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Classifying Dini’s Theorem

Josef Berger and Peter Schuster

Abstract Dini’s theorem says that compactness of the domain, a metric space,
ensures the uniform convergence of every simply convergent monotone sequence
of real-valued continuous functions whose limit is continuous. By showing that
Dini’s theorem is equivalent to Brouwer’s fan theorem for detachable bars, we
provide Dini’s theorem with a classification in the recently established construc-
tive reverse mathematics propagated by Ishihara. As a complement, Dini’s theo-
rem is proved to be equivalent to the analogue of the fan theorem, weak König’s
lemma, in the original classical setting of reverse mathematics started by Fried-
man and Simpson.

1 Introduction

Dini’s theorem does not occur in the standard reference (Simpson [17]) for the pro-
gram of reverse mathematics founded by Friedman and Simpson. We now undertake
a classification of Dini’s theorem within the constructive reverse mathematics put
forward by Ishihara ([6], [7], [8], and [9]).1 In particular, we work over the con-
structive mathematics initiated by Bishop ([1], [2], and [3]).

Bishop’s theory can be seen as mathematics with intuitionistic logic in place of
classical logic (Richman [15]), in which vein “classical” is sometimes used as a
synonym for “using the law of excluded middle.” Apart from the different choice of
the underlying logic, one proceeds in Bishop’s framework as in—the then-dubbed
classical—customary mathematics.

Our principal objective is to establish Dini’s theorem as an equivalent of
Brouwer’s fan theorem (for detachable bars). We first show that the latter is
equivalent to Dini’s theorem for functions on the Cantor space. Only then we prove
that the fan theorem is equivalent to Dini’s theorem on every compact metric space
or, alternatively, on the unit interval.
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The implications which we assert from Remark 2.1 through Lemma 5.1 hold
within EL + AC00, that is, elementary analysis ([18], Chapter 3, Section 6) enriched
with number-number choice. For the sake of an easier reading, we do not encode
finite sequences into integers, which is a routine task in the present context. We
sometimes refer to work done directly in EL [8] or in a subsystem thereof [9] and to
constructions from [3] and [18] which one can carry over to EL + AC00 without any
difficulty.

In addition to invoking unique and dependent choice,2 unrestricted use is made
in Bishop’s setting of induction over the natural numbers. The latter principle dis-
tinguishes, among other things, Bishop’s framework from the corresponding formal
system RCA0 in Simpson’s classical hierarchy, in which induction is restricted to
60

1 -formulas ([17], Remark I.8.9, Section I.12). To conclude the present paper, we
show with Theorem 5.2 that Dini’s theorem is equivalent, over RCA0, to the so-
called weak König’s lemma—the counterpart of Brouwer’s fan theorem in classical
reverse mathematics.

2 Some Alternative Formulations of Dini’s Theorem

We essentially follow Bishop’s choice of definitions for compactness and continuity
([1], [2]). To start with, a metric space is said to be compact precisely when it is
totally bounded and complete. In particular, every compact metric space is separable
and can thus be represented in terms of binary sequences ([3], Chapter 5, Section 1;
[18], Chapter 7, Section 4). Furthermore, a continuous mapping on a compact metric
space is uniformly continuous according to Bishop’s definition. To give a continuous
function on a compact metric space is therefore the same as to give a uniformly
continuous function on any dense subspace.

Throughout this note, let X be a metric space. We consider the following conclu-
sion of Dini’s theorem as a property of X .

DTX If a monotone sequence ( fn) of continuous functions on X converges simply
to a continuous function f on X, then ( fn) converges uniformly to f .

So Dini’s theorem says that if X is compact, then DTX holds. Unless specified
otherwise, all functions occurring in this context are understood to be real-valued.

One arrives at equivalents of DTX if ‘monotone’ is replaced either by ‘increasing’
(that is, fn 6 fn+1 for all n) or by ‘decreasing’ (that is, fn > fn+1 for all n); one
may further assume that f = 0. In particular, DTX is equivalent to its following
specific form.

For every decreasing sequence (gn) of nonnegative continuous functions on
X, if (gn) converges simply to 0, then (gn) converges uniformly to 0.

The latter equivalent has the virtue that it allows for carrying over Dini’s theorem
to mappings on X with values in an arbitrary metric space Y . Given mappings
g, h : X → Y , define d (g, h) : X → R by assigning d (g(x), h(x)) to every
x ∈ X . Also, if g and h are real-valued functions on X , write g 6 h whenever
g(x) 6 h(x) for all x ∈ X , and likewise with < in place of 6.

Remark 2.1 DTX is equivalent to the validity of the following statement for all
metric spaces Y : if ( fn) is a sequence of continuous mappings fn : X → Y that con-
verges simply to a continuous mapping f : X → Y such that d ( fn+1, f ) 6 d ( fn, f )
for every n ∈ N, then ( fn) converges uniformly to f .
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3 Dini’s Theorem for Functions on the Cantor Space

As usual, let {0, 1}
N denote the set of infinite binary sequences α, β, . . . , and let

{0, 1}
∗ stand for the set of finite binary sequences u, v, w, . . . . The letters k, `, m,

M , n, N , p, q, . . . are understood as variables ranging over the set N of nonnegative
integers.

If u ∈ {0, 1}
n for some n, then |u| = n is the length of u. The nth finite initial seg-

ment αn = (α (0) , . . . , α (n − 1)) of α has length n, which includes the case n = 0
of the empty sequence. Concatenation of sequences is denoted by juxtaposition, and
w > u means that w = uv for some v; that is, w is an extension of u and u is a
restriction of w.

We know that {0, 1}
N is a compact metric space, the Cantor space, under the

metric
d (α, β) = inf{2−n

: αn = βn} ,

for which
d (α, β) 6 2−m

⇐⇒ αm = βm .

So a function f on {0, 1}
N is continuous precisely when for every k there is m such

that
αm = βm H⇒ | f (α) − f (β)| 6 2−k

for all α and β.
The open balls of {0, 1}

N are the subsets {α : α ∈ u} with u ∈ {0, 1}
∗, where

α ∈ u is written in place of α |u| = u. Moreover, {0, 1}
∗ is a countable dense subset

of {0, 1}
N, where every u is identified with its trivial extension u00 . . . . For a more

detailed treatment of all this we refer to [3], Chapter 5, Section 3; [5], Section 3.2;
and [18], Chapter 4, Section 7.

To unwind Dini’s theorem on the Cantor space, consider a decreasing sequence
(gn) of nonnegative continuous functions on {0, 1}

N. The implication

if (gn) converges simply to 0, then (gn) converges uniformly to 0,

crucial for the corresponding instance of DT{0,1}N , is equivalent to

∀k ∀α ∃n
(

gn (α) < 2−k
)

H⇒ ∀k ∃N ∀α ∃n 6 N
(

gn (α) < 2−k
)

. (1)

(Because we want to relate Dini’s theorem to the fan theorem, we need to formulate
this implication and their following equivalents in a way that at first glance may seem
unnecessarily involved.) Furthermore, (1) is equivalent to

∀k ∀α ∃n ∀β ∈ αn
(

gn (β) < 2−k
)

H⇒ ∀k ∃N ∀α ∃n 6 N ∀β ∈ αn
(

gn (β) < 2−k
)

. (2)

We now suppose that each gn has a modulus of continuity; that is, there is a sequence
(Mnk) of nonnegative integers with

αMnk = βMnk H⇒ |gn (α) − gn (β)| 6 2−k (3)

for all α, β. By increasing the modulus if necessary, we can achieve that Mnk > n,
and may thus set

Wk (u) =
{
w : w > u & |w| = M|u|k

}
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for every u and every k. For each β ∈ u there is exactly one w ∈ Wk (u) with β ∈ w,
and we have

∣∣g|u| (β) − g|u| (w)
∣∣ 6 2−k for this w = βM

|u|k . Hence (2) is equivalent
to

∀k ∀α ∃n (αn ∈ Uk) H⇒ ∀k ∃N ∀α ∃n 6 N (αn ∈ Uk) (4)

with

Uk =

{
u : ∀w ∈ Wk (u)

(
g|u| (w) < 2−k

)}
.

Since Wk (u) is a finite subset of {0, 1}
∗, we have the simpler characterization

Uk =

{
u : Gk (u) < 2−k

}
with

Gk (u) = max
{
g|u| (w) : w ∈ Wk (u)

}
.

As {0, 1}
∗ is dense in {0, 1}

N, we may further suppose that each gn is given by
a sequence rn = (rn`) of functions on {0, 1}

∗ with rational values. The intended
meaning is that for every u the sequence rn (u) = (rn` (u)) of rational numbers
represents the real number gn (u) with |gn (u) − rn` (u)| < 2−` for all `. We thus
require the presence of a sequence of functions rn` : {0, 1}

∗
→ Q with∣∣rnp (u) − rnq (u)

∣∣ < 2−p
+ 2−q . (5)

The conditions gn > 0 and gn+1 > gn can then be put as

rn` (u) > −2−` and rn+1,2` (u) > rn,2` (u) − 2−`, (6)

respectively. To express that each gn is continuous, we may assume that the modulus
of continuity (Mnk) with Mnk > n from (3) works also for rn ; that is,

uMnk = vMnk H⇒ ∀`
(∣∣rn,2` (u) − rn,2` (v)

∣∣ < 2−k
+ 2−`

)
. (7)

A decreasing sequence (gn) of nonnegative continuous functions on {0, 1}
N can

therefore be identified with

(∗) a sequence of functions rn` : {0, 1}
∗

→ Q and a sequence of integers Mnk for
which Mnk > n and which satisfy the conditions (5), (6), and (7).3

In particular, the real number Gk (u) is given by the sequence (Rk` (u)) of rational
numbers

Rk` (u) = max
{
r|u|` (w) : w ∈ Wk (u)

}
.

Hence Gk (u) < 2−k means that Rk` (u) + 2−` < 2−k for some `, and u ∈ Uk
corresponds to u ∈ Ak with

Ak =

{
u : ∃`

(
Rk` (u) + 2−` < 2−k

)}
.

In all, to assert DT{0,1}N means that all data of type (∗) satisfy

∀k ∀α ∃n (αn ∈ Ak) H⇒ ∀k ∃N ∀α ∃n 6 N (αn ∈ Ak) . (8)

Note that (8) is the counterpart of (4).
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4 The Fan Theorem as an Equivalent of Dini’s Theorem

A subset B of {0, 1}
∗ is detachable if u ∈ B is a decidable predicate of u ∈ {0, 1}

∗;
that is, for each u either u ∈ B or else u 6∈ B. To give a detachable subset B of
{0, 1}

∗ is the same as to give its characteristic function χB : {0, 1}
∗

→ {0, 1} with
χB (u) = 1 precisely when u ∈ B.

Moreover, a subset B of {0, 1}
∗ is a bar if for every α there is n with αn ∈ B,

while a bar B is uniform if there exists N such that for every α there is n 6 N with
αn ∈ B. Brouwer’s fan theorem for detachable bars reads as follows:

FT Every detachable bar is uniform.

Another way to put FT is to require the validity of the implication

∀α ∃n (αn ∈ B) H⇒ ∃N ∀α ∃n 6 N (αn ∈ B) (9)

from all detachable subsets B of {0, 1}
∗. We refer to [8] for formal versions of the

notion of a detachable subset of {0, 1}
∗ and of the more specific notion which occurs

next.
One arrives at an equivalent of FT by restricting it to the subsets B of {0, 1}

∗

which are closed under extension; that is, if u ∈ B and w > u, then w ∈ B. Every
B satisfying this extra condition is a uniform bar precisely when there exists N such
that αN ∈ B for every α.

Lemma 4.1 ([8], Lemma 1) FT is equivalent to the statement that the implication

∀α ∃n (αn ∈ B) H⇒ ∃N∀α (αN ∈ B) (10)

holds for all detachable subsets B of {0, 1}
∗ which are closed under extension.

Note the difference between (10) and (9).

Proposition 4.2 FT follows from DT{0,1}N .

Proof We use Lemma 4.1. Let B be a detachable subset of {0, 1}
∗ that is closed un-

der extension, and assume that B is a bar. For every n define fn : {0, 1}
N

→ {0, 1} by
setting fn (α) = χB (αn). Each fn is continuous, because fn (α) depends—for n
fixed—only on αn. In addition, the sequence ( fn) is increasing and converges sim-
ply to 1. Hence the convergence is uniform, which is to say that B is a uniform
bar. �

To show the reverse implication, FT needs to be extended to the subsets B of {0, 1}
∗

which—in the terminology of [3]—are simply existential; that is, there is a sequence
(C`) of detachable subsets of {0, 1}

∗ such that u ∈ B precisely when u ∈ C` for
some `. This condition is equivalent to the existence of a detachable subset C of
{0, 1}

∗
× N such that u ∈ B if and only if (u, `) ∈ C for some `.

The following is contained in [9], Proposition 16.15. We do a proof without
coding.

Lemma 4.3 FT is equivalent to the statement that the implication

∀α ∃n (αn ∈ B) H⇒ ∃N ∀α ∃n 6 N (αn ∈ B) (11)

holds for all simply existential subsets B of {0, 1}
∗.
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Proof Only one direction needs a proof. Let B be a simply existential subset of
{0, 1}

∗, and pick a detachable subset C of {0, 1}
∗
× N for which u ∈ B if and only if

(u, `) ∈ C for some `. Set

D = {u : ∃n, ` 6 |u| ((un, `) ∈ C)} ,

which is a detachable subset of {0, 1}
∗. If B is a bar, then so is D (because if

(αn, `) ∈ C , then αm ∈ D with m = max {n, `}). On the other hand, if D is a
uniform bar, then so is B (because if αm ∈ D for some m 6 N , then (αn, `) ∈ C for
certain n, ` 6 m 6 N ). So if (9) holds with D in place of B, then (11) follows. �

As (11) and (9) are identical, FT can also be put as “every simply existential bar is
uniform.”

Proposition 4.4 FT implies DT{0,1}N .

Proof Assume that we are given data of type (∗). To arrive at (8), it suffices to
achieve

∀α ∃n (αn ∈ Ak) H⇒ ∃N ∀α ∃n 6 N (αn ∈ Ak) (12)

for arbitrary but fixed k. Since Rk` (u) is a rational number, the condition
Rk` (u) + 2−` < 2−k is a decidable property of u for any given `. Hence Ak
is a simply existential subset of {0, 1}

∗, and Lemma 4.3 applies. �

Corollary 4.5 FT and DT{0,1}N are equivalent.

Since FT already follows from DT{0,1}N for functions with values in {0, 1} (see the
proof of Proposition 4.2), Corollary 4.5 would still hold if one restricted DT{0,1}N to
functions with values in {0, 1} or, more generally, in N. The equivalence of FT and
DT{0,1}N for functions with values in N has also been shown by Veldman [19].

Proposition 4.6 DT{0,1}N entails DTX for all compact metric spaces X.

Proof Every compact metric space X is a continuous image of the Cantor space
([3], Chapter 5, Theorem 1.4; [18], Chapter 7, Corollary 4.4); that is, there is a
continuous mapping from {0, 1}

N onto X . Along any such mapping, DTX can be
deduced from DT{0,1}N in the obvious way. �

Proposition 4.7 DT[0,1] implies FT.

Proof Let B be a bar. By [3], Chapter 6, Theorem 2.7, there is a continuous func-
tion h on [0, 1] with h > 0 such that inf h > 0 if and only if B is uniform. Set
f = 1−min{h, 1/2}, for which 0 < f < 1. Since inf h > 0 if and only if sup f < 1,
it suffices to show that f is bounded away from 1. To this end, set fn = 1 − f n for
every n ∈ N. Note that f and all the fn are continuous and that ( fn) is increasing
and converges simply to 1. By hypothesis, ( fn) converges uniformly to 1; whence
f n

= 1 − fn < 1/2 and thus f < n
√

1/2 for some n. �

The idea underlying the foregoing proof stems from the recursive counterexample to
Dini’s theorem that Bridges [4] ascribes to Richman.4

Theorem 4.8 The following four items are equivalent: FT, DT{0,1}N , DTX for all
compact metric spaces X, and DT[0,1].



Dini’s Theorem 259

5 The Relation of Dini’s Theorem to Weak König’s Lemma

A (binary) tree is a detachable subset T of {0, 1}
∗ which contains the empty sequence

and which is closed under restriction; that is, if w ∈ T and u 6 w, then u ∈ T . A
tree T is infinite if for every n there is u ∈ T with |u| = n, and an infinite path of T
is an α with αn ∈ T for all n.

Weak König’s lemma in Simpson’s terminology [17] is the following statement:

WKL Every infinite tree has an infinite path.

A tree T is infinite precisely when for every n there is α with αn ∈ T . Hence to
postulate WKL amounts to require the validity of the implication

∀n ∃α (αn ∈ T ) H⇒ ∃α ∀n (αn ∈ T ) (13)

from all trees T .
It is known that WKL and FT are the classical contrapositives of each other. Ishi-

hara has even proved that WKL implies FT over EL [8]. For the sake of complete-
ness, we shed some light on the classical equivalence of WKL and FT, following
[8].

A tree T is finite if there is N such that |u| < N for every u ∈ T , and without
infinite path if for every α there is n with αn 6∈ T . These are classically equivalent
ways to express that a tree is not infinite and has no infinite path, respectively. The
classical contrapositive of WKL can therefore be put as follows:

WKL¬ Every tree without infinite path is finite.

A tree T is finite if and only if there is N such that αN 6∈ T for all α. To assert
WKL¬ thus amounts to require the validity of the implication

∀α ∃n (αn 6∈ T ) H⇒ ∃N ∀α (αN 6∈ T ) (14)

from all trees T . Note that (13) and (14) are the classical contrapositives of each
other.

Lemma 5.1 WKL¬ and FT are equivalent.

Proof Suppose that {0, 1}
∗ is the disjoint union of two inhabited subsets B and T .

This is the same as to give a pair of inhabited and detachable subsets B and T each of
which is the complement of the other. In this situation, B is closed under extension
precisely when T is closed under restriction (that is, T is a tree), which we assume
from now on. Moreover, B is a bar if and only if T has no infinite path, and B is a
uniform bar if and only if T is a finite tree. In other words, (14) is the same as (10)
for any such choice of B and T . �

During the rest of this paper we work within the formal system RCA0 from [17],
whose notations and conventions we adopt. In particular, we switch from construc-
tive to classical reverse mathematics.

Theorem 5.2 DTX for all compact metric spaces X is equivalent, over RCA0, to
WKL.

Proof By combining Lemma 5.1 with Proposition 4.2, one can deduce WKL from
DT{0,1}N in RCA0. To verify that WKL implies DTX for all compact X in RCA0, we
mimic the proof of [17], Theorem IV.2.2 as follows.
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Let X = Â be a compact metric space. Suppose that (gn) is a decreasing se-
quence of nonnegative continuous functions on X which converges simply to 0. Let
ϕ (n, a, r, m) be a 60

1 -formula which says that a ∈ A, r ∈ Q+, m ∈ N, and that

(§) there are b ∈ Q and s ∈ Q+ with b < 2−n−1 and s < 2−n−1 such that
(a, r) gm (b, s).

One can show that

(†) for every x ∈ X and every n there are a, r , m with ϕ (n, a, r, m) and
d (x, a) < r .

By [17], Lemma II.3.7, there is a sequence 〈(ani , rni , mni ) : i, n ∈ N〉 such that
ϕ (n, a, r, m) if and only if (a, r, m) = (ani , rni , mni ) for some i . By (†),
〈〈B (ani , rni ) : i ∈ N〉 : n ∈ N〉 is a sequence of open coverings of X , which—
according to [17], Theorem IV.1.6—gives rise to a sequence of finite subcoverings
〈〈B (ani , rni ) : i 6 kn〉 : n ∈ N〉. If we now set Nn = max {mni : i 6 kn} for every
n, then gNn (x) < 2−n for every x ∈ X . In fact, for every n and every x there is
i 6 kn with x ∈ B (ani , rni ), for which gmni (x) belongs to the closure of B (b, s)
for some b and s as in (§) with (n, ani , rni , mni ) in place of (n, a, r, m). Since, in
particular, b < 2−n−1 and s < 2−n−1, we have gNn (x) 6 gmni (x) 6 b + s < 2−n

as required. In other words, (gn) converges uniformly to 0. �

Kohlenbach [12] deduces DTX for X = [0, 1]
n with n ∈ N from a strong principle

of uniform boundedness, which he extracts from a generalization of WKL to higher
types [11].

6 Discussion

Bishop’s concept of a continuous function on a compact metric space includes a
modulus of uniform continuity, whose existence is guaranteed anyhow in the pres-
ence of countable choice for natural numbers. On the other hand, “it is interesting to
note that ‘any continuous function which arises in practice’ can be proved in RCA0
to have a modulus,” while “in general its existence is not provable in RCA0” ([17],
Remark IV.2.8). In the present paper, the additional information given by a modulus
was only needed on our way from FT to DT{0,1}N , whereas no modulus occurred
at any other place—let alone during the corresponding argument, which we gave in
RCA0, that DTX for every compact X follows from WKL.

We anyway hold Brouwer’s fan theorem for conceptually more appropriate than
weak König’s lemma to classify uniformity theorems such as Dini’s. While FT
provides us with a uniform bound—a single natural number—in a way similar to
DT{0,1}N , the conclusion of WKL consists of the existence of an object of a differ-
ent nature: an infinite sequence. More specifically, the logical form (8) of DT{0,1}N

corresponds rather to (9) than to (13). One cannot make this distinction unless one
moves from classical to constructive reverse mathematics.

Notes

1. Related work has been done in parallel by Loeb [13] and Veldman [19].

2. Richman ([16], [14]) has initiated a constructive mathematics without countable choice.
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3. Needless to say, these sequences can be put as functions r : N × N×{0, 1}
∗

→ Q and
M : N × N → N with r (n, `, u) = rn` (u) and M (n, k) = Mnk—or, by means of an
appropriate coding of finite sequences, as functions of type N → N.

4. Kamo [10] has nonetheless come up with an effective version of Dini’s theorem in com-
putable analysis.
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