are not covered by 5.1 and 5.2:
1. cfu <A =p;
2. k = AiandcfA = cfu < A < .
Proposition 5.3  Ifx < u, then b,If,Vﬁ,L = cfu.
Proof If i is regular, this holds by 5.1 and 2.17. So, suppose that u is singular. Let
ve 1 pfor& < cfu, with each vg an infinite cardinal. Let < be the standard ordering
of w x u:
(a,p) = (y,8) iff max{e, B} < max{y, s}
iff max{c, B} = max{y,8}and g < &
iff max{a, B} = max{y,f}and f =5 and o < y.
Clearly if @ < B then («, ) < (B, ¥),and if B < y then (o, B) < («, Y).
Let g : © x u — p be the order isomorphism given in elementary set theory.
Now for each § < cfuu we define f:(B) = g(ve, B) for any B < u. Clearly each

fe is strictly increasing, and fz <; f; if § < n. We claim that {f; : § < cfu}
is <,-unbounded. For, suppose that fz <, h for all § < cfu. Thus the set

M def {o < p: fe(a) = h(a)} has size less than «. Choose o € '\ US<Cfu M.
Then g(ve, o) = fe () < h(a) forall § < cfu, contradiction. So our claim holds.
Now the proposition follows by 2.7. (]

Proposition 5.4  If A < cfy, then bz‘zoﬂ = cfu.

Proof By 2.19(v), let {fy : a < cfu} be <,-dominating. Now we define
(go : o < cfu) by induction:

8a(§) = maX{Sug(ga(n) + 1D, ;up(gﬂ(é) + D). fa(®)}.
n< <a

o ot 0

Clearly {gy : o < cfpe} shows that bx,x,u

Recall from the remark after 3.2 that b,IVXOM does not exist if cfu < A.

Proposition 5.5  For A < cfu the following conditions are equivalent:
(i) Thereis a (k, A, u)-scale.
(ii) DEX?M exists.

(iii) bz‘xoﬂ exists and equals by ;. .
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Proof This is clear by 2.11, 4.1, and 5.4 if A < cfu. For cfu = A, one can modify
the proof of (ii)=>(i) in the proof of 4.1 by applying 3.2 to gg there. O

In case cfu < A, (ii) and (iii) of 5.5 are both false. If cfiu < A, and either k < A or
else k = A and cfi # cfu, then also (i) is false. In the remaining case, cfu < A =«
and cfye = cfi it is unknown whether (i) holds.

The following question is open.

Problem 4  Suppose that cfu < A < u and cfA = cfue. Does b;j’fu exist?

Simple cases of this problem are whether bg‘:f’xw’xww or [1&‘:’(;%&0) exist.

b

6 bk

Clearly *u itself is <,-unbounded on every A € [A]*, so bls("‘E’ ., is always defined.
Clearly by, < b

— VKA
rs sub  _ fsub
Proposition 6.1 b7 = bx,x,cfu'

Proof We use the notation of the proof of Proposition 2.6. If B € *u is un-
bounded on each A € [A]*, it is clear from (%) that {g~ : g € B} is also un-
bounded on each A € [A]*. This proves >. Now suppose that B C *cfyu is un-
bounded on each A € [A]*; we claim that {g* : g € B} is also unbounded on
each A € [A]*. So, suppose that A € [A]* and f € *u. Choose g € B such that
e e A: f~ () < g(w)}| > k. It suffices now to show that

foeA: fT@<g@)Cl{eecA: fla) <g @)

Suppose that this inclusion fails; let « € A be such that f~(«¢) < g(«) but
g (@) < f(e). Then

F@) S Vi) < Vg) = 87 (@) < f(a),

contradiction. O

Proposition 6.2  Suppose that A < p and that one of the following conditions holds:
1) k,cfu < A
(i) « < cfu.
(i) cfu < k = A and cfr # cfu.

Then b;"(‘jg’u = cfu.

Proof We repeat the proof of 2.16 through the definition of B. We just need to show
that B is <,-unbounded on every A € [A]*. Suppose to the contrary that f € *u
and for every g € B we have |[{o € A : f(x) < g(@)}| < «. Let F be a bijection
from A to A, and foreach § < cfuletI'e = {n < A : fe(F(n)) > f(F(n))}. The
conditions of 2.14 hold, contradiction. O

sub

Proposition 6.3  Suppose that A < @ and k < cfA. Then b, 5, = bz,k,u = 0x

Proof By 3.8 we have b;“'l’ﬂ < bz%u. Obviously by 5, < b;“'l’ﬂ By 3.5 and the

remark after it, our conclusion follows. O

Proposition 6.4  Suppose that A < u and that one of the following conditions holds:
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(1) k,cfu < A

(i) « < cfu.
(i) cfu < k = A and cfr # cfu.
(iv) k = A = cfu.

—_pt — fsub
Then by =0, 5, =037 -

Proof If one of (i)—(iii) holds, this is true by 6.2, 3.4, and 2.17. Suppose that
each of (i)—(iii) fails, and (iv) holds. By 2.15, k = X and cfu = cfi. Hence
k = A = cfu = cfA, and 6.3 gives the result. O
Note that (i) — (iv) all fail iff « = A, cfu = cfA, and A # cfu; in other words, if and
only if k = A, cfu = cfi, and A is singular. Thus the following problem is open.
Problem 5  For X singular and cfA = cf, is by » , = b;ﬁ"i’ﬂ?

For example, we do not know whether by, x,.x, = b;‘:})’ Ry Ny

Note

. This symbol will appear following propositions, corollaries, and so on where the author
feels that a proof is not necessary.
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