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The Number of Countable
Differentially Closed Fields

David Marker

Abstract We outline the Hrushovsk-Sokolović proof of Vaught’s Conjecture
for differentially closed fields, focusing on the use of dimensions to code graphs.

1 Introduction

Although there are no known natural examples of differentially closed fields, there
are two strong reasons for the continued interest in their model theory.

1. Differentially closed fields provide useful universal domains for studying al-
gebraic differential equations. The model theory of DCF has proved useful in
studying differential Galois theory, differential algebraic groups, differential
algebraic geometry and its applications to diophantine geometry.

2. Differentially closed fields exhibit many interesting model theoretic phenom-
ena.

While much has been written on the former including [19], [17], [9], and [1], it is the
latter that motivates this tutorial. In the introduction to Saturated Model Theory [21],
Sacks describes differentially closed fields as the “least misleading” examples of ω-
stable theories. Many fundamental ideas from model theory have illustrative natural
manifestations in the study of differential fields. These include

1. model theoretic algebra: quantifier elimination, model completeness;
2. classification theory: prime model extensions, forking, ranks, canonical

bases, DOP, ENI-DOP;
3. geometric stability theory: geometry of strongly minimal sets, groups of de-

finable automorphisms.
A perfect example of this is Vaught’s Conjecture. In the early 1980s Shelah [22]
proved that Vaught’s Conjecture holds for ω-stable theories. For nearly a decade
we knew there were either ℵ0 or 2ℵ0 countable differentially closed fields, but the
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exact number was not known until Hrushovski and Sokolović [7] proved there were
continuum many.1 Indeed, there were plausible conjectures that would have implied
there are only ℵ0 countable models. Hrushovski and Sokolović proved that differen-
tially closed fields have ENI-DOP and a key step in Shelah’s proof is that ω-stable
theories with ENI-DOP have the maximal number of countable models.

My goal in this tutorial is to outline the proof of Vaught’s Conjecture for differ-
entially closed fields. In Section 1 I will describe in some simple cases the method
of coding graphs into structures with ENI-DOP. My hope is that this method might
be instructive to people working in computable model theory. Indeed, some of the
examples below answer a question posed by Calvert during this workshop. In Sec-
tions 2 and 3 I will review some of the model theory of differentially closed fields
and in Section 4 I will prove that there are continuum many countable models. I
assume familiarity with model theory at the level of [13].

2 Coding Graphs with Dimensions

In [22] Shelah shows how to use the freedom to assign dimensions to code graphs
into models. Since, for any infinite cardinal κ , there are 2κ nonisomorphic graphs
of size κ , this is a useful method for showing theories have the maximal number of
models.

We will illustrate this in a very simple example. Let L = {V, X, +, π, f }. We
axiomatize an L-theory T1 as follows:

(i) models are the disjoint union of V and X ;
(ii) (V, +) is a nontrivial torsion-free divisible Abelian group;

(iii) π : X → V is surjective;
(iv) f : X → X is a bijection with no cycles such that π(x) = π( f (x)).

Thus each fiber π−1(v) is isomorphic to a number of copies of the integers with a
successor function. We let dim(π−1(v)) be the number of copies.

Proposition 2.1 Let κ be an infinite cardinal. There are 2κ nonisomorphic models
of T of cardinality κ .

Let M0 be the prime model of T1 over A ⊂ V , a linearly independent set of size κ .
In M0, dim(π−1(v)) = 1 for all v ∈ V .

Let G be an (irreflexive) graph with vertex set A where every vertex has valence
at least 2. Let

B = {a + b : a, b ∈ A, (a, b) ∈ G}.

We can directly construct M(G) |H T1 of cardinality κ such that

dim(π−1(v)) = ℵ0 for v ∈ A ∪ B, and

dim(π−1(v)) = 1 for v ∈ V \ (A ∪ B).

We must show that M(G) ∼= M(H) if and only if G ∼= H . We do this by showing
that we can recover the graph G from M(G).2

First note that
A ∪ B = {v ∈ V : dim(π−1(v)) = ℵ0}.

We say that {x, y, z} ⊆ A∪ B is a triangle if x, y, z are pairwise linearly independent
but not linearly independent.

Lemma 2.2 Every triangle is of the form {a, b, a + b} for some a, b ∈ A.
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Proof Suppose {x, y, z} is a triangle; then x, y, z ∈ A ∪ B are pairwise linearly
independent, but not independent. Clearly, any three elements of A are linearly
independent.

Claim 2.3 Any three elements of B are linearly independent. There are several
cases to consider. Suppose a, b, c, d, e, f are distinct elements of A.

(i) a + b, c + d, and e + f are linearly independent.
(ii) a + b, c + d, and a + d are linearly independent, since

span(a + b, c + d, a + d, a) = span(a, b, c, d)

has dimension 4.
(iii) a + b, a + c, b + c are linearly independent, since

2a = (a + b) + (a + c) − (b + c)

and
span(a + b, b + c, a + c) = span(a, b, c).3

Claim 2.4 If x ∈ A and y, z ∈ B, then x, y, z are linearly independent. There are
two cases to consider. Let x, a, b, c, d be distinct elements of A.

(i) x, a + b, c + d are linearly independent.
(ii) x, a + b, b + c are linearly independent.

(iii) x, x + a, b + c are linearly independent.
(iv) x, x + a, x + b are linearly independent.

Thus we must have two elements x, y ∈ A and one element z ∈ B. If x, y, c, d are
distinct elements of A, then x, y, x +c and x, y, c+d are linearly independent. Thus
we must have z = x + y. �

Since every vertex has valence at least 2,

A = {a ∈ S : a is in at least two triangles}

and (a, b) is an edge if and only if there is a c ∈ S, {a, b, c} is a triangle. Thus we
can recover G from M(G). If G 6∼= G ′, then M(G) 6∼= M(G ′).

During the Vaught’s Conjecture Workshop, Calvert asked if there is an ω-stable
theory T such that the isomorphism relation on computable models of T is complete
61. See [3] for a discussion of these concepts. The class of graphs is complete 61,
as is the class of graphs where each vertex has valence at least 2. We can construct
M(G) from G in a uniform computable manner. Thus isomorphism for models of
T1 is complete 61.

We conclude with some variants on this example. Below, we let I (T, κ) denote
the number of nonisomorphic models of T of cardinality κ .

Exercise 2.5 Let L = {V, X, +, π}. Let T2 be the theory (i) – (iii) as above, but
replacing (iv) with

(iv)′ π−1(v) is infinite for all v ∈ V .
Prove that I (T2, κ) = 2κ for κ uncountable, but I (T, ℵ0) = ℵ0.

The problem here is that in countable models we have no choices for dim(π−1(v)),
while in uncountable models we can make this either countable or uncountable. This
is an example that has DOP but not ENI-DOP. (See Definition 5.7.)
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Exercise 2.6 Modify the example to give an ℵ0-categorical ω-stable theory with 2κ

models of cardinality κ for all uncountable cardinals κ .

Exercise 2.7 Let L = {V, X, +, π, f }. Let T3 be the theory (i), (iii), (iv) as in T1,
but replacing (ii) with

(ii)′ (V, +) is an infinite vector space over the two element field F2.
Prove that I (T3, κ) = 2κ for all infinite κ . (Hint: Lemma 2.2 causes some problems
that can be avoided by using triangle-free graphs.)

Exercise 2.8 Let L = {V, X, s, π}. Let T4 be the theory (i), (iii), (iv) as above, but
replacing (ii) with

(ii)′′ (V, s) is a model of the theory of Z with successor.
Prove that I (T4, ℵα) ≤ (α + ℵ0)

(α+ℵ0).

Observations For this method of coding graphs using dimensions to work, we
seem to need

1. large family of types (pa : a ∈ A), pa ∈ S(a) to which we can assign
dimensions (for building many countable models we would like to be able to
assign different countable dimensions);

2. the ability to realize one type in the family while omitting others (orthogo-
nality);

3. a good notion of independence in A with lots of elements a, b, c ∈ A, pair-
wise independent but not independent (nontriviality).

3 Differentially Closed Fields

We will review without proofs most of the basic model theory of differentially closed
fields. Proofs and further references can be found in [14].

A differential ring is a ring R with a derivation δ : R → R, that is, a map such
that

(i) δ(a + b) = δ(a) + δ(b);
(ii) δ(ab) = aδ(b) + bδ(a).

We will sometimes use the notation a′ for δ(a), and a(n) for the nth derivative of a.
If (R, δ) is a differential ring, we let R{X1, . . . , Xn} be the ring

R[X1, . . . , Xn, X ′

1, . . . , X ′
n, . . . , X (m)

1 , . . . , X (m)
n , . . . ].

We extend the derivation to R{X1, . . . , Xn} by defining δ(X ( j)
i ) = X ( j+1)

i . We call
R{X1, . . . , Xn} the ring of differential polynomials over R.

Definition 3.1 We say that a differential field K is differentially closed if for any
differential field L ⊇ K if f1, . . . , fn ∈ K {X1, . . . , Xm} and the system

f1(X1, . . . , Xn) = · · · = fn(X1, . . . , Xn) = 0

has a solution in L , then it also has one in K .

We let DCF be the theory of differentially closed fields of characteristic zero.
Robinson showed that DCF is axiomatizable, complete, model complete, and de-

cidable. These results were extended by Blum who gave a surprisingly simple ax-
iomatization using only differential polynomials in one variable.4 For f (X) ∈ K {X}

the order of f is the largest m such that X (m) occurs in X . If f is a constant, we say
that the order of f is −1. We let ord( f ) denote the order of f .
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Theorem 3.2 (Blum) Let K be a differential field of characteristic zero.
(a) K |H DCF if and only if for all nonzero f, g ∈ K {X} where ord( f ) > ord(g),

there is a ∈ K with f (a) = 0 and g(a) 6= 0.
(b) DCF has quantifier elimination.

For proofs see §2 of [14] or Theorem 4.3.32 of [13]. Quantifier elimination can be
given a geometric interpretation. If K is a differential field we can define a differen-
tial analog of the Zariski topology.

Definition 3.3 We say V ⊆ K n is Kolchin closed if V is a finite union of sets of
the form

{x ∈ K n
: f1(x) = · · · = fm(x) = 0}

where f1, . . . , fm ∈ K {X}. We say that X ⊆ Kn is δ-constructible if it is a finite
Boolean combination of Kolchin closed sets.

Quantifier elimination says that the projection of a δ-constructible set is δ-con-
structible.

To show that the Kolchin closed sets are the closed sets of a topology we need
to know that there are no infinite descending chains of Kolchin closed sets. This
follows from the differential analog of Hilbert’s Basis Theorem (see [14], 1.16).

Theorem 3.4 (Ritt-Raudenbush Basis Theorem) If R ⊇ Q is a differential ring
where every radical differential ideal is finitely generated, then every radical differ-
ential ideal in R{X} is finitely generated.

Quantifier elimination also leads to an algebraic description of types. Suppose
K |H DCF and k is a differential subfield of K . If a1, . . . , an ∈ K n , then tp(a/k) is
determined by

{ f ∈ k{X1, . . . , Xn} : f (a) = 0}

a prime differential ideal.
Another consequence of the Ritt-Raudenbush Basis Theorem is that every prime

differential ideal in k{X1, . . . , Xn} is finitely generated. Thus there are only |k| dif-
ferential ideals, and hence |k| n-types over k.

Corollary 3.5 DCF is ω-stable.

We can now use all of the tools for ω-stable theories to study differentially closed
fields.

Definition 3.6 Let k be a differential field of characteristic zero. If K |H DCF and
K ⊇ k we say that K is a differential closure of k if for any L |H DCF with k ⊆ L ,
there is a differential embedding of K into L fixing k.

A differential closure of k is simply a prime model of DCF over k. We can apply
Morley’s existence and Shelah’s uniqueness theorems in this context (see [13], 4.2.20
and 6.4.8).

Corollary 3.7

(i) Every differential field has a differential closure.
(ii) If K is a differential closure of k, and a ∈ K n , then tp(a/k) is isolated.

(iii) If K and L are differential closures of k, then K and L are isomorphic over
k.
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An interesting feature of differential closures is that they need not be minimal. For
example, it was shown independently by Rosenlicht, Kolchin, and Shelah (see [14],
§6) that if K is the differential closure of Q, then there is L ⊂ K a proper differential
subfield with L ∼= K .

Our next goal is to survey some interesting definable sets and types. We work in
a large saturated model K of DCF. The first interesting definable set is the constant
field. Let C = {x ∈ K : δ(x) = 0}.

Proposition 3.8 C is an algebraically closed field. Moreover, if X ⊆ Cn is defin-
able in K, then X is already definable in the field (C, +, · ). We say that C is a pure
algebraically closed field.

Proof First note that K is algebraically closed. Next, suppose a ∈ K and∑n
i=0 ci X i

∈ C[X ] is the minimal polynomial of a over C . Then

0 = δ

( n∑
i=0

ci ai

)
=

( n∑
i=0

ici ai−1

)
δ(a).

Since we were considering the minimal polynomial, we must have δ(a) = 0. Thus
C is algebraically closed.

Suppose X ⊆ Cn is definable in K. By quantifier elimination and the fact that
δ is trivial on C , there is Y ⊆ Kn definable in (K, +, ·) such that X = Cn

∩ Y .
Using the stability of algebraically closed fields, X is definable in (C, +, · ). (See
[13], 6.6.21) �

Recall that a definable X ⊆ K is strongly minimal if and only if it is infinite and
every proper definable subset is either finite or cofinite. Since algebraically closed
fields are strongly minimal, C is an example of a strongly minimal set in K.

Using C we can analyze other important definable sets. We say that f ∈ K{X} is
linear if and only if f (X) =

∑n
n=1 am X (m), for some a1, . . . , am ∈ K. The usual

theory of linear differential equations (see [14], §4) can be used to analyze zero sets
of linear differential polynomials.

Lemma 3.9 If f (X) ∈ K{X} is linear of order n, then V = {x ∈ K : f (x) = 0} is
an n-dimensional vector space over Cn .

Since C is a pure algebraically closed field and V is definably isomorphic to Cn , V
must have Morley rank exactly n. For nonlinear differential polynomials g ∈ K{X},
the Morley rank of the zero set may not equal ord(g), but ord(g) is always an upper
bound. For proofs and examples showing nonequality, see [14], §5.

If k ⊆ K and a ∈ Kn , we let k〈a〉 denote the differential subfield generated by
k(a). We let td(k〈a〉/k) denote the transcendence degree of k〈a〉 over k.

Proposition 3.10 If a ∈ Kn and td(k〈a〉/k) is finite, then RM(a/k) ≤ td(k〈a〉/k).
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Definition 3.11 We say that a ∈ K is δ-transcendental over k if f (a) 6= 0 for
all nonzero f ∈ k{X}. Otherwise, we say a is δ-algebraic over a. More generally,
we say that A ⊆ K is δ-independent over k if f (a1, . . . , an) 6= 0 for any n, any
a1, . . . , an ∈ A, and any nonzero f ∈ k{X1, . . . , Xn}.

It is worth noting that a may be δ-algebraic over k without being model theoretically
algebraic. For example, if a ∈ k, then a generic solution to X ′

= a will be δ-
algebraic but not algebraic.

Suppose k ⊆ K and a ∈ K is δ-transcendental over k. Then tp(a/k) is the
unique 1-type corresponding to the ideal {0}. By Proposition 3.10, all other 1-types
over k have finite Morley rank. By the analysis of linear differential polynomials,
RM(a/k〈a(n)

〉) = n. Thus RM(a/k) = ω.
It follows from Theorem 3.7 that if a is in the differential closure of k, then a is

δ-algebraic over k. Suppose not. Then tp(a/k) is isolated, but tp(a/k) is determined
by { f (v) 6= 0 : f ∈ k{X}}. Thus the isolating formula can be taken to be

f1(v) 6= 0 ∧ · · · ∧ fn(v) 6= 0

for some f1, . . . , fn ∈ K {X}. Let m > ord( fn) for all n. There is b in the differential
closure of k such that

b(m)
= 0 ∧

m∏
i=1

fi (b) 6= 0.

Since f1(b) 6= 0, . . . , fn(b) 6= 0, tp(a/k) = tp(b/k), a contradiction since
a(m)

6= 0 = b(m).
Proposition 3.10 is a special case of a more general relationship between model

theoretic and algebraic independence. Recall that Morley rank gives us a natural
notion of independence in any ω-stable theory.

Definition 3.12 We say that a is independent from B over A if

RM(a/A ∪ B) = RM(a/A).

We write a ^A B.

Example 3.13 If a0, . . . , an are δ-independent over k, then a0 is δ-transcendental
over k〈a1, . . . , an〉. Thus

RM(a0/k) = ω = RM(a0/k, a1, . . . , an)

and a0 ^k a1, . . . , an .

Example 3.14 Let a be δ-transcendental over k. Then a /̂ k a′, since over k〈a′
〉, a

satisfies the rank 1 formula X ′
= a′.

The following is one of the basic properties of independence; for a proof see [13],
6.3.19.

Lemma 3.15 (Symmetry) If a ^A b, then b ^A a.

Independence has a concrete algebraic meaning in differentially closed fields.

Definition 3.16 Let k ⊆ l1, l2 be fields. l1 and l2 are free over k if any
a1, . . . , an ∈ l1 algebraically dependent over l2 are already algebraically depen-
dent over k.
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Theorem 3.17 If k is a differential field and a, B ⊆ K |H DCF, then the following
are equivalent

(i) a ^k B,
(ii) k〈a〉 and k〈B〉 are free over k.

For a proof see [14], 5.6.
We will need the following lemma.

Lemma 3.18 If a is δ-transcendental over k and RM(b/k) < ω, then a ^k b.

Proof We first note that td(k〈b〉/k) is finite. If not, then some bi is differentially
transcendental over k and RM(b/k) ≥ ω.

If a /̂ k b, then k〈a, b〉 has finite transcendence degree over k〈b〉. But then k〈a, b〉

has finite transcendence degree over k, a contradiction. �

In our examples in Section 1 we needed the ability to realize some types while omit-
ting others.

Definition 3.19 Let p ∈ S(A), q ∈ S(B). We say p is orthogonal to q and write
p ⊥ q if a ^M b for any M ⊇ A ∪ B, a realizing p and b realizing q with a ^A M
and b ^B M .

Lemma 3.20 Suppose X is a strongly minimal set defined over K |H DCF, p is
the generic type of X over K , and p ⊥ q. Let b realize q. Then p is omitted in the
differential closure of K 〈b〉.

Proof Suppose a realizes p in the differential closure of K 〈b〉. There is ϕ(v) iso-
lating tp(a/K 〈b〉). Since p ⊥ q , a, and b are independent over K . Thus a is not
field-theoretically algebraic over K 〈b〉 and RM(ϕ) = 1. Since X is strongly mini-
mal, ϕ holds of some elements of X (K ), a contradiction. �

For strongly minimal sets A and B we say A ⊥ B if their generic types are orthogo-
nal.

4 Strongly Minimal Sets in DCF

To carry out a construction as in Section 1 we will need to find families of orthogonal
types. The types we will consider are generic types of strongly minimal sets. We
begin by reviewing some of the basics on the geometry of strongly minimal sets.
Recall that if X is a strongly minimal set we define a closure relation cl on X such
that for A ⊆ X , cl(A) is the model theoretic algebraic closure of A, that is, the set
of all b ∈ X such that there is a formula ϕ(v) with parameters from A such that
ϕ(b) and {x : ϕ(x)} is finite. In differentially closed fields, b is model theoretically
algebraic over A if and only if b is in the field-theoretic algebraic closure of the
differential field generated by A (see [14], 5.1).

Definition 4.1 A strongly minimal set X is trivial if

cl(A) =

⋃
a∈A

cl({a})

for all A ⊆ X .
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Examples of trivial strongly minimal theories include
1. the theory of an infinite set with no additional structure, in this case

cl(A) = A;

2. the theory of (Z, s) where s(x) = x + 1, in this case

cl(A) = {x : x is reachable from A with finitely many iterations of s or s−1
}.

Definition 4.2 A strongly minimal set X is locally modular if for all b, c ∈ X and
A ⊆ X if c ∈ cl(A ∪ {b}), then there is a ∈ cl(A) such that c ∈ cl(a, b).

Any trivial strongly minimal set is locally modular. There are also nontrivial exam-
ples. For example, if X is a divisible torsion-free Abelian group, then cl(A) is the
span of A as a Q-vector space. If c ∈ cl(A ∪ {b}), then there are a1, . . . , an ∈ A and
rationals m1, . . . , mn, m such that

c = m1a1 + · · · + mnan + mb.

Letting a = m1a1 + · · · + mnan ∈ cl(A), we see that c ∈ cl(a, b). Thus X is lo-
cally modular. A key result of Hrushovski shows that any nontrivial locally modular
strongly minimal set is nonorthogonal to an interpretable strongly minimal group
(see [16]).

Algebraically closed fields are the natural examples of nonlocally modular
strongly minimal sets. In this case cl is field-theoretic algebraic closure. If
a0, . . . , an−1 are algebraically independent and

bn
+ an−1bn−1

+ · · · + a1b + a0 = 0,

then b ∈ cl(a0, . . . , an−1), but b is not in the algebraic closure of any subfield of
cl(a0, . . . , an−1) lower transcendence degree.

For a time, algebraically closed fields were the only known examples of nonlo-
cally modular strongly minimal sets. This led Zilber to conjecture that there were
no others. Hrushovski [8] showed that there are many such examples, some of
which even have no infinite interpretable groups. Nevertheless, Zilber’s conjecture
has proved to be true in several natural contexts including differentially closed fields.

One of the fascinating properties of differentially closed fields is that all species
of strongly minimal sets arise. The first natural example is the constant field C .
Hrushovski and Sokolović [7] proved that, up to nonorthogonality, C is the only
nonlocally modular strongly minimal set.

Theorem 4.3 If X ⊆ Kn is a nonlocally modular strongly minimal set, then there
is a definable finite-to-one function f : X → C. In particular, X 6⊥ C.

Hrushovski and Sokolović’s original proof used the work of Hrushovski and Zil-
ber [10] on Zariski geometries. Pillay and Ziegler [18] later gave a more straightfor-
ward geometric proof avoiding Zariski geometries.

We also know of many examples of trivial strongly minimal sets. For example,

X ′
= X3

− X and X ′
=

X
X + 1

define infinite sets on indiscernibles with no structure (see [14], §6). These examples
arose independently in proofs by Rosenlich, Kolchin, and Shelah that the differential
closure of Q is not minimal. Hrushovski and Itai [6] and Rosen [20] have also
constructed interesting families of trivial strongly minimal sets living on curves of
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genus g ≥ 2. While there are many orthogonal trivial strongly minimal sets, they
won’t be helpful in building countable models as all of the known examples are
infinite dimensional.5 Indeed, the following conjecture remains open.

Conjecture 4.4 In any differentially closed field, every trivial strongly minimal set
is infinite dimensional.

Thus we need to find families of nontrivial locally modular strongly minimal sets.
These sets already arose in differential algebraic geometry in the work of Manin [11]
and Buium [2]. Before describing these sets we review some algebraic geometry.
We refer to [5] for facts about Abelian varieties.

Let K be an algebraically closed field of characteristic 0.

Definition 4.5 An Abelian variety is a subvariety A ⊆ Pn(K ) such that there is a
rational map m : A × A → A making A into a group.

The simplest example is an elliptic curve

Y 2
= X3

+ aX + b

together with a point O = (0, 1, 0) at infinity. For an elliptic curve E the group law
is given so that

1. O is the identity of the group;
2. (x, −y) is the inverse of (x, y);
3. for distinct points A, B, C ∈ E

A + B + C = O

if and only if A, B, C are colinear.

Proposition 4.6 Every Abelian variety is a divisible commutative group. If A has
dimension d, then there are n2d points of order n.

Definition 4.7 We say A is simple if A has no proper infinite Abelian subvarieties.

Definition 4.8 Abelian varieties A and B are isogenous if there is a rational group
homomorphism f : A → B with finite kernel.

We will need more detailed information about elliptic curves. Consider the elliptic
curve E

Y 2
= X3

+ aX + b.

The j-invariant of the curve j (E) is 6912a3

4a3+27b2 .

Theorem 4.9

(i) Let L be an algebraically closed field of characteristic 0. For j ∈ L there is
E defined over L with j (E) = j .

(ii) E ∼= E1 if and only if j (E) = j (E1).
(iii) If E and E1 are isogenous, then j (E) and j (E1) are interalgebraic over Q.

In classical algebraic geometry, Abelian varieties are very different from linear al-
gebraic groups. Indeed any rational homomorphism from an Abelian variety to a
linear algebraic group is constant. However, using the derivation we are able to
get differential-algebraic group homomorphisms and these frequently give rise to
strongly minimal sets. For proofs see [12] and [15].
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Theorem 4.10 (Manin-Buium) Let K be a differentially closed field. If A is an
Abelian variety defined over K , there is a definable homomorphism µ : A → K n

such that the kernel of µ is the Kolchin closure of the torsion points of A.

For example, if E is the elliptic curve

Y 2
= X3

+ aX + b

where a, b ∈ C then µ(x, y) =
x ′

y
.

Let A] be the Kolchin closure of the torsion points. If A is defined over C , then
A]

= A(C), the points of A in Pn(C). We can now give a complete characterization
of locally modular strongly minimal sets in DCF.

Theorem 4.11 (Hrushovski–Sokolović) If A is a simple Abelian variety that is
not isomorphic to an Abelian variety defined over the constants, then A] is a lo-
cally modular strongly minimal set. If B is another Abelian variety that is not
isomorphic to an Abelian variety defined over the constants, then A] and B] are
nonorthogonal if and only if A and B are isogenous. Moreover, if X ⊆ Kn is any
nontrivial modular strongly minimal set, then X is nonorthogonal to A] for some
simple Abelian variety A.

5 Constructing Many Models

Let κ be an infinite cardinal. We are now ready for the proof that there are 2κ non-
isomorphic differentially closed fields of cardinality κ .

For a ∈ K, let E(a) be the elliptic curve with j-invariant a, let E(a)] be the
δ-closure of the torsion points and let pa ∈ S(a) be the generic type of E(a)]. Let r
be the type of a δ-transcendental element.

For k ⊆ K we let kalg be the algebraic closure of k and kdif be a differential
closure of k in K. We make several observations.

1. E(a)] is strongly minimal and the type pa is determined by x ∈ E(a)],
x 6∈ Q〈a〉

alg.
2. The torsion points of E(a) are contained in Q(a)alg. Hence Q〈a〉 contains

infinitely many points of E(a)].
3. If pa 6⊥ pb, then E(a) and E(b) are isogenous and a and b are interalgebraic

over Q.
4. By Lemma 3.18, pa ⊥ r for all a ∈ K.

Lemma 5.1 pa is not realized in Q〈a〉
dif.

Proof Suppose b ∈ Q〈a〉
dif realizes pa . Let ϕ(v) isolate tp(b/Q〈a〉). Since

b 6∈ Q〈a〉
alg, ϕ(v) defines an infinite subset of E(a)], but then it must contain a

torsion point of E(a). But the torsion points are in Q(a)alg, a contradiction. �

Let G be a graph with vertex set A where |A| = κ and every vertex has valence
at least 2. Let K0 = Q〈A〉

dif where the elements of A are δ-independent. Let
B = {a + b : a, b ∈ A, (a, b) ∈ G}. Note that the elements of B are also δ-
transcendental. The types {pc : c ∈ A ∪ B} are pairwise orthogonal.

Lemma 5.2 If a ∈ A ∪ B, then pa is omitted in K0.

Proof Suppose a ∈ A (the other case is similar). By Lemma 5.1, pa is omitted in
Q〈a〉

dif. Then pa is omitted in K0 ∼= (Q〈a〉
dif)〈A \ {a}〉)dif, since r ⊥ pa . �
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Lemma 5.3 There is K (G) |H DCF with K (G) ⊃ K0, |K (G)| = |G| where, if
c ∈ A ∪ B, dim(pc, K (G)) = 0 while if c is δ-transcendental and pc ⊥ pa for all
a ∈ A ∪ B, then dim(pa, K (G)) = ℵ0.

Proof We build K0 ⊆ K1 ⊆ · · · ⊆ Kα . . . . Suppose c ∈ Kα and pc ⊥ pa for all
a ∈ A ∪ B. We can build Kα+1 ⊇ Kα realizing a new realization of pc and adding
no new realizations of pa for a ∈ A ∪ B. With careful bookkeeping we construct
K (G) =

⋃
Kα . �

We now must show that we can reconstruct the graph G from K (G).

Lemma 5.4 /̂ is an equivalence relation on realizations of r .

Proof For a, b realizing r , a /̂ b if a is differentially algebraic over k〈b〉. If a /̂ b
and b /̂ c, then Q〈a, b, c〉 is differentially algebraic over Q〈a, b〉 which is differen-
tially algebraic over Q〈a〉. Thus a /̂ c. �

Let [a] be the /̂ -class of a. Let S = {[a] : a realize r, dim(pa, K (G)) = 0}. For
each [a] ∈ S there is a unique c ∈ A ∪ B such that [c] = [a], since if pc 6⊥ pa for
some a ∈ A∪B, then E(c) and E(a) are isogenous and a and c are field-theoretically
interalgebraic.

We say that {[a], [b], [c]} ∈ S3 is a triangle if a, b, c are pairwise independent but
not independent. This does not depend on choice of representative. If, say, a1 /̂ b1,
then a /̂ a1 /̂ b1 /̂ b, and, since /̂ is an equivalence relation, a /̂ b. Since

Q〈a1, b1〉 ⊆ Q〈a1, b1, a, b〉 ⊆ Q〈a1, b1, a, b, c〉 ⊆ Q〈a1, b1, a, b, c, c1〉

and each of these extensions is of finite transcendence degree, the transcendence
degree of Q〈a1, b1, c1〉 over Q〈a1, b1〉 is finite and c1 /̂ a1, b1. Hence a1, b1, c1 are
pairwise independent but not independent.

Proposition 5.5 Every triangle is of the form {[a], [b], [a + b]} where a, b ∈ A.

Proof There are x, y, z ∈ A ∪ B where the triangle is ([x], [y], [z]). We consider
four cases.

Case 1 x, y, z ∈ A. Any three distinct elements of A are independent, so this is
not a triangle.

Case 2 x, y, z ∈ B. Up to permutation, we may assume that there are independent
a, b, c, d, e, f ∈ A such that x = a + b and one of the following cases occurs.

(i) y = a + c and z = a + d . Since d, and hence z, is δ-transcendental over
Q〈a, b, c〉 ⊃ Q〈x, y〉, x, y, z is independent, a contradiction.

(ii) y = a + c and z = b + d. Similar to (i).
(iii) y = a + c and z = b + c. In this case Q〈a, b, c〉 = Q〈x, y, z〉, a contradic-

tion.
(iv) y = a + c and z = d + e. Since Q〈z, e〉 = Q〈d, e〉 has δ-transcendence

degree 2 over Q〈a, b, c〉, z is differentially transcendental over Q〈x, y〉, a
contradiction.

(v) y = c + d and z = e + f . Similar to (iv).
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Case 3 x ∈ A, y, z ∈ B. There are four possibilities to consider.

(i) y = x + a, z = x + b where a, b ∈ A are distinct. In this case x, y, z are
interdefinable with x, a, b and hence independent.

(ii) y = x + a, z = b + c where a, b, c ∈ A are distinct. In this case b and c and
hence z are independent from a, x which is interalgebraic with x, y. Thus
x, y, z are independent.

Similar arguments work to rule out the latter two cases.

(iii) y = a + b, z = a + c where a, b, c ∈ A are distinct.
(iv) y = a + b, z = c + d where a, b, c, d ∈ A are distinct.

Case 4 x, y ∈ A and z ∈ B. There are three possibilities: z = x + a where
a ∈ A \ {x, y}, z = a + b where a, b 6∈ {x, y}, or z = x + y. In the first two cases
z ^ x, y, contradicting the assumption that x, y, z is not independent. Thus we have
z = x + y. �

We can now recover the graph. Let V = {[a] ∈ S : there are at least two triangles
containing [a]}. Since every vertex has valence at least two, V = {[a] : a ∈ A}.

Let E = {([a], [b]) : there is a triangle {[a], [b], [c]}}. Then (V, E) ∼= G.

Theorem 5.6 κ ≥ ℵ0. There are 2κ nonisomorphic DCF of cardinality κ .

For κ > ℵ0, this was proved by Poizat using trivial strongly minimal sets instead of
E(a)].

Differentially closed fields also provide an example for Calvert’s question about
ω-stable theories where the isomorphism problem is complete 61. This is proved
by carefully doing the preceding construction using Harrington’s result [4] that the
differential closure of a recursive differential field is recursive.

DOP and ENI-DOP We conclude by describing the general results that we have
illustrated in Sections 1 and 4.

Definition 5.7 A theory T has the Dimension Order Property (DOP) if there are
models M0 ⊆ M1, M2 ⊆ M with M prime over M1 ∪ M2, p ∈ S(M) such that
p ⊥ M1 and p ⊥ M2.

In our case we could take K0 differentially closed, a, b δ-independent over K0,
K1 = K0〈a〉

dif, K2 = K0〈b〉
dif, K = K0〈a, b〉

dif, and p = pa+b.
We say that T has ENI-DOP if we can choose the type p to be strongly regular,

nonisolated (as in our case), or more generally, nonisolated after adding finitely many
parameters. Here ENI stands for “eventually nonisolated.”

1. In DCF, the type pa is nonisolated over a (since there are infinitely many
torsion points algebraic over a), so we have ENI-DOP.

2. In T1 of Section 1 the generic type is isolated over a, but once we have a
realization b it is nonisolated over a, b, so we have ENI-DOP.

3. In T2 the generic type remains nonisolated, even if we add finitely many
realizations. In this case we have DOP but not ENI-DOP.

Theorem 5.8 (Shelah) Let T be an ω-stable theory with DOP. If κ ≥ ℵ1, there are
2κ nonisomorphic models of cardinality κ . Further, if T has ENI-DOP, then there
are also 2ℵ0 countable models.
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Notes

1. Their influential paper [7] has never appeared—though the proof of Vaught’s Conjecture
appears in Pillay’s survey paper [15].

2. The referee has pointed out that, for the examples given in this paper, we can use a much
simpler coding, by letting dim(π−1(v)) = 1 for v ∈ A and dim(π−1(v)) = 2 for v ∈ B.

3. Note, for Exercise 2.7, that this is not true if V is a vector space over a field of charac-
teristic 2.

4. Instead of looking at a single derivation we could look at several commuting derivations.
This theory still has a well-behaved model theory, but there is no analog of the Blum
axiomatization.

5. Poizat showed trivial strongly minimal sets can be used to build 2κ models of size
κ ≥ ℵ1 (see [14], §7).
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