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Complexity Ranks of Countable Models

Su Gao

Abstract We define some variations of the Scott rank for countable models and
obtain some inequalities involving the ranks. For mono-unary algebras we prove
that the game rank of any subtree does not exceed the game rank of the whole
model. However, similar questions about linear orders remain unresolved.

1 Introduction and Motivation

Vaught’s Conjecture is a dichotomy statement about the isomorphism relation of
countable models. From the point of view of descriptive set theory of equivalence
relations, there are stronger dichotomy statements which provide more information
about the isomorphism relation. These dichotomies are usually formulated in terms
of Borel reducibility. For a definition of Borel reducibility and of the equivalence
relations mentioned in the rest of this introduction the reader can consult [2].

The following three dichotomy theorems form a sequence of ever stronger di-
chotomies. We will need the following notation. Let L be a countable language
and σ ∈ Lω1ω be a sentence. Let Mod(σ ) denote all countable models of σ with
universe ω. Let ∼=σ denote the isomorphism relation on Mod(σ ).

Theorem 1.1 (Vaught’s Conjecture/Silver dichotomy: Silver, cf. [7]) If ∼=σ is Borel,
then exactly one of the following holds:

(i) ∼=σ ≤B id(N);
(ii) id(R) ≤B ∼=σ .

Theorem 1.2 (Glimm-Effros dichotomy: Harrington-Kechris-Louveau [5]) If ∼=σ is
Borel, then exactly one of the following holds:

(i) ∼=σ ≤B id(R);
(ii) E0 ≤B ∼=σ .

Received February 24, 2006; accepted July 21, 2006; printed February 26, 2007
2000 Mathematics Subject Classification: Primary, 03C15, 03C64, 03E15
Keywords: isomorphism relation, Scott rank, mono-unary algebras
c©2007 University of Notre Dame

33



34 Su Gao

Theorem 1.3 (Hjorth [6]) If ∼=σ is Borel, then exactly one of the following holds:
(i) ∼=σ ≤B E∞ (∼=σ is essentially countable);

(ii) (E0)
ω

≤B ∼=σ .

In the above, only the third theorem is not known to hold in a more general context.
The Silver dichotomy is true for all 51

1 equivalence relations (not necessarily iso-
morphism relations, not necessarily Borel). The Glimm-Effros dichotomy is true for
all Borel equivalence relations (not necessarily isomorphism relations).

On the other hand, without assuming the isomorphism relation to be Borel, the
Lω1ω Vaught’s Conjecture is known to be true for a number of classes of models.
We mention one here.

Theorem 1.4 (Steel [13]) Let L = {<} and σ ∈ Lω1ω be a sentence all of whose
models are trees; that is, if M |H σ and a ∈ M then {b ∈ M | b < a} is linearly
ordered by <. Then Vaught’s Conjecture holds for Mod(σ ).

The trees considered by Steel are very general. In particular, they include all lin-
ear orders and mono-unary algebras (models in the language of one unary function),
whereas the usual trees studied in descriptive set theory (rooted graph-theoretical
trees) essentially form only a subclass of mono-unary algebras. Prior to Steel’s result
Vaught’s conjecture for first-order theories of mono-unary algebras had been estab-
lished by Marcus [10] and Miller [11], and the Lω1ω Vaught’s Conjecture for linear
orders had been proved by Rubin [12]. Then there were some further dichotomies in
the special cases of linear orders and mono-unary algebras.

Theorem 1.5 ([4]) Let L = {<} and σ ∈ Lω1ω be a sentence all of whose models
are linear orders. Then the Glimm-Effros dichotomy holds for Mod(σ ).

Theorem 1.6 ([3]) Let L = { f }, where f is a unary function symbol, and
σ ∈ Lω1ω be a sentence. Then exactly one of the following holds:

(i) ∼=σ is Borel;
(ii) the isomorphism relation of all countable graphs is Borel reducible to ∼=σ .

The former group of results was proved using Gandy-Harrington forcing. The proofs
for the latter group of results rely on connections to model theory of Lω1ω. Specifi-
cally, detailed analysis of countable models following Scott (cf. [1]) allows us to gain
understanding of the countable models in question in a fundamental way. Then this
understanding of individual models can be gathered to show global results about the
isomorphism relation. The following theorem is a manifestation of this connection
between the global and local analysis of countable models.

Theorem 1.7 (Sacks, cf. [9] and [13]) Let L be an arbitrary countable language
and σ ∈ Lω1ω be a sentence. Suppose there is α < ω1 such that for any countable
model M of σ , whenever sr(M) ≥ α, sr(M) < ω

CK(M)
1 . Then ∼=σ is Borel.

Thus the Scott analysis, especially the computation of Scott ranks, is not only inter-
esting in its own right, but also instrumental in the proofs of most of the theorems
about the isomorphism relation, and even more so for concrete classes of models,
since the focus on a specific kind of models usually brings about definite and accu-
rate results. This is the motivation for our study of some variations of the Scott rank
in the rest of this article. The rationale is that the more we understand the computa-
tion of these ranks, the better we understand the models as well as the isomorphism
relation.
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2 The Scott Analysis and the Scott Rank

For the convenience of the reader and also to fix some notation, we recall some
details of the Scott analysis here. Let L be a countable relational language. For
countable L-models M , N , and ordinal α < ω1, the α-equivalence between M and
N , denoted M ≡α N , is defined by induction on α < ω1 as follows:

(i) M ≡0 N iff Diag(M) = Diag(N ), where Diag(M) is the set of all quantifier-
free L-sentences ϕ such that M |H ϕ;

(ii) for a limit λ, M ≡λ N iff M ≡β N for all β < λ;
(iii) M ≡α+1 N iff ∀a ∈ |M | ∃b ∈ |N | (M, a) ≡α (N , b) and ∀b ∈ |N | ∃a ∈

|M | (M, a) ≡α (N , b), where (M, a), (N , b) are considered as L′-models
with L′

= L ∪ {c} where c is a fresh constant symbol.

Note that the above definition requires that L is a relational language; M and N are
countable L-models and α < ω1. However, in practice we will deal with languages
with function symbols; in doing this we simply represent each function symbol by a
binary relation symbol in the obvious way. Also the notion of α-equivalence makes
sense for arbitrary ordinal α and for models M and N of arbitrary size. Nevertheless,
we never consider uncountable models and uncountable ordinals in this article.

The notion of α-equivalence can be directly captured by infinitary formulas in
Lω1ω. Given an L-model M and a tuple Ea ∈ |M |

n for some n ∈ ω, the canonical
Scott formulas are defined as

ϕM,Ea
0 (Ex) =

∧
{ψ(Ex) |ψ quantifier free,M |H ψ(Ea)},

ϕM,Ea
λ (Ex) =

∧
β<λ

ϕM,Ea
β (Ex), λ limit,

ϕM,Ea
α+1(Ex) = ϕM,Ea

α (Ex) ∧

∧
b∈|M |

∃y ϕM,Ea,b
α (Ex, y) ∧ ∀y

∨
b∈|M |

ϕM,Ea,b
α (Ex, y).

Thus M ≡α N if and only if ϕM,∅
α = ϕN ,∅

α .
Another well-known method to detect α-equivalence is by playing some two-

person games. Given L-models M and N , the Ehrenfeucht-Fraisse game (EF game,
for short), denoted EFα(M, N ), is played as follows: Player I starts by playing an
ordinal α0 < α and an element x0 of either model M or N ; Player II responds by
playing an element y0 of the opposite model; then in each successive round Player
I plays a smaller ordinal and an element of either model, and Player II responds by
playing an element of the opposite model; and so on. The play of the game finishes
after the round when Player I has played the ordinal 0. The following diagram shows
a play of this game.

I α0 < α, x0 α1 < α0, x1 · · · αn = 0 < αn−1, xn

II y0 y1 · · · yn

The rule of the game is that ∀i ≤ n (xi ∈ |M | ↔ yi ∈ |N |). Let Ea ∈ |M |
n+1,

Eb ∈ |N |
n+1 be the tuples produced by the demonstrated play. Then Player II wins

the play if (M, Ea) ≡0 (N , Eb). It is easy to see that M ≡α N if and only if Player II
has a winning strategy in the game EFα(M, N ).
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Now fix an L-model M . We recall the definition of Scott rank. In fact, there
have been two slightly different definitions in the literature. We give both of them
and make some comments on their similarity and difference. For Ea ∈ |M |

n , let
srM (Ea) be the least α < ω1 such that for any Eb ∈ |M |

n , (M, Ea) ≡α (M, Eb) implies
that (M, Ea) ∼= (M, Eb). Then the two versions of the Scott rank of M , respectively
denoted sr(M) and SR(M), are defined as

sr(M) = sup{ srM (Ea) | Ea ∈ |M |
n, n > 0}

and
SR(M) = sup{ srM (Ea)+ 1 | Ea ∈ |M |

n, n > 0}.

It is easy to see that sr(M) ≤ SR(M) ≤ sr(M) + 1. The main difference is that
sr(M) ≤ ω

CK(M)
1 whereas SR(M) ≤ ω

CK(M)
1 + 1. The difference is significant

for some of the studies of countable models (cf. [9] and [8]). In general, SR(M)
represents the complexity of M more accurately, while in comparison sr(M) provides
a cruder estimate. However, in view of Sacks’s Theorem 1.7, the Borelness of the
isomorphism relation is related to Scott ranks in the same manner no matter which
definition is employed. For our purposes it suffices to work with sr(M), following
[1] and [13].

We also recall that the canonical Scott sentence of M is defined as

ϕM
= ϕM,∅

sr(M) ∧

∧
Ea∈|M |n

(∃Ex)
(
ϕM,Ea

sr(M)(Ex) → ϕM,Ea
sr(M)+1(Ex)

)
.

The remarkable property of ϕM is that for any countable L-model N , N |H ϕM if
and only if N ∼= M .

Note that the quantifier rank of ϕM goes a little beyond the Scott rank:

qr(ϕM ) = sr(M)+ ω = SR(M)+ ω.

3 Variations of the Scott Rank

3.1 The game rank The Scott analysis yields an ordinal α ≤ sr(M) + ω for a
countable L-model M so that whenever N is a countable L-model with N ≡α M ,
N ∼= M . That is to say, whenever Player II has a winning strategy in the game
EFα(M, N ), M and N are indeed isomorphic. We thus call the least such ordinal the
game rank of M and denote it by gr(M). We know that gr(M) ≤ sr(M)+ ω.

It turns out that sr(M) ≤ gr(M) + ω. I learned the following argument from
Hjorth, who attributed it to earlier researchers in the field. It seems to be a folklore
result which has been rediscovered a number of times, but I did not find an explicit
reference.

Proposition 3.1 For any countable model M, sr(M) ≤ gr(M)+ ω.

Proof Let α = gr(M). Consider the smallest fragment F in Lω1ω containing all
Scott formulas ϕM,∅

α+k for k ∈ ω. Note that for each tuple Ea ∈ |M |
n and k ∈ ω,

the Scott formula ϕM,Ea
α+k(Ex) is in F since it is a subformula of ϕM,∅

α+k+n . Now let T
be the F-theory of M . In particular, ϕM,∅

α ∈ T . It follows that M is the unique
countable model of T and that there are only countably many complete F-types for
the theory T . This implies that an F-atomic model of T exists, and therefore M is
an F-atomic model. For Ea ∈ |M |

n we let tpF (Ea) denote the F-type of Ea in M . Then
tpF (Ea) is principal and there exists a single formula ψ(Ex) so that every formula in
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tpF (Ea) is implied by ψ(Ex). By our construction qr(ψ) < α + ω. It follows that
for every Ea ∈ |M |

n , every F-type over (M, Ea) is also principal. Thus (M, Ea) is an
F-atomic model of its theory. Now if (M, Ea) ≡α+k (M, Eb), a standard back-and-
forth argument yields an automorphism π of M so that π(Ea) = Eb. This shows that
srM (Ea) < α + ω for all Ea ∈ |M |

n , and hence sr(M) ≤ α + ω. �

The game rank is thus a complexity measure for countable models much like the
Scott rank. However, we do not have any example of M with gr(M) < sr(M). The
game rank puts more emphasis on the existence of models: if α < gr(M) then there
exists a model N with N ≡α M but N 6∼= M .

We now turn to other variations of the Scott rank. These are complexity measures
related to submodels of the model. First we note that a model of low Scott rank
can have submodels of arbitrarily high Scott rank. The countable dense linear order
without end points is such an example. Thus it does not make sense to consider
arbitrary submodels in general. However, for special classes of models there are
distinctive kinds of submodels which cannot have arbitrary Scott ranks. And, in fact,
for the classes we consider there is usually a natural type of submodels which we can
regard as the “basic building blocks” of our models. Naturally we wonder about their
Scott ranks and the connection with the Scott ranks of the ambient model. From now
on we will descend to the concrete classes of linear orders and mono-unary algebras.
Since the language is rather simple and standard, we will not make any notational
difference between a model M and its domain |M |.

3.2 Linear orders In linear orders the natural building blocks are intervals, or
more generally, segments. Let (M, <) be a linear order and a < b ∈ M . Define

[a, b]
M

= {c ∈ M | a ≤ c ≤ b}.

It is easily verified that
sr([a, b]

M ) ≤ sr(M).

Further, we can define the interval rank of M by

ir(M) = sup{ sr([a, b]
M ) | a < b ∈ M}.

We see that ir(M) ≤ sr(M). In fact, the interval rank was first defined by Steel in
[13]. He also conjectured that the following is true.

Question 3.2 (Steel [13]) Is sr(M) ≤ (ir(M)+ ω) · 3?

Steel proved the conjecture in the case there are only countably many nonisomorphic
models that are (ir(M)+ω)-equivalent to M . It was also proved in [4] under a weaker
hypothesis E0 6≤B∼=� Mod(≡ir(M)+ω M). The general case is open. Note that the
exact formula is not the point of focus here. As long as the Scott rank of M is
bounded by applying a “computable” function on the interval rank of M , proofs of
various earlier theorems can be simplified and possibly strong dichotomy theorems
can be proved.

Another intriguing question is about the game rank of an interval versus the game
rank of the whole model.

Question 3.3 If (M, <) is a countable linear order and a < b ∈ M, is

gr([a, b]
M ) ≤ gr(M)?
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Another type of submodel of a linear order is a segment. Let (M, <) be a linear
order. A subset S ⊆ M is a segment if for all a < b < c ∈ M , if a, c ∈ S then b ∈ S.
It is trivial that ir(S) ≤ ir(M). However, we do not know either sr(S) ≤ sr(M) or
gr(S) ≤ gr(M).

We speculate that the technique needed to resolve all these questions about various
complexity ranks of linear orders can be used to prove stronger dichotomy theorems
about the isomorphism of linear orders.

3.3 Mono-unary algebras Finally we present some positive results for a class of
models for which we have the best knowledge about the isomorphism relation. These
are the models in the theory of one unary function. For our purposes we will consider
these models in an expanded language L and call L-models mono-unary algebras.

To define the language, consider a model A = (A, f ) in the language of one
unary function. First of all, there is the binary relation R so that, for x, y ∈ A,

R(x, y) ⇐⇒ f (x) = y.

Then we define

x < y ⇐⇒ ∃n > 0 ( f n(y) = x) ∧ ∀m > 0 ( f m(x) 6= y ).

Finally, for each l ∈ Z, we define a binary relation Dl by

Dl(x, y) ⇐⇒ ∃n > |l| ( f n(x) = f n+l(y) ).

We define the relative length of y with respect to x , or the length of y relative to x ,
denoted by lhx (y), to be l if Dl(x, y) holds.

Our formal language will be L = {R, <} ∪ {Dl | l ∈ Z}. There is a sentence
σ ∈ Lω1ω axiomatizing the intended class of models in the theory of one unary
function. We call the models of σ mono-unary algebras. Informally, when we ad-
dress a mono-unary algebra we will still refer to a function f , even if it is not in our
formal language.

It is natural to consider the subtrees the basic building blocks for a mono-unary
algebra. For our purposes a tree T will mean a partial order < with a least element
r (i.e., the root) so that for any t ∈ T , the set {s ∈ T | s < t} is finite and linearly
ordered by <. We can define

R(s, t) ⇐⇒ t < s ∧ ¬∃u (t < u < s).

Then R is the graph of a function f (in fact a partial one, since f (r) is undefined)
and from it we can define the relations Dl , l ∈ Z, as before. In this sense we regard
trees as formally mono-unary algebras. For t ∈ T we will speak of the length of
t , denoted by lhT (t), which is the cardinality of the set {s ∈ T | s < t}. In fact,
lhT (t) = lhr (t). When there is no danger of confusion we will drop the subscripts
and simply denote it by lh(t). For each x ∈ A let

A(x) = { y ∈ A | x ≤ y }.

Then each A(x) is a tree.
A mono-unary algebra A is connected if ∀x, y ∈ A ∃z ∈ A ( x ≤ z ∧ y ≤ z ). A

general mono-unary algebra can be decomposed into connected components, that is,
connected subalgebras. There are, however, two different types of connected mono-
unary algebras. If A is connected, we call it type I if ∃x ∈ A ∃n > 0 ( f n(x) = x ),
and type II otherwise. In graph theoretic terms, a type I algebra is essentially a
tree with possibly a cycle at the root. For a type I algebra the study of subtrees is
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essentially equivalent to the study of the whole algebra. Thus our main focus will be
type II algebras.

We can now define the tree rank of A to be

tr(A) = sup{ sr(A(x)) | x ∈ A}.

We have the following facts showing that all the ranks considered are close to each
other. Note also that the last inequality below gives a positive answer to the analog
of Steel’s question.

Proposition 3.4 Let A be a mono-unary algebra. Then the following hold:
(i) tr(A) ≤ sr(A);

(ii) tr(A) ≤ gr(A)+ ω;
(iii) gr(A)≤ ω + sup{ gr(A(x)) | x ∈ A } + ω;
(iv) gr(A)≤ ω + tr(A)+ ω · 2;
(v) sr(A)≤ ω + tr(A)+ ω · 3.

Proof (i) is easy to see and (ii) follows from Proposition 3.1. For (iii) we
let α = ω + sup{ gr(A(x)) | x ∈ A } and assume toward a contradiction that
α + ω < gr(A). Then there exists an algebra B such that A ≡α+ω B but A 6∼= B.
For each connected component C of A let NA(C) be the the number of distinct
connected components of A isomorphic to C and let NB(C) be the number of dis-
tinct connected components of B isomorphic to C . We may assume without loss of
generality that there is a connected component C of A such that NA(C) > NB(C).
Let n = NB(C). Then in a play of the game EFα+ω(A,B) let Player I play for at
least n + 1 rounds with all ordinals > α and elements from at least n + 1 distinct
connected components all of which are isomorphic to C . If Player II follows her
winning strategy then she must play elements from distinct connected components
of B. To see this, assume her responses contain two elements b1 and b2 from the
same connected component. Suppose a1 and a2 are elements of A Player I played
that are correspondent to b1 and b2, respectively. Then since α ≥ ω Player I can
win the rest of the play by playing finitely many witnesses of connectedness of
b1 and b2. Since a1 and a2 are not in the same connected component there is no
way for Player II to appropriately respond so as not to lose. This contradicts our
assumption that Player II was following her winning strategy. Thus among the n + 1
elements Player II played we can identify an element and its connected component
D of B so that C 6∼= D but C ≡α+1 D. Without loss of generality assume Player I
played the ordinal α + 1 and a ∈ C in his (n + 1)th move and Player II responded
to this move by playing b ∈ D. Since C 6∼= D, there is some m ∈ ω such that
C( f m(a)) 6∼= C( f m(b)). Continue to play one more round of the game by letting
Player I play α and f m(a). We note that if Player II follows her winning strategy she
must respond by playing f m(b), otherwise Player I can win the play by continuing
to play all elements of the set { f i (a) | 0 < i < n}. Let c = f m(a) and d = f m(b).
Then we see that C(c) 6∼= D(d) and C(c) ≡α D(d). This shows that A(c) = C(c)
has game rank > α, contradicting our assumption. We have thus proved (iii). Now
(iv) and (v) follow from (iii) and Proposition 3.1. �

Our main theorem of this article is about the game rank of subtrees versus the game
rank of the whole algebra.

Theorem 3.5 For any x ∈ A, gr(A(x)) ≤ ω + gr(A).
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The proof is probably more significant than the statement of the theorem since it
unravels a detailed local analysis of the isomorphism of mono-unary algebras in
terms of their subtrees. In contrast, our Question 3.3 is a confession that we lack
such an analysis for linear orders. The rest of the paper is devoted to a proof of
Theorem 3.5.

4 Preliminaries for the Proof of the Main Theorem

We first reduce the problem to the special case where the algebra is connected and
type II.

Lemma 4.1 Let A be a mono-unary algebra and C be a connected component of
A. Then gr(C) ≤ ω + gr(A).

Proof Let α = ω + gr(A). Assume toward a contradiction that α < gr(C). Then
there exists an algebra D with C ≡α D but D 6∼= C . Since α ≥ ω we see that D
is connected. Let n ≤ ω be the number of all distinct connected components of A

α-equivalent to C . Let C0 = C,C1, . . . ,Ck, . . . , k < n, enumerate these connected
components. Obtain an algebra B1 from A by replacing each Ck , k < n, by a copy
of C . Clearly, B1 ≡α A. Similarly, obtain another algebra B2 from A by replacing
each Ck , k < n, by a copy of D. Then again B2 ≡α A. Now note that B1 6∼= B2,
since C is not isomorphic to any connected component of B2. Thus at least one of
B1 and B2 is not isomorphic to A. This shows that α < gr(A), contradiction. �

In view of the above lemma it suffices to prove the theorem for connected mono-
unary algebras. Since type I algebras are essentially trees, the theorem is trivial for
them. From now on we fix a type II connected mono-unary algebra A.

We need to digress to some notation and constructions to be repeatedly used later
in the proof. Let T be a (rooted) tree ordered by <. Two elements s, t ∈ T are
incomparable if neither s ≤ t nor t ≤ s, in which case we write s ⊥ t . An antichain
in T is a subset X ⊆ T such that s ⊥ t for all distinct s, t ∈ X . Note that these
definitions make sense for any partial order, in particular, any mono-unary algebra.

We write T ↪→ A if there is x ∈ A such that T ∼= A(x). Let S also be a tree
(possibly the same as T ). Then we also write T ↪→ S if there is s ∈ S with lh(s) > 0
such that T ∼= S(s).

Let T be a tree, B be a mono-unary algebra, and x ∈ B. We denote byϒ(B, x, T )
the algebra obtained from B by replacing B(x) by T . Formally, the domain of
ϒ(B, x, T ) is the disjoint union of B − B(x) with T , and the partial order < is
defined by

y < z ⇐⇒ (y, z ∈ B ∧ y < z) ∨ (y, z ∈ T ∧ y < z) ∨ (y ∈ B ∧ y < x ∧ z ∈ T ).

Thus formally x is no longer an element of ϒ(B, x, T ). However, for notational
convenience later we will regard that the root of T be identified with x , and we will
call it x in ϒ(B, x, T ). This convention will apply to all other similar constructions
below.

Let B be a mono-unary algebra, n ≤ ω, and x0, x1, . . . , xk, . . . , k < n, be a
sequence of elements in B so that the set X = {xk | k < n} is an antichain in B. Let
T0, T1, . . . , Tk, . . . , k < n, be a sequence of trees. We denote by ϒ(B, Ex, ET ) the
algebra obtained from B by simultaneously replacing, for all k < n, B(xk) by Tk ,
respectively. A formal definition similar to the above can be given, but we omit it
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here. Just note that the algebra is well defined only when X is an antichain. In case
all the Tks are the same tree T , we also write ϒ(B, X, T ) for ϒ(B, Ex, ET ).

One further construction will be especially important, so we treat it separately
here. Let T and S be trees and x0 ∈ S. Define a sequence Sn , n ∈ ω, of
trees by induction on n. Let S0 = S and S1 = ϒ(S, x0, T ). For n > 0, let
Sn+1 = ϒ(S, x0, Sn). Intuitively, Sn+1 contains n copies of S − S(x0), one on top
of another, with a copy of T at the bottom (see Figure 1). We first note a simple fact.

�
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A
A
A
A

T

r
���

���

HHH
HHH

S − S(x0)

..

.

r�
���
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���

��

H
HHH

HH
S − S(x0)

Figure 1 The tree Sn .

Lemma 4.2 If S ≡α S(x0) ≡α T , then for all n ∈ ω, Sn ≡α T .

Proof Let τ be a winning strategy for Player II in the game EFα(S(x0), T ). We
first describe a winning strategy τ0,1 for Player II in the game EFα(S0, S1). Suppose
before round k ordinals α0 > α1 > · · · > αk−1 have been played and elements
y0, . . . , yk−1 ∈ S0 and z0, . . . , zk−1 ∈ S1 have been played. Suppose Player I played
αk < αk−1 and u ∈ S0 ∪ S1 in round k. First consider the case u ∈ S0. If u 6∈ S(x0)
then we let Player II respond by playing u. If u ∈ S(x0) then for 0 ≤ i < k we let

ui =

{
yi , if yi ∈ S(x0),
x0, otherwise

and

vi =

{
zi , if zi ∈ S(x0),
x0, otherwise.

Now by inductive hypothesis the position with ordinals α0, . . . , αk−1, αk and ele-
ments u0, . . . , uk−1, u ∈ S0 and v0, . . . , vk−1 played is compatible with the strat-
egy τ . We apply τ to this position and let Player II play the resulting element
v ∈ T = S1(x0). For the case u ∈ S1 a similar definition can be given to yield
an element v ∈ S0. This defines a strategy τ0,1 for Player II in EFα(S0, S1), which
is essentially a natural combination of the copying strategy with the strategy τ . It is
easy to see that τ0,1 is winning.

Now since S1 ≡α S1(x0) = T ≡α S1, applying the same argument as above for
the next step of the construction yields a winning strategy τ1,2 for Player II in the
game EFα(S1, S2). By induction we get that Sn ≡α Sn+1 for all n ∈ ω. �
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In general suppose X is an antichain in B and for all x ∈ X , B(x) ≡α T , then
B ≡α ϒ(B, X, T ). This can be seen by combining the copying strategy and the
winning strategies in the games EFα(B(x), T ) in a similar manner to the above proof.

For the sequence of trees Sn , it is important for us to know more details about
these strategies involved in the proof. If τ is a strategy for Player II in the game
EFα(S, T ) for some trees S and T , then we call τ regular if the following condition
holds: for any play of the game EFα(S, T ) compatible with τ , if s ∈ S and t ∈ T are
played in a single round, then lh(s) = lh(t).

Lemma 4.3 If S ≡α T where α ≥ ω, then there exists a regular winning strategy
τ for Player II in the game EFα(S, T ).

Proof Let τ0 be a winning strategy for Player II in the game EFα(S, T ). We de-
scribe a regular winning strategy τ for Player II. Suppose Player I’s first move con-
sists of α0 < α and u ∈ S ∩ T . If α0 ≥ ω, then from now on we let Player II
follow strategy τ0. We check that in each round of the play the lengths of the el-
ements played are the same. First, let s0 ∈ S and t0 ∈ T be played in the first
round. Then lh(s0) = lh(t0). Otherwise, assume without loss of generality, that
lh(s0) < lh(t0) = n; then Player I can win by playing n more rounds in which he
plays all elements of the set {t | t0 < t}, contradicting that τ0 is winning. Now sup-
pose s ∈ S and t ∈ T be elements played in another round; then we must have that
Dl(s0, s) if and only if Dl(t0, t) for all l ∈ Z, which implies that lhs0(s) = lht0(t).
Then lh(s) = lhs0(s)+ lh(s0) = lht0(t)+ lh(t0) = lh(t).

If α0 < ω and u ∈ S ∩ T with lh(u) = n, then let Player II apply τ0 to the
position with ordinal ω and u and follow τ0 from then on. By the argument above
the responses will have the same lengths as Player I’s moves in the same round. This
defines a regular strategy τ for Player II. It is easy to see that τ is winning. �

Now back to the proof of Lemma 4.2. Suppose α ≥ ω and let τ be a regular winning
strategy for Player II in the game EFα(S(x0), T ). Let lh(x0) = l. For each n ∈ ω, let
τn,n+1 be the winning strategy constructed for Player II in the game EFα(Sn, Sn+1).
It takes an easy induction to see that every τn,n+1 is regular. In particular, for any
element t in Sn (or Sn+1) played by Player I in this game, if lh(t) ≤ nl then Player
II’s response following τ is essentially a copy of t in Sn+1 (or Sn , respectively).
Furthermore, for any m, n ∈ ω with m < n, a winning strategy τm,n for Player
II in the game EFα(Sm, Sn) can be obtained by naturally composing the strategies
τm,m+1, . . . , τn−1,n . It follows that τm,n is regular too. If t is played by Player I with
lh(t) ≤ ml, then Player II’s response following τm,n is essentially a copy of t .

We have just noted that the first nl levels of Sn agree with those of Sn+1, and
thus we can identify them and consider the first nl levels of Sn a subset of Sn+1.
This allows us to construct a direct limit Sω of the sequence of models Sn , n ∈ ω.
Specifically, let Sω be the union of first nl levels of Sn for all n ∈ ω. For any
s, t ∈ Sω, if lh(s), lh(t) < nl, then both s, t ∈ Sn and s < t in Sω exactly when s < t
in Sn . The property we want from Sω is its α-equivalence to T .

Lemma 4.4 If S ≡α S(x0) ≡α T where α ≥ ω, then Sω ≡α T .

Proof Let τ be a regular winning strategy for Player II in the game EFα(S(x0), T ).
Let τm,n , m < n, be the regular winning strategies constructed above. We describe
a winning strategy τ0,ω for Player II in the game EFα(S0, Sω). For this let Player I’s
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first move consist of α0 and u ∈ S0 ∪ Sω. First assume u ∈ S0. Then consider all
games EFα(S0, Sn) and apply the strategies τ0,n to obtain a response in each of Sn .
As noted above, for any n such that lh(u) ≤ nl, the response in Sn is essentially the
same as that in Sm for all m ≥ n, which is also an element of Sω. We let Player II
play this element as her response in Sω. Alternatively, suppose u ∈ Sω. Then again
for all n such that lh(u) ≤ nl we have a copy of u in each Sn . Note that for all
such n we obtain a unique result by applying the strategy τ0,n . Let Player II play this
unique element as her response. The other rounds of the game are played in the same
fashion. This describes a regular strategy for Player II in the game EFα(S0, Sω). To
see that it is winning, consider an arbitrary play of this game. Suppose that it consists
of α0 = α > · · · > αk = 0, u0, . . . , uk ∈ S0 and v0, . . . , vk ∈ Sω. Then there is
some n such that lh(ui ) ≤ nl for all i ≤ k. Now the play considered can be regarded
as a play in the game EFα(S0, Sn) and by our construction is compatible with the
strategy τ0,n . Thus Player II has won. �

5 Proof of the Main Theorem

Let A be a type II connected mono-unary algebra and x ∈ A. We show that
gr(A(x)) ≤ max{ω, gr(A)}. For this let T be A(x) and α = max{ω, gr(A)}. Assume
that α < gr(T ). Then we can fix a tree S with S ≡α T but S 6∼= T . We will produce
an algebra B so that B ≡α A but B 6∼= A. This will be done by considering several
cases.

Case 1 T 6↪→ S and S 6↪→ T . In this case consider V = {y ∈ A : A(y) ∼= T }.
Let W be a maximal antichain in V . Let X = (A −

⋃
{A(y) | y ∈ W }) ∪ W . Define

B = ϒ(A,W, S). Then A ≡α B. To see that B 6∼= A, we claim that there is no u ∈ B

with B(u) ∼= T . Assume to the contrary that B(u) ∼= T . Then, for any y ∈ W ,
B(y) ∼= S, and thus y 6≤ u, since T 6∼= S and T 6↪→ S. Thus u ∈ X , and in fact
u ∈ V . Since W is a maximal antichain in V , there must be y ∈ W with u < y. But
then S ∼= B(y) ↪→ B(u) ∼= T , a contradiction to our case assumption.

Case 2 T ↪→ S but S 6↪→ T . The proof of this case is much longer than that for
Case 1. Again let V = {y ∈ A | A(y) ∼= T }. We need to consider four subcases.

Subcase 2.1 There is an infinite decreasing chain in V . In this case let y be any
element on this chain and define B = ϒ(A, y, S). Then clearly B ≡α A. To see
B 6∼= A, we claim that in B there is no infinite decreasing chain of elements z with
B(z) ∼= T . Assume z1 ≥ z2 ≥ · · · is such a decreasing chain. Since B is connected,
there is some i with zi ≤ y. But then S ∼= B(y) ↪→ B(zi ) ∼= T , a contradiction to
our case assumption.

In the remaining three subcases we assume that there is no infinite decreasing
chain in V ; that is, V is well-founded. Let W be the set of minimal elements of
V . Then W is a maximal antichain of V . We need to construct more trees to be
substituted in the algebra as follows. Define U0 = S. Since T ↪→ S, we let l0
be the least l such that for some u ∈ U0 with lh(u) = l, U0(u) ∼= T . Now in U0
let X0 = {u ∈ U0 | lh(u) = l0,U0(u) ∼= T }. Define U1 = ϒ(U0, X0, S). Then
U1 ≡α U0 similar to Lemma 4.2, U1 6∼= T since S 6↪→ T , and U1 6∼= U0 since
for no element u of length l0 in U1 we have U1(u) ∼= T . Now let l1 be the least
l such that for some u ∈ U1 with lh(u) = l, U1(u) ∼= T . Then l1 > l0. Let
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X1 = {u ∈ U1 | lh(u) = l1,U1(u) ∼= T }. Define U2 = ϒ(U1, X1, S). Continuing in
this fashion we can obtain Un for all n ∈ ω so that

(a) Un ≡α U0 = S for all n;
(b) Un 6∼= Um for n 6= m; Un 6∼= T ;
(c) letting ln be the least l such that for some u ∈ Un with lh(u) = l, Un(u) ∼= T ,

we have that ln > lm for n > m.

We are now ready to continue considering the other subcases of Case 2. Consider
the set W defined above and let

L = inf{ lhx (y) | y ∈ W }.

Then L ∈ Z ∪ {−∞}.

Subcase 2.2 L = −∞. In this case let W ′
= {y ∈ W | lhx (y) < 0}. Enumerate

W ′ as a sequence y0, y1, . . . , which is denoted by Ey. For i ∈ ω, let ki = lhx (yi ).
For each i ∈ ω, let ni be the least n such that ln ≥ |ki |. Let EU be the sequence
Un0 ,Un1 , . . . . Define B = ϒ(A, Ey, EU ). It is clear that B ≡α A. To see that B 6∼= A,
we note from our construction that if z ∈ B with B(z) ∼= T , then lhx (z) ≥ 0.

Subcase 2.3 L ∈ Z and |W | > 1. Fix y0 ∈ W with lhx (y0) = L . Let
L ′

= inf{ lhx (y) | y ∈ W, y 6= y0}. By our assumption L ′
≥ L . Now let

W ′′
= {y ∈ W | y 6= y0, lhx (y) = L ′

}. Define B = ϒ(A,W ′′, S). Then B ≡α A

but B 6∼= A. This is because y0 is the unique element in B with the smallest relative
length (with respect to any element) so that B(y0) ∼= T . By our construction, in B

there is no y with lhy0(y) = L ′
− L and B(y) ∼= T .

Subcase 2.4 |W | = 1. Let y0 be the unique element of W . We define a sequence
zi ∈ A, i ∈ ω, as follows. Let z0 = f i (y0) where i ∈ ω is the smallest such that
A(z0) ∼= S. If z0 does not exist, then we claim that there is no u ∈ A with A(u) ∼= S.
Assume to the contrary that u is such. If u ≥ y0 then it contradicts S 6↪→ T or
S 6∼= T . If u ⊥ y0, then from T ↪→ S it follows that there is a y ≥ u with A(y) ∼= T ;
since y ⊥ y0, this contradicts that |W | = 1. Therefore, if z0 does not exist and we
define B = ϒ(A, y0, S), then B ≡α A but B 6∼= A since S ↪→ B while S 6↪→ A.

Thus we assume that z0 does exist. Then note that in S there is a largest x0 with
S(x0) ∼= T , since otherwise in A there would be y ⊥ y0 with A(y) ∼= T , contradicting
that W = {y0}. Let l0 = lh(x0). Then we must have that z0 = f l0(y0). In fact, if we
let S0 = S, then the construction in Section 4 yields infinitely many trees S1, S2, . . .
so that Sn ≡α T for all n ∈ ω. Moreover, for each n > 0, there is a largest un ∈ Sn
with Sn(un) ∼= T and, in fact, lh(un) = nl0. Therefore we get that Sn 6∼= Sm for
distinct n,m > 0.

Getting back to our definition of the sequence zi , we continue to define
zi = f il0(z0) = f (i+1)l0(y0) for all i > 0. If for some i > 0, A(zi ) 6∼= Si ,
then it is easy to see that Si 6↪→ A; letting B = ϒ(A, zi−1, Si ), or equivalently,
letting B = ϒ(A, y0, S), we have that B ≡α A but B 6∼= A since Si ↪→ B.

Thus we only need to consider the situation when A(zi ) ∼= Si for all i ∈ ω. In
this situation we use the tree Sω constructed in Section 4. Define B = ϒ(A, y0, Sω).
Since α ≥ ω and therefore Sω ≡α T , we have that B ≡α A. It suffices to show that
B 6∼= A. In fact, if T 6↪→ B then we are done since T ↪→ A. Otherwise, assume
T ↪→ B. Note now B has the property that for any y ∈ B there is y′

≤ y with
B(y′) ∼= Sω. So if T ↪→ B then T ↪→ Sω and, moreover, by the above property we
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have that
inf{ lhy0(y) | B(y) ∼= T } = −∞.

In contrast |W | = 1 and therefore inf{ lhx (y) | A(y) ∼= T } > −∞. Hence, B 6∼= A.
This completes our proof for Case 2.

Case 3 T 6↪→ S but S ↪→ T . Let A′ be obtained from A by substituting a copy of
T by S. Then switching the roles of S and T , we can repeat the argument of Case 2
for A′ and obtain B′ with B′

≡α A′ and B′
6∼= A′. Now being nonisomorphic to each

other, one of A′ and B′ must be nonisomorphic to A, and we can let it be B. This
finishes the proof for Case 3.

Case 4 T ↪→ S and S ↪→ T . Before we consider various subcases we construct
as many α-equivalent nonisomorphic copies of T as possible. For this we define, for
any tree P , the set N (P) = {u ∈ P | lh(u) > 0, P(u) ≡α T }. Let M(P) be the set
of minimal elements of N (P). Then elements of M(P) are pairwise incomparable.
Now consider M(S), which is nonempty by our case assumption.

First suppose that M(S) is infinite. Fix u0 ∈ M(S). Let P0 = S. Consider two
trees P1,1 = ϒ(S,M(S), T ) and P1,2 = ϒ(S,M(S), S). Then in P1,1 we have
that P1,1(u) ∼= T for any u ∈ M(P1,1), while in contrast, in P1,2 we have that
P1,2(u) ∼= S for any u ∈ M(P1,2). This shows that P1,1 6∼= P1,2, and thus at least one
of them is not isomorphic to P0. Let P1 be P1,1 if P1,1 6∼= P0, and P1,2 otherwise.
In general, suppose we have found P0, . . . , Pn (n ≥ 1) all α-equivalent to T but
pairwise nonisomorphic. Then, for 0 ≤ i ≤ n, let Pn+1,i = ϒ(S,M(S), Pi ), and let
Pn+1,n+1 be obtained from S by substituting S(u0) by P0 and for all u ∈ M(S)−{u0},
S(u) by P1. Then it is clear that Pn+1,0, Pn+1,1, . . . , Pn+1,n, Pn+1,n+1 are all α-
equivalent but pairwise nonisomorphic. It follows that there is 0 ≤ i ≤ n + 1 such
that Pn+1,i 6∼= Pk for all 0 ≤ k ≤ n. Let Pn+1 be Pn+1,i where i is the smallest
index with the above property. This induction gives infinitely many Pn for n ∈ ω all
α-equivalent but pairwise nonisomorphic. Without loss of generality we may assume
that none of them is isomorphic to T . Now we can further code reals into the models.
Enumerate the elements of M(S) by u0, u1, . . . , and denote the sequence by Eu. For
any subset A of ω, let Qi = Pi if i ∈ A and Qi = T otherwise. Let EQ denote
the sequence Q0, Q1, . . . . Then define PA = ϒ(A, Eu, EQ). Apparently for A 6= A′

we have SA 6∼= SA′ . Thus there are 2ℵ0 many models α-equivalent to T but pairwise
nonisomorphic.

In this situation it is easy to construct B with B ≡α A but B 6∼= A. Since A is
countable, there must be some A ⊆ ω such that SA 6↪→ A. Now obtain B from A by
substituting any copy of T in A by SA. Then SA ↪→ B and therefore B 6∼= A. That
B ≡α A is obvious.

More generally, if there exists any tree P with P ≡α T and M(P) infinite the
above construction finishes the proof. Thus for the rest of the proof we suppose that
M(P) is finite for all P ≡α T . This implies that, for any P with P ≡α T and any
l ∈ ω, there are only finitely many u ∈ P with P(u) ≡α T and lh(u) = l.

Next we analyze the structure of A. Let N (A) = {y ∈ A | A(y) ≡α T }. If N (A)
is well-founded, then we can let M(A) be the set of all minimal elements of N (A)
and obtain B1 = ϒ(A,M(A), S) and B2 = ϒ(A,M(A), T ). Then B1 ≡α B2 ≡α A

but B1 6∼= B2; thus one of them is not isomorphic to A. Let B = B1 if B1 6∼= A and
B = B2 otherwise. Then B is as required.
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Thus for the rest of the proof we assume that N (A) is ill-founded. We consider
two further subcases.

Subcase 4.1 There are incomparable elements in N (A).
Let x0 and y0 be two incomparable elements of N (A). Let x1, x2, . . . enumerate

the set { f l(x0) | l > 0}∩ N (A) in decreasing order. By our assumption, xn is defined
for all n ∈ ω. Suppose

∀n ∈ ω ∃yn ∈ N (A) ( yn ⊥ xn ). (1)

Let
Y = {y ∈ A | ∃n ∈ ω ( xn < y ∧ y ∈ M(A(xn)) ∧ y 6= xn−1 )}.

Then Y is the set of minimal elements in M(A) incomparable with some xn . Note
that elements in Y are pairwise incomparable. Now we can obtain B1 = ϒ(A, Y, S)
and B2 = ϒ(A, Y, T ). Then B1 ≡α B2. As to the isomorphism type, B1 satisfies the
property that

∀z ∈ B1∃k > 0∀l > k ( f l(z) ∈ N (B1) ⇒

∀y ∈ M(B1( f l(z))) ( y 6≤ z ⇒ B1(y) ∼= S ) ),

while B2 satisfies the similar property with the occurrence of S replaced by T . How-
ever, under the hypothesis (1) these two properties are contradictory. Thus B1 6∼= B2
and one of them is not isomorphic to A.

Now we suppose the hypothesis (1) fails. That is, suppose that there is some n0
such that xn0 is comparable with all elements of N (A). Without loss of generality
assume n0 = 1. Then for all y ∈ N (A), either y ≥ x1 or y = xn for some n.
Thus x1 is the smallest element of N (A) so that |M(A(x1))| > 1. Now we define
B1 = ϒ(A,M(A(x1)),A(x1)) and B2 = ϒ(A,M(A(x1)),A(x2)). Then in both B1
and B2, x1 has the same property as before; thus any isomorphism between B1 and
B2 must leave it fixed. However, in B1 it happens that

∀y ∈ M(B1(x1))|M(B1(y))| = 1,

whereas B2 satisfies that

∀y ∈ M(B2(x1))|M(B2(y))| > 1.

Thus B1 6∼= B2 and one of them is not isomorphic to A. This finishes our proof of
Subcase 4.1.

Subcase 4.2 N (A) is linearly ordered.
Since S ↪→ T ↪→ A it follows that N (S) and N (T ) are linearly ordered too. Let

x0 ∈ S be a minimal element with S(x0) ∼= T and let l = lh(x0). Let y0 ∈ A with
A(y0) ∼= S. Then for every y ≥ y0 with A(y) ≡α T there is z1 ≥ z2 ≥ y with
f l(z1) = z2 and A(z1) 6∼= A(z2). Thus A satisfies the following property:

∃y0 ∈ N (A)∀y ≥ y0(y ∈ N (A) ⇒

∃z1, z2 ≥ b(z1, z2 ∈ N (A) ∧ f l(z1) = z2 ∧ A(z1) 6∼= A(z2))).

Now we use the tree Sω constructed in Section 4 again. It is also true that N (Sω) is
linearly ordered. Moreover, it happens that Sω satisfies that

∀b ∈ N (Sω)∃a ≥ b(a ∈ N (A) ∧ f l(a) = b ∧ Sω(a) ∼= Sω(b)).
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Define B = ϒ(A, y0, Sω). Then B satisfies that

∀b ∈ N (B)∃c1, c2 ≥ b(c1, c2 ∈ N (B) ∧ f l(c1) = c2 ∧ B(c1) ∼= B(c2)).

This shows that B 6∼= A. Since B ≡α A, we have proved the main theorem.
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