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Computability of Homogeneous Models

Karen Lange and Robert I. Soare

Abstract In the last five years there have been a number of results about the
computable content of the prime, saturated, or homogeneous models of a com-
plete decidable (CD) theory T in the spirit of Vaught’s “Denumerable models of
complete theories” combined with computability methods for (Turing) degrees
d ≤ 0′. First we recast older results by Goncharov, Peretyat’kin, and Millar in
a more modern framework which we then apply. Then we survey recent results
by Lange, “The degree spectra of homogeneous models,” which generalize the
older results and which include positive results on when a certain homogeneous
model A of T has an isomorphic copy of a given Turing degree. We then survey
Lange’s “A characterization of the 0-basis homogeneous bounding degrees” for
negative results about when A does not have such copies, generalizing negative
results by Goncharov, Peretyat’kin, and Millar. Finally, we explain recent results
by Csima, Harizanov, Hirschfeldt, and Soare, “Bounding homogeneous models,”
about degrees d that are homogeneous bounding and explain their relation to the
PA degrees (the degrees of complete extensions of Peano Arithmetic).

1 Introduction

Vaught [34] studied countable models of a countable complete theory T and intro-
duced the notions of prime, homogeneous, and saturated models, defined using the
types in the Stone space S(T ). These models, which we call Vaughtian models, have
played an important role both in classical model theory and in computable model
theory. (We shall give all formal definitions in later sections.)

Convention 1.1 (Countability Convention) Unless otherwise stated all theories
T here will be consistent, countable, and complete, having infinite models, as
in Vaught [34], and all models A of T will be countable, as in Vaught [34], Sec-
tions 1 – 4.
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1.1 Early results on computability of Vaughtian models During the 1970s, re-
searchers combined computability theory with these Vaughtian models by consid-
ering a complete decidable (CD) theory T and examining the computable content
of these models and of the Vaught-style constructions. For a (Turing) degree d,
a model A of T is d-decidable if its elementary diagram De(A) is d-computable
and A is d-computable if its atomic diagram D(A) is d-computable. (Note that we
use the same terminology for degrees and sets.) Harrington [9] and independently
Goncharov-Nurtazin [8] found a criterion under which a complete atomic decidable
(CAD) theory T has a decidable prime model. Morley [25], and independently Mil-
lar [24], gave a criterion under which a CD theory T with types all computable (TAC)
has a decidable saturated model. Goncharov [7] and independently Peretyat’kin [27]
gave a criterion expressed in terms of types for the decidability of a homogeneous
model A of a CD theory. In later sections we shall review these and other older
results and recast some in a modern format suitable for application to recent results.

1.2 Other degrees beside 0 and 0′ Generally, the results of twenty or thirty years
ago drew a sharp dichotomy between 0 and 0′. They often showed that a CD theory
T with certain hypotheses does have a certain Vaughtian model (prime, saturated,
homogeneous) which is 0′-decidable but that it does not always have a 0-decidable
such model.

After Post’s Problem [28] was solved, a great deal of attention in computability
theory has been given to degrees d such that 0 < d < 0′, to degrees of complete
extensions of Peano Arithmetic (PA degrees), and to other classes of degrees. For
example, Martin’s beautiful theorem [21] related the high computably enumerable
(c.e.) degrees to the degrees of maximal sets. Likewise, results of the last five years
link Vaughtian models to these rich classes of degrees, which sharpen our under-
standing of both the model theory and the computability theory.

A degree d ≤ 0′ is high n if d(n) = 0(n+1), the highest possible value. A degree
d is lown if d(n) = 0(n), the lowest possible value, and d is high if it is high1 and
low if it is low1. A degree d is a Peano Arithmetic (PA) degree if d is the degree of a
complete extension of the effectively axiomatized theory of Peano Arithmetic.

1.3 Recent results on prime models Let T be a complete atomic theory. Vaught
proved that T has a prime model. (See Vaught [34], Theorem 2.2.1 and Theorem 3.5;
see also Marker [20], Theorem 4.2.10.) Decades ago it was noted that if T is a com-
plete atomic decidable (CAD) theory, then Vaught’s proof produces a 0′-decidable
prime model because the question of whether a formula θ(x) splits is a51-property.
Hence, a 0′-oracle can extend any formula to an atom and can produce a prime model.

Moving to a finer classification of the degree spectrum of prime models, Csima [3]
considerably strengthened this result by proving that every CAD theory T has a
prime model whose degree is 1-generic and hence has low degree. Csima also
showed that if T has types all computable (TAC) then every nonzero degree d ≤ 0′

is realized as the degree of a prime model. By a clever and very short proof,
Hirschfeldt [12] extended this to all nonzero degrees. Csima has other results about
degrees of prime models below 0′ including halves of minimal pairs, avoiding
cones, and results which suggest a profusion of such degrees, although their exact
classification in the non-TAC case remains open.
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Epstein [6] has been exploring the properties of computably enumerable degrees
of prime and homogeneous models. Epstein has improved Csima’s low prime model
theorem to show that any CAD theory T has a prime model of low c.e. degree and
that many of Csima’s other results on degrees of prime models can be sharpened
to c.e. degrees. She has also explored the extent to which results about degrees of
homogeneous models can be sharpened to c.e. degrees.

These results have to do with the spectrum of degrees of prime models for a
given CAD theory T . Now we define a degree d to be prime bounding if every
CAD theory T has a d-decidable prime model. Csima, Hirschfeldt, Knight, and
Soare [5] showed that a 10

2 degree d is prime bounding if and only if it is nonlow2
(d′′ > 0′′). That paper contains eight properties about a bounding set X , some
computability theoretic properties (X nonlow2, X can compute an escape function),
and some purely algebraic or topological (X can compute a path through a certain12
dense open set, X can omit certain types, X can compute certain reduced p-groups).

Surprisingly all eight properties were proved equivalent for X ≤ 0′. However,
without the hypothesis X ≤ 0′ the situation is much more complicated. In this
general framework of X 6≤ 0′, Conidis [2] has used forcing arguments and priority
arguments to determine the implications and nonimplications between these proper-
ties. Separating some of these properties is extremely complicated, but has a general
mathematical flavor since these properties are found in many branches of mathemat-
ics.

1.4 Recent results on saturated models For saturated models we consider a CD
theory T with types all computable (TAC) because any noncomputable type must
be realized in any saturated model A of T and will therefore raise the degree of
the elementary diagram De(A), perhaps even out of the arithmetic hierarchy. It is
easy to see that Vaught’s proof shows that T has a 0′-decidable model. Morley and
Millar independently showed that T has a 0-decidable saturated model if the types
of S(T ) are uniformly computable, but Millar produced a CD + TAC theory T with
no 0-decidable saturated model.

A degree d is saturated bounding if every CD theory with TAC has a d-decidable
saturated model. Macintyre and Marker [19] proved that every PA degree is sat-
urated bounding. Harris [10] proved that this result also follows from work of
Jockusch [13], as does the fact that every high degree is saturated bounding.

In the other direction, Harris [11] first proved a new and very elegant characteri-
zation of the lown degrees in terms of escape functions. Using this characterization,
he established in [10] that no c.e. degree d that is low or even lown can be saturated
bounding.

1.5 Copies of a homogeneous model: Positive results Morley [25] helped initiate
the study of when a homogeneous model A of a complete decidable theory T has
a decidable copy B. Clearly, there must be a uniformly computable enumeration
X = {p j } j∈ω of the set of types T(A) realized in A. We call X a 0-basis for
T(A). (There could be many such 0-bases, some more favorable for our purposes
than others.) Morley’s Question 3.7, which heavily influenced all these results, was
whether every homogeneous model A with a 0-basis X has a decidable copy.

Goncharov [7] and Peretyat’kin [27] showed that the computability of an addi-
tional function on the 0-basis X is required, an effective extension function (EEF),
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a computable function f for extending a type p ∈ T(A) to a certain other type
q ∈ T(A) (see Definition 4.2). Both in the positive and negative direction, a more
useful property is Goncharov’s notion of a monotone extension function (MEF) (Def-
inition 4.6), a computable function ĝ which gives a monotone 10

2 approximation to
an extension function g(x) = lims ĝ(x, s). In Section 4.4 we explore the relation of
the EEF to MEF.

Fix a homogeneous model A of a CD theory T for which T(A) has a 0-basis but
no EEF (and hence no decidable copy). Lange [18] studied the degrees of isomor-
phic copies of A and proved three results which are positive in that they show the
existence of copies of A of a certain degree. Some results use the EEF/MEF func-
tions relativized to the appropriate oracles. First, Lange used a forcing argument to
show that A always has a copy of 1-generic degree and, therefore, of low degree.
This holds even with the weaker hypothesis of a 0′-basis (Definition 5.1) in place of
a 0-basis and implies the Csima low basis theorem for prime models [3] mentioned
above. Second, she showed that if d ≤ 0′ is not low2 (d′′ > 0′′) then A has a copy
of degree d. Note that we always work with the hypothesis that all types realized
in A are computable, that is, T(A) satisfies TAC, but so far we have not examined
those types p not realized in A, that is, p ∈ S(T ) − T(A). It might seem that
these will not affect the degrees of copies of A, but they have a strong effect. For
her third result in the positive direction, Lange proved that if all types in S(T ) are
computable, then every nonzero degree is the degree of some copy of A. This uses
a device by Hirschfeldt [12] to prove the corresponding result for prime models, but
neither theorem implies the other.

1.6 Copies of a homogeneous model: Negative results In the other direction,
Goncharov [7], Peretyat’kin [27], and Millar [23] negatively answered Morley’s
Question 3.7 by constructing a CD theory T and a homogeneous model A of T
with a 0-basis but no decidable copy. To better understand the results we present a
slightly different approach. By the EEF Theorem 4.3 mentioned above and its rela-
tion to the MEF Theorem 4.8 described in Section 4.4, this result is equivalent to our
constructing a homogeneous model A and a 0-basis X such that X has no MEF. This
makes it easier to build a homogeneous model A and some 0-basis X for T(A) and
to diagonalize over all possible MEF functions for X , thereby ensuring that A has
no decidable copy.

Lange [17] then obtained a much stronger negative result by constructing a CD
theory T , a homogeneous model A of T , and a 0-basis X for A such that A has no
low2 copy. Hence, Lange’s nonlow2 homogeneous bounding result in the preceding
section is best possible.

1.7 Homogeneous bounding degrees So far we have been considering the de-
grees of copies of a fixed model A of a single CD theory T . Now, by analogy with
the prime model case, let us define a degree d to be homogeneous bounding if for
every CD theory T there is a d-decidable homogeneous model A of T . A degree d
is a PA degree if d is the degree of a complete extension of Peano Arithmetic (PA).
There are a number of equivalent definitions, one of which is equivalent to Weak
König’s Lemma about the existence of an infinite path f ≤ d through an infinite
computable binary tree T .
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There are several different proofs that every PA degree is homogeneous bound-
ing, one of which we shall sketch in Section 7. In addition, the paper by Csima,
Harizanov, Hirschfeldt, and Soare [30] proved the converse that every homogeneous
bounding degree is a PA degree. We give a brief idea of the proof which requires
constructing a CD theory T such that any homogeneous model is able to separate a
pair of effectively inseparable c.e. sets, another equivalent property of PA degrees.
The proof gives some insight into the property of a model being homogeneous.

1.8 History and terminology of Vaughtian models We define Vaughtian models to
be countable models of a complete theory T which are prime, saturated, or homoge-
neous. This is the background. Vaught [34] cites Ryll-Nardzewski [29] who proved
that a complete countable theory T is ω-categorical if and only if the Lindenbaum
algebra Bn(T ) is finite for every n. In the sufficiency direction Ryll-Nardzewski
proved that if Bn(T ) is finite for every n and A and B are models of T then the
atoms of Bn(T ) can be used to produce the isomorphism from A to B. This is close
to Vaught’s later proof that if A and B are countable and atomic then they are iso-
morphic. Ehrenfeucht had invented the omitting types argument and used it to prove
the necessary direction of Ryll-Nardzewski’s theorem. Ryll-Nardzewski does not
mention the notion of prime models, which had been studied by Robinson for ordi-
nary (nonelementary) embeddings. He, however, had been studying model-complete
theories where these coincide. All these elements on prime models, countable atomic
models, omitting types, atoms and atomless elements of Bn(T ), atomistic (atomic)
algebras Bn(T ), were brought together by Vaught first in an abstract [32], and then
in his main paper [34].

Vaught ([34], p. 1) boldly introduced the notion of a (countable) model A being
homogeneous before prime or saturated (although most model theory books do the
reverse). He defined A to be homogeneous as in Definition 2.7 if every finite partial
map can be extended to an automorphism of A. This is apparently the first time this
notion has appeared in the literature. Previously there had been several papers, such
as Jonsson [15], [14], Vaught [33], [31], and Morley-Vaught [26], on the term “ho-
mogeneous universal” systems, but this always had meant “saturated,” never simply
“homogeneous,” and had always referred to uncountable models of large cardinality.
Vaught [32] had declared a “saturated” model to mean a countable which is an ele-
mentary extension of every countable model of T . Thus, Vaught [32] and [34] was
the first to study homogeneous or countable saturated models of T .

We conclude that it is fair to say that, in the countable case, Vaught introduced
the now standard concepts of prime (and atomic), saturated, and homogeneous mod-
els. For this reason, we call prime, saturated, and homogeneous countable models
“Vaughtian models.”

2 Preliminary Results and Notation

Let T be a (consistent) theory in a computable language L. We replace L if nec-
essary by Lc, an expansion obtained by adding an infinite set of new (Henkin) con-
stants C = {c j } j≥1 and letting Tc be the theory in Lc consisting of T together with
usual Henkin axioms of the form (∃x)θ(x) → θ(c j ) for some c j . Note that Tc is a
conservative extension of T and has the same Turing degree. Any complete exten-
sion of Tc in Lc corresponds to the elementary diagram De(A) of the corresponding
canonical Henkin model. (See Marker [20], p. 39.) By Lindenbaum’s Lemma we can
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always find a complete extension of Tc, but if we want the corresponding canonical
model to have special properties such as being prime, saturated, or homogeneous,
we must control the types realized in A.

2.1 Trees and 50
1 classes The Vaught theorems and our computability theoretic

results make considerable use of trees. Types will be viewed as paths on trees, and all
the familiar terminology and results about types will be developed first for trees. We
begin the tree definitions here and continue with more properties in Definition 2.5
on atomic trees and atomic theories and models where we define atoms and isolated
(principal) types.

Definition 2.1 (Trees, Part 1)

(i) A tree T ⊆ 2<ω is a subset of 2<ω closed under initial segment; that is,
τ ⊂ σ ∈ T implies τ ∈ T . Define the set of (infinite) paths,

[ T ] = { f : f ∈ 2ω & (∀x)[ f � x ∈ T ] }. (1)

(ii) Cantor space is 2ω with the following topology. (In the context of trees of types
with the same topology this is called the Stone Space.) Let σ ⊂ f denote that f
extends σ . For every σ ∈ 2<ω define the basic open set,

Uσ = { f : f ∈ 2ω & σ ⊂ f }.

(iii) A class C ⊂ 2ω is closed if 2ω − C is open or equivalently if C = [T ] for
some tree as in (1).

(iv) If C = [T ] for some computable tree T , then C is effectively closed and is
called a 50

1-class, a very important concept.

(v) A tree T is extendible if every node σ can be extended to an infinite path in T ;
that is,

(∀σ ∈ T ) (∃ f ⊃ σ) [ f ∈ [T ] ].

A 50
1-class C is extendible if C = [ T ] for some extendible tree T , and C is nonex-

tendible otherwise.

2.2 The Lindenbaum algebra Bn(T ) of formulas From now on let L be a com-
putable language, meaning we can effectively determine the arity of the function,
relation, and constant symbols.

Definition 2.2 (Lindenbaum Algebra)

(i) Let Fn(L) be set of the formulas θ(x0, . . . , xn−1) of L with free variables in-
cluded in x0, . . . , xn−1. Let F(L) = ∪n≥0 Fn(L).

(ii) The equivalence class of θ(x) ∈ Fn(L) under T -provability `T is

θ∗(x) = { γ (x) : `T (∀x) [ θ(x) ↔ γ (x) ] },

and the Lindenbaum algebra Bn(T ) consists of these equivalence classes under the
induced operations. We often identify θ(x) and its equivalence class θ∗(x).

(iii) Let { θi (x) }i∈ω be an effective listing of Fn(L). For every string α ∈ 2<ω define[
θα(x)

]
=

∧∧
{ θ

α(i)
i (x) : i < |α| }

where θ1
= θ and θ0

= ¬ θ.
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2.3 The Stone space Sn(T ) as paths in the tree Tn(T )

Definition 2.3 Let T be a complete L-theory.

(i) A formula θ(x) ∈ Fn(L) is consistent with T if T ∪ (∃x)θ(x) is consistent, that
is, if T ` (∃x)θ(x), because T is complete. Let Fn(T ) be the subset of Fn(L)
consisting of all formulas consistent with T .

(ii) Define the tree of n-ary formulas consistent with T ,

Tn(T ) = { θα(x) : α ∈ 2<ω & (∃x)θα(x) ∈ T }.

If α ⊂ β, then we say that β lies below α, that θβ extends θα and contains more
information. (Note that the equivalence classes {[ θα ] : α ∈ Tn(T )} generate the
Lindenbaum algebra Bn(T ) under the Boolean operations.)

(iii) We regard α as an index of θα . Define the tree of indices,

T̂n(T ) = {α : θα ∈ Tn(T ) }.

The trees Tn(T ) and T̂n(T ) are effectively isomorphic but T̂n(T ) ⊆ 2<ω and is no-
tationally simpler. Hence, any definitions or results on trees T̂ ⊂ 2<ω automatically
carry over to Tn(T ). We mostly suppress explicit mention of T̂n(T ) and simply iden-
tify α and θα(x).

Definition 2.4 (Types and the Stone Space)

(i) An n-type of T is a maximal consistent subset p of formulas of Fn(T ). There is a
1-1 correspondence between paths f ∈ [ T̂n(T ) ] ⊂ 2ω and the corresponding types
p f ∈ [Tn(T ) ] where

p f = { θα(x) : θα(x) ∈ Tn(T ) & α ⊂ f }.

(ii) Sn(T ) is the set of all n-types of T , with the usual topology as in Definition 2.1,
and it is also called the Stone Space (i.e., the dual space of the Boolean algebra
Bn(T )). The clopen sets of the Cantor space are given by

Uα = { f : α ⊂ f }.

(iii) Define S(T ) = ∪n≥1 Sn(T ). (We can also regard S(T ) as homeomorphic to
a subset of 2ω as follows. Build a tree T ⊂ 2<ω by putting 1n̂0 on T and then
putting an isomorphic copy of T̂n(T ) above it on T .)

(iv) Hence, S0(T ) is the set of complete extensions of T , that is, 0-types of T . Since
we assume T to be complete theory, S0(T ) consists of a single path. However,
S0(Tc) usually consists of more than one path. Since Tc is Henkinized, every such
path determines a Henkin model A of Tc.

2.4 Atomic trees and principal types We continue Definition 2.1 with properties
of trees which will also apply to types.

Definition 2.5 (Trees, Part 2) Let T ⊆ 2<ω be an extendible tree.

(i) Nodes β, γ are incomparable, written α | γ , if (∃k)[β(k)↓ 6= γ (k)].

(ii) Nodes β, γ ∈ T split node α on T if α ⊂ β, α ⊂ γ , and β | γ .

(iii) Node α ∈ T is an atom if no extensions split α on T . If α is an atom then
the unique extension of f ⊃ α on T is an isolated (principal) path of [ T ], α is a
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generator of f , and we say α isolates f . Note that f is isolated in the topological
sense by the basic open set Uα because

Uα ∩ [T ] = { f }.

(iv) For a complete theory T we define the set of principal types,

S P (T ) = { p : p is a principal type of S(T ) }.

(v) T is atomic if for every β ∈ T there is an atom α ⊇ β with α ∈ T , or
equivalently if the isolated points of [ T ] are dense in [ T ].

(vi) A complete theory T is atomic if tree Tn(T ) is atomic for every n ≥ 1.

2.5 The type spectrum T(A) of a model A

Definition 2.6 Let T be a theory and A a model of T .

(i) An n-tuple a ∈ A realizes an n-type p(x) ∈ Sn(T ) if A |H θ(a) for all
θ(x) ∈ p(x). In this case we say that A realizes p via a.

(ii) Define the type spectrum of A

T(A) = { p : p ∈ S(T ) & A realizes p }, and

(iii) Tn(A) = T(A) ∩ Sn(T ), the n-types realized in A.

In early papers some authors in computable model theory had used S(A) in place
of T(A). However, this conflicts with the standard usage in ordinary model theory
where Marker ([20], p. 115) defines SA

n (Y ) to be the set of n-types in the theory
ThY (A) of A for some Y ⊆ |A|. The use of Tn(A) is different from Marker’s
SA

n (Y ) because (1) we consider only pure types in the original language L = L(T )
and do not allow any extra names Y ⊆ |A| to be added; (2) we consider only those
types actually realized in A not merely those consistent with ThY (A). Marker has no
notation for our Tn(A). The use of Tn(A) rather than SA

n (Y ) is particularly useful
for studying homogeneous models as we now see.

2.6 The uniqueness theorem for homogeneous models Early in the history of
model theory Vaught [34] studied homogeneous models. Let A ≡ B denote ele-
mentary equivalence of A and B, A ∼= B denote isomorphism of A and B, and Aut
A denote the group of automorphisms of A.

Definition 2.7 A model A |H T is homogeneous if for all n-tuples a and b,

(A, a) ≡ (A, b) H⇒ (∃8 ∈ Aut A ) [ 8(a) = b ].

One of the most pleasant properties of homogeneous models is the following result
which demonstrates the usefulness of the notion T(A). (See Marker [20], Theo-
rem 4.3.23 for the general case and Theorem 4.2.15 for the countable case, which is
all we need in this paper. Apparently, the general case first appeared in Keisler and
Morley [16].)

Theorem 2.8 (Uniqueness of Homogeneous Models) Given a countable complete
theory T and homogeneous models A and B of T of the same cardinality

T(A) = T(B) H⇒ A ∼= B. (2)
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Hence, for an arbitrary homogeneous model A (and therefore for prime and satu-
rated models, which are necessarily homogeneous) the isomorphism type of A is
completely determined by the types realized in the model. This will be very use-
ful for passing from a homogeneous model A to an isomorphic copy B which is
d-decidable for an appropriate degree d. We simply construct a d-decidable homo-
geneous model B with T(B) = T(A).

2.7 Prime and saturated models The terminology of homogeneous models ap-
peared in Jonsson [14] and Vaught [33], [31], and [34], although the universal ho-
mogeneous models studied there were later seen to be equivalent to saturated. The
terminology of prime and saturated models appeared in Vaught [32] and [34].

Definition 2.9 Let T be a complete theory.

(i) A model A of T is prime if A can be elementarily embedded in any other model
B of T .

(ii) A is weakly saturated if T(A) = S(T ), and a countable model A is (countably)
saturated if A realizes every type defined over a finite set F ⊆ A.

Vaught [34] proved that a model A is prime if and only if A is countable and atomic,
that is, realizes only principal types. This is often taken as the defining property
of prime models. When we write “prime” we shall always mean “countable and
atomic.” Since we are dealing in this paper exclusively with countable homogeneous
models of a complete theory T we note the following.

Remark 2.10 (Vaught [34]) Let T be a complete theory and A be a countable
homogeneous model of T .

(i) A is prime iff T(A) = S P (T ), the principal types of T .

(ii) A is saturated iff A is weakly saturated iff T(A) = S(T ).

Proof Part (i) follows because T(A) ⊆ S P (T ) by Vaught’s prime model theorem
above. Furthermore, in a complete theory T any principal type p is realized in any
model A of T . Hence, T(A) = S P (T ).

Part (ii) follows because if A is countable and weakly saturated then S(T ) is
countable. Thus, T has a saturated model B which is homogeneous by Vaught [34].
But then T(A) = T(B) = S(T ). Hence, A ∼= B by the Homogeneous Uniqueness
Theorem 2.8. �

If A is a homogeneous model of a complete theory T , then we have

S P (T ) ⊆ T(A) ⊆ S(T ). (3)

If T(A) coincides with the left endpoint S P (T ), then A is a prime model. If T(A)
coincides with the right-hand endpoint S(T ), then A is a saturated model. Other-
wise, T(A) will take an intermediate value and the isomorphism type of A will be
completely determined by the type spectrum T(A). This will be helpful later in
constructing isomorphic copies of A while controlling the degree.

This situation is roughly analogous to the case of the countable models of a theory
T that is ω1-categorical but not ω-categorical. By the Baldwin-Lachlan theorem [1]
its countable models form an elementary chain of length ω + 1,

M0 ≺ M1 ≺ · · · ≺ Mω
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where M0 is the prime model and Mω is the countable saturated model of T . For
example, if T = ACF0, the theory of algebraically closed fields, then the countable
models Mi are all homogeneous, a special case of (3).

In the case of countable homogeneous models of T we may not have a countable
saturated model or even a prime model. However, if we do have a countable saturated
model, then we have a prime model so that the homogeneous models determined by
(3) form a partially ordered set

A0 ⊂ Aα ⊂ Aβ ⊂ · · · ⊂ Aω

with A0 the prime model contained in every member Aα , Aω the countable saturated
model containing every Aα , and the relationship of inclusion Aα ⊂ Aβ or incom-
parability Aβ |Aγ among the homogeneous models being determined entirely by the
inclusion relation of the types realized in them.

2.8 Realizing a type spectrum C in a homogeneous A

Definition 2.11 Let T be a complete theory. For an n-type p(x) ∈ Sn(T ) and an
(n + 1)-ary formula θ(x, y) ∈ Fn+1(T ) we say

θ is consistent with p if (∃y) θ(x, y) ∈ p(x). (4)

(Since T is a complete theory and p(x) is a maximal consistent subset of Fn(T )
we have either (∃y) θ(x, y) ∈ p(x) or ¬(∃y) θ(x, y) ∈ p(x). Hence, this exactly
expresses the consistency of θ and p.)

By Theorem 2.8, the isomorphism type of a homogeneous model A of a complete
theory T is determined entirely by its type spectrum T(A). To build a homogeneous
model A of T of a particular (Turing) degree we must first understand how to build
a homogeneous model A whose type spectrum is a given class C ⊆ S(T ). For any
homogeneous model A of T the type spectrum T(A) clearly satisfies the conditions
(i) – (v) in Theorem 2.12. Goncharov [7] and Peretyat’kin [27] proved the converse.

Theorem 2.12 (Type Spectrum Theorem; Peretyat’kin [27], Goncharov [7]) Let T
be a complete theory and C ⊆ S(T ) be a countable set with T ∈ C satisfying condi-
tions (i) – (v) below. Then T has a countable homogeneous model A with T(A) = C.

(i) Permutations
If p(x0, . . . , xn−1) ∈ C ∩ Sn(T ) and π is a permutation of {0, . . . , n − 1} then
p(xπ(0), . . . , xπ(n−1)) ∈ C.

(ii) Restriction
If p ∈ C ∩ Sn(T ) and m < n then p<m ∈ C where p<m is the restriction of p to
formulas in which only xi , i < m, appear free.

(iii) Disjoint Union
If p, q ∈ C ∩ Sn(T ) then there exists r ∈ C ∩ S2n(T ) such that

r(x0, . . . , x2n−1) ⊇ p(x0, . . . , xn−1) ∪ q(xn, . . . , x2n−1).

(iv) Type Amalgamation Property (TAP)
If p(x, xn), q(x, xn) ∈ C ∩ Sn+1 (T ) extend the same n-type r(x) ∈ C ∩ Sn(T ) then
there exists s ∈ C ∩ Sn+2 (T ) such that

s(x, xn, xn+1) ⊇ p(x, xn) ∪ q(x, xn+1).
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(v) Extension Property (EP)
For every n-type p(x) ∈ C ∩ Sn(T ) and (n +1)-ary θ(x, xn) ∈ Fn+1(T ) consistent
with p(x) (as in (4)) there exists q ∈ C ∩ Sn+1(T ) such that

p(x) ∪ {θ(x, xn)} ⊆ q(x, xn). (5)

3 Decidable Copies of a Homogeneous Model

By the 1970s Morley and others had explored the computable content of the
Vaughtian models A of a complete theory T .

3.1 Morley’s four properties Morley ([25], p. 236) noted the following four pos-
sible effectiveness properties of a model A of T arranging in decreasing order of
strength.

P1. There is a decidable model A.

P2. There is a uniformly computable listing of T(A).

P3. The types in T(A) are all computable; that is, T(A) satisfies TAC.

P4. The theory T is complete and decidable (CD).

Proposition 3.1 (Morley [25]) Morley noted the obvious implications

P1 H⇒ P2 H⇒ P3 H⇒ P4.

Remark 3.2 Morley ([25], p. 236) stated P1 – P4 and the above implications only
for the case of the saturated model A so that T(A) = S(T ).

In the same paper Morley noted that the last two implications could not be reversed.

Theorem 3.3 (Morley [25])

(i) P4 6H⇒ P3.

(ii) P3 6H⇒ P2.

There are now many examples of (i) and (ii) in the literature as we discuss later.

3.2 Presenting types for a complete decidable theory From now on we assume
that T is a complete decidable (CD) theory in a computable language L. We now
extend and sharpen the noneffective definitions for formulas and types presented in
Section 2.2 for the computable case.

Proposition 3.4

(i) If T is a complete decidable (CD) theory then Fn(T ) and more precisely the tree
Tn(T ) are both decidable.

(ii) If T is a CD theory, n > 1, and p is a computable (n-1)-type then Fn(T )/p
and the tree Tn(T )/p are computable where these are defined to be the formulas of
Fn(T ) which are consistent with p.

Proof (i) Since T is complete a formula, θ(x) ∈ Fn(L) is consistent with T if and
only if (∃x) θ(x) ∈ T . Therefore, since T is decidable Fn(T ) is also decidable.

(ii) We can do the same as in (i) but now we use the computability of both T and p
to test the projections for consistency with a given formula θ(x) ∈ Fn(T ). �
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Definition 3.5

(i) Given the fixed CD theory T let {θi }i∈ω be an effective numbering of F(T ) =

∪n Fn(T ).

(ii) For every n > 0 and n-type p we may assume p decides every k-ary formula
θ(x) for every k < n as follows. Define

θ ′(x0, . . . , xn−1) = θ(x) ∧ (∧ j<n(x j = x j )).

Add θ to p just if θ ′
∈ p already. Now associate with p a function f ∈ 2ω such that

f (i) = 1 if and only if θi ∈ p. Hence, every type corresponds to a function over all
formulas θi ∈ F(T ) but, clearly, f p( j) = 0 if θ j is a k-ary formula for k > n.

(iii) Let p be an n-type and q be a k-type for k < n. Then p and q are inconsistent
if and only if there exists a k-ary formula θi (x) such that f p(i) 6= fq(i), and are
consistent otherwise. If p and q are computable types then their consistency is a 51
condition.

(iv) For any type p ∈ S(T ) define p� s = p ∩ {θi }i<s . Identify p� s with the
function f p�s where f p(i) = 1 if and only if θi ∈ p.

3.3 Morley’s Question on decidable copies

Definition 3.6 Let C ⊆ S(T ) be a set of types of a CD theory T satisfying the
five conditions of the Type Spectrum Theorem 2.12. If there exists some uniformly
computable listing of C, X = {p j } j∈ω, then we call X a 0-basis for C. (Later we
generalize this to a d-basis for degrees d > 0 in Section 5.1.)

Morley [25] rapidly turned attention to the remaining implication of whether P2
implies P1, and Morley ([25], p. 239) posed the following key question which is
central to this paper.

Question 3.7 (Morley’s Question) If T is a complete decidable (CD) theory and A
is a homogeneous model of T with a 0-basis X for T(A), does A have a decidable
copy B? By the Homogeneous Uniqueness Theorem 2.8, this is equivalent to finding
a decidable homogeneous model B of T with T(A) = T(B).

Morley had evidence to support a positive answer since he knew it to be true for the
prime model case, and he himself had proved it for the saturated model case. Both of
these are priority arguments which we shall recast in terms of the effective extension
function for homogeneous models.

3.4 The decidable prime criterion

Definition 3.8 Let T be a CD theory.

(i) A set C ⊆ S(T ) is dense if (∀θ ∈ F(T )) (∃p ∈ C ) [ θ ∈ p ].

(ii) An effective selector function for a dense set C ⊆ S(T ) is a partial computable
function ϕ such that for every i if θi (x) ∈ Fn(T ), then ϕ(i) is defined and is the index
of the characteristic function of some computable type p ∈ Sn(T ) which includes θ .

Therefore, ϕ is an effective algorithm to witness that C meets every basic open
set Uθ of Fn(T ) (i.e., such that θ ∈ Fn(T )) by effectively producing a type in C in
Uθ .
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Theorem 3.9 (Decidable Prime Criterion; Harrington [9], Goncharov-Nurtazin [8])
Let T be a complete atomic decidable (CAD) theory. Then the following are equiva-
lent.

(i) T has a decidable prime model.

(ii) There is a uniform enumeration of S P (T ), the principal types of T .

(iii) There is an effective selector function f for S P (T ).

Proof The implication (i) H⇒ (ii) is immediate. The reverse implication (ii) H⇒

(i) is the main content and is proved later in Theorem 4.10. For later purposes it is
useful to reflect on the easy equivalence of (ii) and (iii).

(ii) H⇒ (iii). Let {p j } j∈ω be an effective listing of S P (T ). Given θi ∈ Fn(T ) let
f (i) be the least j such that p j ∈ S P

n (T ) and θi ∈ p j .

(iii) H⇒ (ii). Fix f . Every principal type p j ∈ S P
n (T ) contains some atom

θi ∈ Fn(T ), but being an atom θi has exactly one extension to some p ∈ Sn(T ), that
is, p j itself. Hence, p f (i) = p j and {p f (i)}θi ∈F(T ) uniformly enumerates S P (T )
because {θi }i∈ω uniformly enumerates F(T ). �

Remark 3.10 Note that for every CD theory T we have an effective selector func-
tion for C = S(T ). If θi ∈ Fn(T ), then θi is consistent and hence extendible on the
computable tree Tn(T ) to an infinite path. Indeed the lexicographically least path
qi extending θi will do and will be a computable path. This gives us a uniformly
effective procedure of passing from any θi ∈ Tn(T ) to the computable characteristic
function of a type qi extending it. However, F(T ) is countable so the set of types
Q = {qi }i∈ω obtained as the range of this procedure is also countable and may not be
nearly all of S(T ). (Think of the theory of dense linear orderings with the countable
set of rationals named. Every θ ∈ Tn(T ) can be extended to a path, but not all types
will be obtained this way.) Even if S(T ) is countable, it is possible that Q 6= S(T ).

The point is that in the atomic case we necessarily obtain Q = S(T ) because
for every type p ∈ S P (T ) there is a θi which isolated it. This means that under
the procedure above the only possible path qi extending θi is p itself. Therefore,
in Theorem 3.9, the proofs of (i) H⇒ (ii) and (ii) H⇒ (iii) hold for any model
of a CD theory T , but (iii) H⇒ (ii) holds only for an atomic model. Millar’s
theorem in [24] produced a CD + TAC theory T for which there is no computable
enumeration of S(T ) and hence no decidable saturated model. Hence, the analogue
of (iii) in Theorem 3.9 holds for S(T ) in place of S P (T ) but (i) and (ii) fail. Later
we shall make other remarks about selector functions.

For saturated models we need to uniformly list S(T ) not S P (T ).

Theorem 3.11 (Decidable Saturated Criterion; Morley [25], Millar [24]) Let T be
a complete decidable (CD) theory with types all computable (TAC). The following
are equivalent.

(i) T has a decidable saturated model.

(ii) There is a uniformly computable enumeration of S(T ).

The main content of both theorems is the implication (ii) H⇒ (i) which we shall
prove later in Theorem 4.11 using the effective extension property. Both involve a
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priority argument which arises during the effective construction for (i) because in-
consistencies between types reveal themselves in a 61 manner during the construc-
tion and we must change our target for a type p ∈ Sn(T ) to realize 〈c0, . . . , cn−1〉.
The problem is to arrange that this change (injury) occurs at most finitely often. In
the prime and saturated cases, condition (ii) suffices to guarantee convergence, but
in the full homogeneous case we need more.

4 EEF and MEF Functions for a 0-Basis X

Convention 4.1 For this section let A be a homogeneous model of a CD theory T
with 0-basis X = {p j } j∈ω for T(A), and fix the notation of Section 3.2.

Both Goncharov [7] and Peretyat’kin [27] negatively answered Morley’s Ques-
tion 3.7 by proving that A does not always have a decidable copy (as we discuss in
Theorem 6.1 in Section 6.1). However, they showed that A does have a decidable
copy A if there is a 0-basis X with an additional assumption known as the effective
extension property (EEP), an effectivization of the previous (noneffective) Extension
Property (EP) (i.e., condition (v) of the Type Spectrum Theorem 2.12).

First note that since the 0-basis X is uniformly computable it automatically has
an effective selector function of Definition 3.8 as in the proof of (ii) H⇒ (iii) of
the Decidable Prime Criterion 3.9 because given θ ∈ Fn+1(T ) we can uniformly list
the set Y θ of all types q ∈ X ∩ Sn+1(T ) which contain θ and choose the first such
type. However, to effectivize the EP of Theorem 2.12 (v) we must now choose q
extending a given n-type r ∈ Sn(T ) which is consistent with θ . We can still restrict
our search to the uniformly computable set Y θ (which eliminates any further depen-
dence on θ ). However, both types r and q are infinite sets (albeit computable) and
the question of whether they are inconsistent is merely a 61 property (not necessar-
ily computable). The following EEP property and its EEF function ensure that this
search is computable, not only 12. This is the source of finite injury in constructing
a decidable model in the Decidable Prime Criterion 3.9 or the Decidable Saturated
Criterion 3.11.

4.1 An effective extension function (EEF) for T(A)

Definition 4.2 (Effective Extension Function (EEF)) Let A be a homogeneous model
of a complete decidable (CD) theory T whose type spectrum T(A) has a 0-basis
X = {pi }i∈ω.

(i) A function f is an extension function (EF) for X if, for every n,
(a) for every n-type pi (x) ∈ X ∩ Sn(T )
(b) and every (n + 1)-ary θ j (x, xn) ∈ Fn+1(T ) consistent with pi (x)

the (n + 1)-type p f (i, j) ∈ X ∩ Sn+1(T ) extends both; that is,
pi (x) ∪ {θ j (x, xn)} ⊆ p f (i, j)(x, xn).

(Note that the EF function defined here is exactly that used in the Extension Property
(EP), condition (v) of Theorem 2.12.)

(ii) If f is also computable then f is an effective extension function (EEF).

Theorem 4.3 (EEP Theorem; Goncharov [7], Peretyat’kin [27]) Let A be a homoge-
neous model of a complete decidable (CD) theory T . Then A has a decidable copy
if and only if the type spectrum T(A) has a 0-basis X = {pi }i∈ω with an effective
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extension function (EEF). If so, we say that X has the effective extension property
(EEP) via f .

Goncharov [7] and independently Peretyat’kin [27] gave proofs of the EEP Theo-
rem 4.3.

4.2 Monotone approximations to an EEF Morley posed his Question 3.7 because
he knew the answer to be positive for certain special homogeneous models such as
prime or saturated models. Now in the hindsight of the EEP Theorem 4.3 we know
that if a prime or saturated model has a 0-basis X then it has one with an EEF. It
is not immediately obvious how to show this. There is a missing intermediate step
of producing a monotone extension function (MEF), that is, a 10

2 function which,
given the same inputs as the EEF, converges to the same answer after a finite number
of effective approximations. This concept, introduced by Goncharov ([7], p. 247)
under the name of “extending function,” is very useful both for the positive direction
where we show that a given homogeneous model A with EEP such as a prime or
saturated one does have a decidable copy and also in Section 5 where Lange proves
various relativizations in the positive direction. The MEF function is also important
for the negative direction in Section 6 of constructing a homogeneous model A and
a 0-basis X for T(A) such that A does not have a decidable copy, and it is crucial
for negative results in Lange, Section 6. Let θ j and pi � k be as in Section 3.2. We
now rearrange the MEF concept in a series of lemmas to present it more intuitively.

4.3 Monotone functions on a 0-basis X

Definition 4.4 (Monotone Function on X ) A function f (i) on X is a monotone
function on X if there is a computable function f̂ (i, s) such that

(i) f (i) = lims f̂ (i, s), and

(ii) p f̂ (i,s) � s ⊆ p f̂ (i,s+1) � (s + 1).

In this case we write f (i) = mlims f̂ (i, s).

The idea of a monotone function is that we are building a computable type
q = ∪s p f̂ (i, j,s) � s as the union of a monotone sequence {p f̂ (i, j,s) � s}. At
each stage s we add to the characteristic function q the initial segment p f̂ (i, j,s)� s.
Since we cannot later reverse that decision we need the monotonicity condition (ii) to
guarantee that the only types considered after stage s are those extending p f̂ (i, j,s)�s.

By adjusting X if necessary we may assume that every type pi ∈ X occurs infin-
itely often in X . Therefore, we shall assume that f̂ is monotonic in the sense of (ii)
and also the usual sense that f̂ (i, s) ≤ f̂ (i, s + 1).

Lemma 4.5 (Equality Lemma) If X = {pi }i∈ω and Y = {qi }i∈ω are 0-bases for
T(A) there is a monotonic function g on X such that pg(i) = qi .

Proof Define ĝ(i, s) = (µk > i) [ pk � s = qi � s ]. Now there is some pk ∈ X ,
k > i , such that pk = q j and g(i) = mlims ĝ(i, s) is the least such k. �
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4.4 A monotone extension function (MEF) for X

Definition 4.6 Let T be a CD theory with 0-basis X = {pi }i∈ω. A function f (i, j)
on X is a monotone extension function (MEF) for X if for every n-type pi ∈ X and
(n + 1)-ary formula θ j consistent with pi the following hold.

(i) The function f (i, j) is an extension function for X , as in Definition 4.2 (i).

(ii) There is a computable function f̂ such that f (i, j) = mlims f̂ (i, j, s) as in
Definition 4.4.

(iii) p f̂ (i, j,s)�s is consistent with pi .

Lemma 4.7 (MEF Transfer Lemma) If X = {pi }i∈ω and Y = {qi }i∈ω are 0-bases
for T(A) and X has an MEF function f (i, j) then Y also has an MEF function.

Proof Let f (i, j) = mlims f̂ (i, j, s) be an MEF for X . Fix an n-type qi ∈ Y and
an (n + 1)-ary formula θ j consistent with qi . By the Equality Lemma 4.5 there is a
monotonic function g(i) = mlims g(i, s) such that pg(i) = qi . Define computable
functions Ĵ (i, j, s) and F̂(i, j, s) simultaneously by induction on s.

Stage s = 0. Define Ĵ (i, j, 0) = j and F̂(i, j, 0) = f̂ (ĝ(i, 0), j, 0).

Stage s + 1. Define

Ĵ (i, j, s + 1) =

{
Ĵ (i, j, s) if ĝ(i, s + 1) = ĝ(i, s),

(µk)[ θk = pF̂(i, j,s)�s ] otherwise.

F̂(i, j, s + 1) = f̂ (ĝ(i, s + 1), Ĵ (i, j, s + 1), s + 1).

(The point is that the sequence { f̂ (i, j, s)} is guaranteed to produce the amal-
gamator only if the original inputs i and j remain fixed. Therefore, whenever
ĝ(i, s) 6= ĝ(i, s + 1) we must restart the f̂ function on a new pair of inputs and for
monotonicity we must give as θ ′ the conjunction of all θk ∈ pF̂(i, j,s) for k ≤ s since
we have already put these in the type pF(i, j) being constructed.)

Now choose t such that g(i) = ĝ(i, s) for all s ≥ t . Then Ĵ (i, j, t) = Ĵ (i, j, s)
for all s ≥ t . For all stages s > t we compute

F̂(i, j, s) = f̂ (i ′, j ′, s)

with i ′ = g(i) and j ′ = mlims Ĵ (i, j, s). Hence, F(i, j) = mlims F̂(i, j, s) con-
verges monotonically to some m by the monotonicity of f̂ .

Finally, define

Ĥ(i, j, s) = (µk)[ pF̂(i, j,s) � s ⊆ qk ].

Now X = Y so there is some qk ∈ Y such that qk = pm . Hence H(i, j) = mlims Ĥ(i, j, s)
produces the Y amalgamator for n-type pi and formula θ j . �
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4.5 The MEF theorem The following characterization corresponds to Gon-
charov [7], Corollary 4.

Theorem 4.8 (MEF Theorem) Let A be a homogeneous model of a CD theory T
whose type spectrum T(A) has a 0-basis. Then the following are equivalent.

(i) Some 0-basis for T(A) has an EEF.

(ii) Some 0-basis for T(A) has an MEF.

(iii) Every 0-basis for T(A) has an MEF.

Proof Clearly (i) H⇒ (i i) and (i i i) H⇒ (i i).

(i i) H⇒ (i i i). Apply the Transfer Lemma 4.7.

(i i) H⇒ (i). Fix a 0-basis X = {p j } j∈ω with MEF f (i, j) = mlims f̂ (i, j, s).
Define another 0-basis Y = {q j } j∈ω with an EEF as follows. First define q2 j = p j
so that X ⊆ Y . Next given θi and q j we find an amalgamator pk as follows and copy
pk on row q2〈i, j〉+1. Hence, X = Y.

Define g( j) = mlims ĝ( j, s) as in the Equality Lemma 4.5. Define ψs =

p f̂ (i,̂g( j,s),s)�s and define q2〈i, j〉+1 = ∪s ψs . �

Theorem 4.9 (Full EEP Theorem) Let A be a homogeneous model of a CD theory
T whose type spectrum T(A) has a 0-basis. Then the following are equivalent.

(i) A has a decidable copy.

(ii) Some 0-basis for T(A) has an EEF.

(iii) Some 0-basis for T(A) has an MEF.

(iv) Every 0-basis for T(A) has an MEF.

Proof Combine the MEF Theorem 4.8 and the EEP Theorem 4.3. �

4.6 Finding an MEF for a prime model The proof of the main implication (ii)
H⇒ (i) of the Decidable Prime Criterion 3.9 was originally and still remains a
priority argument, but we can easily derive it from the EEP Theorem (which also
employs a finite injury proof). To show that a prime model A has a decidable copy it
suffices by the Full EEP Theorem 4.9 to show that T(A) has a 0-basis with an MEF
function.

Theorem 4.10 (MEF for Decidable Prime Models) Let A be a prime model of a
complete atomic decidable (CAD) theory T such that T(A) = S P (T ) has a 0-basis
X. Then X has an MEF, and hence A has a decidable copy.

Proof Given an n-type pi and (n + 1)-ary formula θ j consistent with pi define

f̂ (i, j, 0) = (µk > i) [ θ j ∈ pk ∈ X ∩ S(n+1)(T ) ].

Let f̂ (i, j, s + 1) be the least k > i such that
1. θ j ∈ pk ∈ X ∩ S(n+1)(T ),
2. pk�s ⊇ p f̂ (i, j,s)�s, and
3. pk�s + 1 is consistent with pi .

Now pi is a principal type and hence contains an atom α. Eventually there will be a
large enough stage t so that p f̂ (i, j,t) also contains α. Hence, for all s ≥ t , we have
f̂ (i, j, s) = f̂ (i, j, t). �
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4.7 Finding an MEF for a saturated model The same proof applies to the saturated
model case, but with a different reason for convergence.

Theorem 4.11 (MEF for Decidable Saturated Models; Morley [25], Millar [24]) Let
A be a saturated model of a complete decidable (CD) theory T with types all com-
putable (TAC) whose type spectrum T(A) has a 0-basis. Then X has an MEF, and
hence A has a decidable copy.

Proof Define f̂ (i, j, s) as in the prime model MEF Theorem 4.10. Now pm =

∪s p f̂ (i, j,s)� s is a type in S(n+1)(T ) consistent with pi . But T(A) = S(T ) includes
all types consistent with T so f (i, j) = mlims f̂ (i, j, s) = m. �

5 Positive Results on Homogeneous Models

The Full EEP Theorem 4.9 completely characterized when a homogeneous model
A has a decidable copy just as the Decidable Prime Criterion 3.9 completely char-
acterized when a prime model A has a decidable copy. For prime models this was
the starting point for a variety of results about the degrees of copies of A as devel-
oped in Csima [3] and Csima, Hirschfeldt, Knight, and Soare [5], and elsewhere.
Analogously we now consider the degrees of copies of a homogeneous model.

5.1 A d-basis for the degree spectrum X = T(A) In the following definition we
still require that all types in X = {p j } j∈ω be computable (TAC), but we weaken
the condition that there be a uniformly computable listing (0-basis) for them. This
allows us to consider a wider class of models, for example, prime models of complete
atomic decidable theories.

Definition 5.1 Let A be a homogeneous model of a complete decidable (CD)
theory T whose types X = {p j } j∈ω are all computable (TAC). Let d be a (Turing)
degree. Then X is a d-basis for T(A) if there exists a function g ≤ d such that g( j)
is a 10-index for p j .

We view g as defining a matrix with rows {p j } j∈ω. It is not sufficient to specify
a d-computable function h(i, j) which can uniformly compute the matrix, that is,
h(i, j) = p j (i). Rather g( j) must specify an index e = g( j) for the computable
characteristic function of p j from which Turing machine with index e can actually
compute p j with no further help from any oracle. (In the TAC case it is easy to
confuse g and the weaker h. This confusion case has caused several errors in the
literature.)

5.2 Relativizing the EEF and MEF to a degree d The proof of the EEP Theo-
rem 4.3 and MEF Theorem 4.8 can be relativized in the usual way to any degree d.
We usually do not use the full power of this relativization because we know T is a
complete decidable theory and A has some kind of basis. For example, in Lange’s
Low Basis Theorem 5.3 below we are given a homogeneous model A of a CD theory
T and a 0′-basis X for T(A). Lange builds a new basis Y for T(A) and simultane-
ously a low degree d and function f ≤ d such that (1) d uniformly computes Y and
(2) f is an extension function for Y . The relativization of the Full EEP Theorem 4.9
to d we use here is the following.
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Theorem 5.2 (d-EEP Theorem) Let A be a homogeneous model of a CD theory T
with type spectrum T(A) and suppose there is d-computable function g(x, y) such
that {gy}y∈ω = T(A), where gy = λx[g(x, y) ] viewed as a “row” in the matrix
g(x, y). Then the following are equivalent.

(i) A has a d-decidable copy.

(ii) Some d-computable listing of T(A) has a d-computable EEF.

(iii) Some d-computable listing of T(A) has a d-computable MEF.

(iv) Every d-computable listing of T(A) has a d-computable MEF.

Proof The proof is the same as that of Theorem 4.9 but relativized to d. �

In Theorem 5.2 we avoided the term d-basis because that refers to a matrix which
is d-uniformly computable but also whose rows are computable, with 10-indices
uniformly computable from d, for example, a 0′-basis. Here we have in mind only
the most simpleminded approach. Consider the case of a 0-basis where everything
is computable, including the matrix which is uniformly computable. Relativize that
idea to d.

There are cases where the input is of this form, for example, in Lange’s Theo-
rem 5.3 where the prime model A admits a 0′-basis for T(A). However, Lange’s
output there is a copy B of A which has low degree d. Although the rows of the
basis for B happen to be computable because they are the rows of the 0′-basis for
A, Lange does not claim that this basis for B constitutes a d-basis. To constitute a
d-basis, d would have to uniformly compute the10-indices of the rows in this basis.
It suffices here to apply the relativized Theorem 5.2: d can uniformly compute a
1d

0 index for every row, and with respect to these indices, there are d-computable
functions which are the EEF and MEF.

The partial relativization of the Full EEP Theorem 4.9 to d we use here says
if a homogeneous model A of a complete decidable theory T has a basis uniformly
computable in d with a d-effective extension function then A has a d-decidable copy.
Applying this to f and Y , we obtain a d-decidable copy of A.

In cases where we assume A has a 0-basis X , we show X has a d-monotone
extension function f to show A has a d-decidable copy. As a 0-basis X can also be
viewed as a basis uniformly computable in d, a partial relativization of the Full EEP
Theorem gives that X with f implies the existence of a d-decidable copy. Similarly,
to show a homogeneous A with a 0-basis X has no d-decidable copy, it suffices to
show that X has no d-monotone extension function.

5.3 Two approaches to homogeneous models There are two main approaches
to studying the computable content of homogeneous models of a CD theory. One
approach is to fix a homogeneous model which satisfies reasonable computability
conditions and study its degree spectrum, that is, the degrees of its isomorphic copies.
This general idea will be the subject of this section, Section 5, with positive results
and the next section, Section 6, on negative results. The second approach is to study
which degrees are strong enough to effectively find a homogeneous model for any
CD theory. This will be the subject of Section 7.

The Full EEP Theorem 4.9 exactly characterized when a homogeneous model of
a CD theory has a decidable copy. Notably, if some A |H T is to have any hope of
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having a decidable copy, A must have a 0-basis. Thus, following our first approach,
we assume we are given a complete decidable theory T and a homogeneous model A
of T with a d-basis. Then we study the degree spectrum of (the elementary diagram
of) A.

5.4 Low copies of homogeneous models As we shall see in Theorem 6.1, Millar,
Peretyat’kin, and Goncharov gave a negative answer to Morley’s Question 3.7 and
showed that 0 is not strong enough to compute an isomorphic copy for every homo-
geneous A with a 0-basis. On the other hand, it is easy to see using the Full EEP
Theorem 4.9 relativized to 0′ that any homogeneous A with even a 0′-basis has a
0′-decidable copy.

Hence 0′ can always decide an isomorphic copy of such a homogeneous model,
but 0 may not suffice, which is the same pattern as for prime and saturated models.
The first remark follows by noticing that a 0′-oracle can compute a 0′-basis X and a
0′ extension function f for X by using a 0′-oracle to answer 61 questions about the
consistency of the types in X . The second remark follows by Theorem 6.1.

Next we consider intermediate degrees d, 0 < d < 0′, as possible degrees of
isomorphic copies of a homogeneous A which has a 0-basis. The first result about
intermediate degrees gives that every homogeneous model A with a 0′-basis has an
isomorphic copy decidable in a low degree.

Theorem 5.3 (Homogeneous Low Basis Theorem; Lange [18]) Let T be a complete
decidable theory and A |H T be a homogeneous model with a 0′-basis X = T(A).
Then there is a low degree d and a d-decidable copy of A.

The proof involves a 0′-construction of a low degree d, a basis Y which d uniformly
computes, and a computable function which is an extension function for Y . The
forcing conditions involve a finite number of infinite computable rows of Y whose
10 indices have been computed uniformly in 0′ together with a finite number of
other elements in the matrix Y . We guarantee d = deg(Y ) is low by simultaneously
forcing the jump {e}Y (e) as we build Y . The proof requires that 0′ knows all the
computable indices for the types p j ∈ X so that a 0′ oracle suffices to do the forcing.
The theorem gives the following analogous result for prime models as a corollary.

Corollary 5.4 (Prime Low Basis Theorem; Csima [3]) Let T be a complete atomic
decidable theory with a prime model A. Then there exists a low degree d and a
d-decidable prime model B of T .

Proof Since A is prime, T(A) = S P (T ), the principal types of T . By the Homo-
geneous Low Basis Theorem 5.3 relativized to 0′ and the Homogeneous Uniqueness
Theorem 2.8 it suffices to show that A has a 0′-basis. First note that every p j ∈ X
is computable because it contains an atom α j and S(T ) contains only one type ex-
tending α j . Second, 0′ can uniformly list all the atoms of ∪n Fn(T ) and every atom
effectively determines an isolated type. Being an atom is a51-property because α is
not an atom if and only if there exist incompatible extensions β and γ of α, which is
a 61-property. �

5.5 Nonlow2 degrees can compute homogeneous copies In the Homogeneous
Low Basis Theorem 5.3 we fixed a homogeneous model A with a d-basis and asked
which degrees can compute a copy of that specific A. Now we attempt to find degrees
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d which are strong enough to compute a d presentation of any nontrivial homoge-
neous model with a 0-basis. This idea gives rise to the following definition.

Definition 5.5 Degree d is 0-bounding if for any nontrivial homogeneous model
A with a 0-basis, there exists a d-decidable B ∼= A.

Csima, Hirschfeldt, Knight, and Soare ([5], [3]) studied the prime bounding degrees,
that is, the degrees which given any complete atomic decidable theory T can compute
a prime model in T . They showed that, within the 10

2-degrees, the prime bounding
degrees are exactly the nonlow2 degrees. The above definition is one way to extend
the notion of bounding to the homogeneous case. Another possible extension will be
discussed in Section 8.

Theorem 5.6 (0-Bounding Theorem, Lange [18]) If d ≤ 0′ is nonlow2 (i.e.,
d′′ > 0′′) then d is 0-bounding.

Let d ≤ 0′ be nonlow2. Lange proves there exists a d-MEF for every 0-basis
X = {p j } j∈ω of a homogeneous A. Then the Full EEP Theorem 4.9 implies that
A has a d-decidable copy. To show that X has a d-MEF, we need to be able to d-
approximate whether a given type pk is an amalgamator of pi and θ j . In general,
determining whether pk is an amalgamator of pi and θ j is a 0′ question, because
finding an inconsistency between two computable types pk and pm is a 60

1 state-
ment.

By a characterization of nonlow2 1
0
2 degrees (see Soare [30], Chapter 4) given

a 0′-computable function g, there exists a d-computable function f which infinitely
often escapes (is greater than) g. We can use a d-computable escape function for
a carefully chosen 0′-function which looks for inconsistencies to build the desired
d-MEF.

5.6 If S(T ) satisfies TAC we obtain all nonzero degrees In this section we return
to studying the degrees of copies of a specific homogeneous A with a 0-basis. If
the conditions about the theory T are strengthened, we can obtain a more complete
picture of these degrees. Since we assume A has a 0-basis, all the types realized
in A must be computable. However, the types outside of T(A), that is, the types
p ∈ S(T )−T(A), may very well not be computable. Thus, we can add computability
conditions on these “outside” types in S(T ) to get stronger results. Specifically, we
restrict our study to theories T in which all types in S(T ) are computable and to
homogeneous models A with 0-bases.

Theorem 5.7 (Goncharov [7], Millar [22]) Let T be a complete decidable theory
with S(T ) uniformly computable. If A is a homogeneous model with a 0-basis, then
A has a decidable copy.

If S(T ) consists of only computable types but is not uniformly computable, we still
get the following strong result.

Theorem 5.8 (Full Basis Theorem; Lange [18]) Let T be a complete decidable the-
ory with S(T ) consisting of computable types. Let A be a homogeneous model of
T with a 0-basis. Then for every nonzero degree d there is a model B ∼= A with
elementary diagram De(B) of degree d.

A key idea of this theorem (as observed by Harris) is that if S(T ) consists of all
computable types, an amalgamator pk for a given type pi and formula can be chosen
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to be principal over pi . More formally, there exists a formula ψ(x̄, y) consistent
with pi (x̄) such that

pk = {θ(x̄, y) : (∀y)(ψ(x̄, y) → θ(x̄, y)) ∈ pi (x̄)}.

Then the theorem follows by applying Hirschfeldt’s technique [12] to prove the anal-
ogous result for prime models.

6 Negative Results on Homogeneous Models

The MEF characterization and Full EEP Theorem 4.3 can also be used to give nega-
tive results about homogeneous models. First we sketch how to prove the following
negative result by diagonalizing against possible MEF functions.

6.1 A counterexample to Morley’s question Goncharov, Millar, and Peretyat’kin
gave counterexamples that negatively answered Morley’s Question 3.7. Each exam-
ple consisted of a homogeneous model A with a 0-basis X but no decidable copy.

Theorem 6.1 (Goncharov [7], Peretyat’kin [27], Millar [23]) There is a homoge-
neous model A of a complete decidable theory T such that T(A) has a 0-basis but
no decidable copy.

The MEF portion of the Full EEP Theorem 4.9(iv) gives a more perspicuous way to
prove this theorem. We simply need to construct a homogeneous model A with a 0-
basis X which has no MEF. (If we try to diagonalize against the EEF characterization
in Theorem 4.9(ii), then we would need to ensure that no basis Y for A has an EEF.
Here we construct X and we consider only one such X .)

We shall build a homogeneous model A and a 0-basis X for T(A)with no 0-MEF
by diagonalizing against every possible MEF ϕe. This requires both an understand-
ing of which 0-bases are the type spectrum T(A) for a homogeneous A and a strategy
to defeat MEFs. Theorem 2.12 says that a given 0-basis Y equals T(A) of a homo-
geneous A if and only if Y is closed under some basic model theoretic properties
such as closure under permutations and type amalgamation. Hence we must satisfy
the following positive requirement:

P : X satisfies the homogeneity closure conditions in Theorem 2.12.

To ensure X is a 0-basis, we build X computably in stages so that each row corre-
sponds to a type in a simple and flexible CD theory T . We satisfy P by assigning
each homogeneity closure condition a marker H . Then at the beginning of the con-
struction, H is placed on an empty row of X . Throughout the construction, H can
only be moved to another row finitely often, and the row on which H comes to rest
is built to satisfy the corresponding closure condition.

Now we develop a strategy to defeat ϕe as an MEF. If f is an MEF for X ,
then for any n-type pi in X and for any (n + 1)-ary formula θ j consistent with pi ,
3s = f̂ (i, j, s) must monotonically trace out a true amalgamator for pi and θ j as
described in Definition 4.6. In particular, 3 = lims 3s exists, and pk amalgamates
pi and θ j . Thus, to ensure ϕe is not an MEF, we monitor the behavior of ϕe on some
specified 1-type pie and 2-ary formula θ je which are consistent. That is, we ensure
that marker3e,s = ϕe(ie, je, s) is never able to remain on any row if it is tracing out
a true amalgamator to pie and θ je . To show ϕe is not an MEF, it suffices to show for
all k:
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Ne,k : If 3e is describing a true amalgamator, then 3e does not come to
rest on row k.

The challenge in the construction of the desired 0-basis X is to simultaneously satisfy
P and Ne,k for all e and k. In particular, requirement P requires the existence of a
true amalgamator for pie and θ je in X , but Ne,k requires that 3e cannot find it.

6.2 A generalized counterexample and characterization Millar had produced a
complete atomic decidable theory which had no decidable (or even computable)
prime model. Csima, Hirschfeldt, Knight, and Soare ([5], [3]) extended this by con-
structing such a theory with no prime model of low2 degree.

We now do the corresponding result for homogeneous models. In the preceding
subsection we sketched a proof of Theorem 6.1 that there is a CD theory T and a
model A of T with a 0-basis but no decidable copy. The next theorem shows that
we can avoid any low2 copies as well. Although this is an analogue of the result
for prime models ([5], [3]), the proof here is much harder, mainly because of the
difficulty in meeting the five conditions of Theorem 2.12 to make A homogeneous.

Theorem 6.2 (Generalized Counterexample; Lange [17]) Let d be a low2 1
0
2 de-

gree. There exists a homogeneous A with a 0-basis such that A has no d-decidable
copy.

The idea of the proof is that if d ≤ 0′ is low2, then there exists a 0′-computable
listing of all the d-computable functions. Then, we can defeat all d-MEFs for the
basis X by diagonalizing against a computable approximation to this listing of the
d-computable functions. This theorem then completes the characterization of 10

2
0-bounding degrees.

Theorem 6.3 (Characterization of 0-Bounding; Lange [17]) A degree d ≤ 0′ is
0-bounding if and only if d is nonlow2, that is, d′′ > 0′′.

Proof By Theorem 5.6 and Theorem 6.2. �

7 Homogeneous Bounding Degrees

In the results so far we have fixed a particular CD theory T and a homogeneous
model A of T and explored the possible degrees of isomorphic copies of A. Another
approach is to ask whether a given degree d can compute some homogeneous model
for every CD theory. We call a degree d homogeneous bounding if every CD theory
has a d-decidable homogeneous model.

Recall a degree d is a Peano Arithmetic (PA) degree if d is the degree of a complete
extension of the first-order theory of Peano Arithmetic. The next result says that
although the prime bounding degrees are defined in terms of jumps ([5], [3]), the
homogeneous bounding degrees are more related to PA degrees and computing paths
through (nonextendible) trees.

Theorem 7.1 (Csima, Harizanov, Hirschfeldt, Soare [4]) A degree d is homoge-
neous bounding if and only if d is a PA degree.

Before sketching the idea of the proof, we need to review well-known properties of
PA degrees.
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Theorem 7.2 The following are equivalent for any Turing degree d.
1. The d-computable sets form a basis for 50

1. (That is, every infinite com-
putable binary tree has an infinite d-computable path.)

2. If U and V are disjoint c.e. sets, then there is a d-computable set S such that
U ⊆ S and V ∩ S = ∅. (Such a set S is called a separating set for U and V .)

3. The degree d is the degree of a complete extension of PA.
4. The degree d is the degree of the elementary diagram De(A) of a nonstandard

model A of PA.

One way to build a homogeneous model of a given theory is via an elementary chain
(as in Marker [20]). This argument repeatedly uses Lindenbaum’s Lemma (that every
consistent set of sentences can be extended to a complete theory) which is equivalent
to (1) above. Lindenbaum’s Lemma can be carried out effectively in a degree d
(in the sense that every consistent computable set of sentences can be extended to
a complete decidable theory) if and only if d is a PA degree. This gives half of
Theorem 7.1.

For the other half of Theorem 7.1, Csima, Harizanov, Hirschfeldt, and Soare con-
struct a particular CD theory T such that every homogeneous model of T has a PA
degree. The language of T has infinitely many unary predicate symbols {Pi }i∈ω, in-
finitely many binary predicate symbols {Ri }i∈ω, a unary predicate symbol D, and a
binary predicate symbol E .

Let U be the set of Gödel numbers of sentences provable from PA and let V be the
set of Gödel numbers of sentences refutable from PA. By Theorem 7.2, any degree
that can compute a separating set for U and V is a PA degree. The idea of the proof
is to define the theory T in such a way that

1. if A � T then EA is an equivalence relation, and if c, d ∈ A are in dif-
ferent EA-equivalence classes and satisfy exactly the same Pi , then the set
{i : RA

i (c, d)} is a separating set for U and V ; and
2. every homogeneous model of T must contain such elements c and d .

These conditions imply that if A � T is homogeneous, then the atomic diagram of
A can compute a separating set for U and V , and hence has a PA degree.

8 Conclusion

There are a number of related results on the degrees of Vaughtian models.

8.1 Separating properties from bounding prime models Csima, Hirschfeldt,
Knight, and Soare [5] formulated conditions on a set A sufficient to guarantee
that every complete atomic decidable (CAD) theory T has a prime model whose
elementary diagram is computable in A. Such a set A or its degree is called prime
bounding. Unexpectedly, there emerged eight other apparently unrelated properties
of A which turned out to be equivalent to the prime bounding property for those
sets A which are 10

2 (i.e., A ≤T ∅′). These included degree properties (such as
nonlow2), computability properties (such as escaping every ∅′ function), topological
properties (such as meeting a sequence of 12 open sets), and a monotonic property
which has been used by Shore and others to study models of ℵ1-categorical theories.

Conidis, at citation [2], examined these nine properties (P0) – (P8) and observed
that although they are all equivalent for A ≤T ∅′ they are not necessarily equivalent
in the general case A 6≤T ∅′. Conidis has shown that they fall into three groups,
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each group consisting of logically equivalent properties. This gives the complete
classification of these properties in the general case and it sheds light on the general
mathematical relationships among these familiar and important properties. Most of
these properties arise in other areas of mathematics.

For example, two of the most important properties are (P0), the escape property,
and (P3), the isolated path property, which is equivalent to the prime bounding prop-
erty. It is easy to prove that (P0) implies (P3). It is not at all clear how to prove the
converse, but that is just what Conidis has done.

(P0) The escape property (∀g ≤T 0′) (∃ f ≤T A) (∃∞x) [ g(x) ≤ f (x) ], where
“(∃∞)” denotes “there exist infinitely many”.

(P3) The isolated path property For every computable tree T ⊆ 2<ω with no
terminal nodes and with isolated paths dense,

(∃g ≤T A) (∀θ ∈ T ) [ gθ ∈ [Tθ ] & gθ is isolated ].

The implication of (P3) to (P0) has a very interesting and unexpected proof. To show
the inequivalence of nonlow2 with other properties (Pi), Conidis uses a ∅′′ forcing
argument to force the double jump A′′ while coding in whatever function is necessary
to make (Pi) hold of A while (P0) (A nonlow2) fails since ∅′′ can compute A′′ from
the construction.

8.2 Computably enumerable degrees of prime models A second interesting area
is a finer study of degrees of certain models. The papers by Csima [3] and Csima,
Hirschfeldt, Knight, and Soare [5] studied 10

2 degrees, and to some extent degrees
in general, of prime models of a CAD theory T . In other areas of computability it
has been fruitful to study the computably enumerable (c.e.) degrees. The elementary
diagram A of the model cannot itself be a c.e. set else the provables and refutables
of T are c.e. and T is computable. However, we can ask when we have a model A
whose elementary diagram has c.e. degree. Epstein [6] has improved some results
by Csima [3] as follows.

Theorem 8.1 (Epstein, Density of Prime C.E. Low Degrees) Let T be a computable
tree with no terminal nodes and isolated paths dense. Let C be c.e. and nonlow2,
and let D be c.e. and low, D ≤T C. Then there is a low c.e. set B̂ such that
D <T B̂ <T C and B̂ computes a listing of the isolated paths of T .

Corollary 8.2 (Epstein, Prime Low C.E. Basis Theorem) Let T be a complete atomic
decidable theory. Then there is a prime model of T with low c.e. degree.

Theorem 8.3 (Epstein, Prime Low C.E. Minimal Pair) Let T be a complete atomic
decidable theory. Then there is a minimal pair of c.e. low degrees b and c such that
b and c are degrees of prime models of T.

Theorem 8.4 (Epstein, Homogeneous C.E. Low Basis Theorem) Let A be a homo-
geneous model with a 0-basis. That is, there is a computable function g such that
{ϕg(e)}e∈ω is a listing of the types in A. Then A has an isomorphic copy of low c.e.
degree.

8.3 C.E. degrees of saturated models Harris [10] calls a degree d saturated
bounding if for any complete, decidable (CD) theory with types all computable
(TAC) there is a saturated model whose elementary diagram is computable in d.
Harris gives negative results on c.e. degrees which complement the previous positive
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results. He first [11] develops a characterization of lown sets for all n in terms of
escape functions. He shows that if the degree is also c.e. then in addition to the
escape property for a lown degree there is also an alignment property. He uses these
two simultaneously to prove the following theorem [10].

Theorem 8.5 (Harris) Let d be a lown c.e. degree for any n ≥ 1. Then there is
a complete decidable theory with all types computable which has no d-decidable
saturated model.
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