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The Complexity of Bounded Quantifiers
in Some Ordered Abelian Groups

Philip Scowcroft

Abstract This paper obtains lower and upper bounds for the number of alter-
nations of bounded quantifiers needed to express all formulas in certain ordered
Abelian groups admitting elimination of unbounded quantifiers. The paper also
establishes model-theoretic tests for equivalence to a formula with a given num-
ber of alternations of bounded quantifiers.

1 Introduction

Working with the language L = {≤,+ ,− , 0 } of ordered Abelian groups, [9]
introduces a notion of bounded quantifier and shows that certain ordered Abelian
groups not admitting elimination of quantifiers admit elimination of unbounded
quantifiers: every L-formula is equivalent in the group to a bounded formula (a for-
mula with bounded quantifiers only). The present paper discusses the complexity, in
terms of quantifier alternations, of the resulting bounded formulas. In some, but not
all, ordered Abelian groups admitting elimination of unbounded quantifiers, there is
a finite upper bound to the number of alternations of bounded quantifiers needed to
represent all L-formulas. There is also a family {Gk}k≥0 of ordered Abelian groups
such that every L-formula is equivalent in Gk to a bounded formula with at most nk
alternations of bounded quantifiers, but {nk}k≥0 cannot have a finite upper bound.

Section 2 introduces classes b6n and b5n of bounded formulas analogous to the
prefix classes 6n and 5n and establishes model-theoretic tests for equivalence to a
formula in b6n or b5n , modulo a theory. These tests resemble the Łoś-Tarski test,
Chang-Łoś-Suszko test, and Keisler sandwich theorem, both in statement and proof,
but exploit a different kind of embedding; convexity of substructures plays a large
role here. Section 2 also applies the tests to particular examples.
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Section 3 establishes lower bounds on the number of alternations of bounded
quantifiers needed to represent all L-formulas in groups like the Hahn products
←−
5 0<i<ωk Z.1 Exploiting the quantifier-elimination procedure of [7], Part 2, as in
[9], Section 2, one may link the prefix complexity of axioms for (ωk,≤, 0) to the
prefix complexity of axioms for the L-theory of

←−
5 0<i<ωk Z. This prefix complexity

is related to the membership of formulas in the classes b6n or b5n because [9], Sec-
tion 5, proves that the L-theory of

←−
5 0<i<ωk Z may be axiomatized by the L-theory

of ordered Abelian groups together with axioms of the form ∀x1∃x2β(x1, x2), where
β is a bounded formula. One finally obtains a lower bound on bounded-quantifier
complexity of L-formulas in

←−
5 0<i<ωk Z by exploiting results of Fraïssé ([4], [6],

[5]) on the prefix complexity of axioms for (ωk,≤, 0).
Upper bounds on the number of alternations of bounded quantifiers needed to

represent all L-formulas appear in Section 4. These bounds apply to many of the
Hahn products

←−
5 0<i<θGi studied in Section 5 of [9] and are obtained by combining

the quantifier-elimination procedure of Gurevich [7], the quantifier elimination of
Doner, Mostowski, and Tarski [2] for the first-order theory of well-orderings, and a
count of bounded quantifiers in the bounded-quantifier formulas of Lemma 5.1 in [9].
These techniques also allow one to address a question left open in [9] about the the-
ories of certain Hahn products

←−
5 0<i<θGi not admitting elimination of unbounded

quantifiers.
The Conclusion, Section 5, discusses possible improvements to the results of pre-

vious sections. This paper stays relatively short only by relying on [9], to which the
reader will need to make frequent reference.

2 Some Tests for Bounded Formulas

Let M be a first-order language and u G v be a quantifier-free M-formula with at
most u and v free. A quantifier in an M-formula is said to be bounded just in case it
occurs in a context ∀x G tϕ =

∀x(x G t → ϕ)

or in a context ∃x G tϕ =
∃x(x G t ∧ ϕ),

where t is an M-term not containing x ; an M-formula is bounded just in case all of
its quantifiers are bounded. The bounded formulas of Section 1 arise when M is the
language L of ordered Abelian groups and u G v is

(0 ≤ v ∧ u,−u ≤ v) ∨ (v ≤ 0 ∧ v ≤ u,−u)

(i.e., |u| ≤ |v|).
One may define classes b6n and b5n of bounded M-formulas by recursion as

follows: b60 = b50 is the class of quantifier-free M-formulas; b6n+1 is the class
of formulas

∃x1 G t1 . . . ∃xk G tkϕ,
where ϕ ∈ b5n ; and b5n+1 is the class of formulas

∀x1 G t1 . . . ∀xk G tkϕ,

where ϕ ∈ b6n . Formulas in b6n (b5n) are called bounded-6n (bounded-5n)
formulas, and one may speak also of bounded-universal, bounded-existential, and
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bounded-∀∃ formulas (instead of bounded-51, bounded-61, and bounded-52 for-
mulas).

A notion of convex substructure ([9], Section 3) plays a role in certain model-
theoretic tests for membership in these classes. If A, B are M-structures, say that
A is a convex substructure of B—in symbols, A ≤ B—just in case A ⊆ B and
A is downward-closed with respect to GB : that is, if a ∈ A, b ∈ B, and b GB a,
then b ∈ A. By induction on logical complexity one may show that if A ≤ B,
ϕ(x1, . . . , xn) is a bounded M-formula, and a ∈ An , then

A |H ϕ[a] just in case B |H ϕ[a].

If C is any M-structure, X ⊆ C , and either M contains a constant symbol or X 6= ∅,
there is a least D ≤ C with X ⊆ D. D is the intersection of all convex substruc-
tures of C that contain X and consists of all f ∈ C for which there are M-terms
t1(x1, . . . , xk), . . . , tl+1(x1, . . . , xk+l), e1, . . . , ek ∈ X , and ek+1, . . . , ek+l ∈ C
with

ek+1 G
C tC1 [e1, . . . , ek], ek+2 G

C tC2 [e1, . . . , ek+1], . . . , ek+l G
C tCl [e1, . . . , ek+l−1],

and f = tCl+1[e]. Call D the convex hull C(X) of X in C, with domain D = X .

Theorem 2.1 Suppose T is an M-theory, ϕ(x1, . . . , xn) is an M-formula, and M
contains a constant symbol if n = 0. The following conditions are equivalent:

(i) ϕ(x) is equivalent modulo T to a bounded M-formula ψ(x).
(ii) If A,B |H T , C ≤ A,B, and c ∈ Cn , then

A |H ϕ[c] just in case B |H ϕ[c].

Proof The proof is exactly that of Theorem 3.1 in [9], but applied only to the single
formula ϕ(x). �

A version of the Łoś-Tarski test for bounded formulas goes as follows.

Theorem 2.2 Suppose T is an M-theory, ϕ(x1, . . . , xn) is an M-formula, and M
contains a constant symbol if n = 0. The following conditions are equivalent:

(i) ϕ(x) is equivalent modulo T to a bounded-universal formula ψ(x).
(ii) If A,B |H T , C ≤ A, C ⊆ B, and c ∈ Cn , then

B |H ϕ[c] only if A |H ϕ[c].

Proof To establish the harder direction from (ii) to (i), let 0(x) be the set of all
bounded-universal formulas ψ(x) implied by ϕ(x), modulo T ; the assumption re-
garding M implies that 0(x) 6= ∅. If T ∪ 0(x) |H ϕ(x), the compactness theorem
provides a finite1(x) ⊆ 0(x)with T∪1(x) |H ϕ(x), and ϕ(x) is equivalent modulo
T to ∧1(x), which is logically equivalent to a bounded-universal formula.

If T ∪ 0(x) 6|H ϕ(x), there are A |H T and c ∈ An with

A |H (0 ∪ {¬ϕ})[c].

Let C be the convex hull of {ci : 1 ≤ i ≤ n} in A. T ∪ diag(C) |H ¬ϕ(c): for if
B |H T ∪ diag(C), then one may assume that C ⊆ B � M, and by (ii)

B |H ϕ[c] ⇒ A |H ϕ[c].
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The compactness theorem provides δ1, . . . , δl ∈ diag(C) with T ∪ {δ1, . . . , δl}

|H ¬ϕ(c) and
T |H ϕ(c)→ ∨l

i=1¬δi .

If the new constants in ∨l
i=1¬δi other than the cs are f1, . . . , fm ∈ C , then for

each i = 1, . . . ,m there are M-terms ti,1(x1, . . . , xn), . . . , ti,li+1(x1, . . . , xn+li ) and
gi,1, . . . , gi,li ∈ A with

gi,1 G
A tAi,1[c], gi,2 G

A tAi,2[c, gi,1], . . . , gi,li G
A tAi,li [c, gi,1, . . . , gi,li−1],

and
fi = tAi,li+1[c, gi ].

Quantifying out all the new constants, one concludes that modulo T , ϕ(x) implies

∀x1,1 G t1,1(x) . . .∀x1,l1 G t1,l1(x, x1,1, . . . , x1,l1−1) . . .

∀xn,ln G tn,ln (x, xn,1, . . . , xn,ln−1)θ,

where θ results from ∨l
i=1¬δi when each fi is replaced by ti,li+1(x, xi,1, . . . , xi,li )

and each c j is replaced by x j . The displayed formula therefore belongs to 0(x),
and c obeys this formula in A. By setting each xi, j equal to gi, j in A one finds that
AC |H ∨

l
i=1¬δi , contrary to the definition of diag(C). So T ∪ 0(x) |H ϕ(x) and the

argument is complete. �

One immediately obtains a test for bounded-existential formulas.

Corollary 2.3 Suppose T is an M-theory, ϕ(x1, . . . , xn) is an M-formula, and M
contains a constant symbol if n = 0. The following conditions are equivalent:

(i) ϕ(x) is equivalent modulo T to a bounded-existential formula ψ(x).
(ii) If A,B |H T , C ≤ A, C ⊆ B, and c ∈ Cn , then

B |H ϕ[c] if A |H ϕ[c].

In the following examples these tests are applied to the L-theories of ordered Abelian
groups (where u G v is as above). Q

←−
×Z ≡ Q

←−
×Q
←−
×Z are polyregular of rank

two, and so admit elimination of unbounded quantifiers ([9], Theorem 5.2, Lemma
5.4).2 All groups in their canonical polyregular systems ([1], p. 106) are ∅-definable
([1], Corollary 3.5). Let ψ1(x) be a definition of the first nontrivial element ρ1(G)
of this system; in Q

←−
×Z, ψ1(x) defines Q = Q

←−
×{0}, while in Q

←−
×Q
←−
×Z, ψ1(x)

defines Q
←−
×Q = Q

←−
×Q
←−
×{0}. One may assume that ψ1(x) is a bounded formula;

in fact, the proof of Lemma 3.2 in [1] shows that one may let ψ1(x) be

∀|y| ≤ |x |∃|z| ≤ |y|(y = 2z),

a bounded-∀∃ formula. But since the embedding

(a, b) 7→ (a, b, 0)

of Q
←−
×Z in Q

←−
×Q
←−
×Z sends (0, 1) 6∈ ρ1(Q

←−
×Z) to (0, 1, 0) ∈ ρ1(Q

←−
×Q
←−
×Z),

Theorem 2.2 implies that ψ1(x) is not equivalent over Q
←−
×Z to a bounded-universal

formula.
Q
←−
×Z is also elementarily equivalent to Q

←−
×Z
←−
×Q, and Q = Q

←−
×{0} ≤ Q

←−
×Z

may be embedded in Q
←−
×Z
←−
×Q by the map

f : (a, 0) 7→ (0, 0, a).
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Because it sends (1, 0) ∈ ρ1(Q
←−
×Z) to (0, 0, 1) 6∈ ρ1(Q

←−
×Z
←−
×Q), Corollary 2.3

implies that ψ1(x) is not equivalent over Q
←−
×Z to a bounded-existential formula.

If D ⊆ Q
←−
×Z
←−
×Q has domain {0} × {0} × Q = ran f , one may show that tu-

ples from D satisfy the same bounded-existential formulas in D and in Q
←−
×Z
←−
×Q.

Clearly, one need show merely that if d from D satisfies the bounded-existential
formula θ(x) in Q

←−
×Z
←−
×Q, then D |H θ [d]. But if Q

←−
×Z
←−
×Q |H θ [d], then

Q
←−
×Q
←−
×Q |H θ [d] because θ(x) is existential and Q

←−
×Z
←−
×Q ⊆ Q

←−
×Q
←−
×Q; so

D |H θ [d] because
D = {0}←−×{0}←−×Q 4 Q

←−
×Q
←−
×Q

by quantifier elimination for divisible ordered Abelian groups. This absoluteness of
bounded-existential formulas between D and Q

←−
×Z
←−
×Q implies that ψ1(x) is not

equivalent over Q
←−
×Z
←−
×Q ≡ Q

←−
×Z to any propositional combination of bounded-

existential formulas: for while Q
←−
×Z
←−
×Q 6|H ψ1[ f (1, 0)], Q

←−
×Z |H ψ1[(1, 0)], and

f is an isomorphism between Q
←−
×{0} ≤ Q

←−
×Z and D .

The following test for bounded-∀∃ formulas resembles the Chang-Łoś-Suszko
test.

Theorem 2.4 Suppose T is an M-theory, ϕ(x1, . . . , xn) is an M-formula, and M
contains a constant symbol if n = 0. The following conditions are equivalent:

(i) ϕ(x) is equivalent modulo T to a bounded-∀∃ formula ψ(x).
(ii) Let {Ai }i∈N be a chain of M-structures with Ai ≤ Bi |H T for all i ∈ N. If

a ∈ An
0 , Bi |H ϕ[a] for all i ∈ N, and ∪iAi ≤ D |H T , then D |H ϕ[a].

Proof Assume (i) is true, and let {Ai }i∈N be a chain of M-structures with
Ai ≤ Bi |H T always. If a ∈ An

0 , Bi |H ϕ[a] always, and ∪iAi ≤ D |H T ,
then Bi |H ψ[a] always because Bi |H T , Ai |H ψ[a] always because ψ(x) is
bounded, and ∪iAi |H ψ[a] because ψ(x) is logically equivalent to an ∀∃-formula.
Since ∪iAi ≤ D and ψ(x) is bounded, D |H ψ[a]; so since D |H T , D |H ϕ[a].

Assume now that (ii) is true. Let 0(x) be the set of all bounded-∀∃ formulas
implied by ϕ(x), modulo T . The assumption about M implies that 0(x) 6= ∅. If
T ∪ 0(x) |H ϕ(x), then the compactness theorem provides a finite 1(x) ⊆ 0(x)
for which T ∪ 1(x) |H ϕ(x), and ϕ(x) is equivalent modulo T to ∧1(x). Since
∧1(x) is logically equivalent to a bounded-∀∃ formula, the desired result holds if
T ∪ 0(x) |H ϕ(x).

If one introduces new constant symbols c1, . . . , cn and replaces the free occur-
rences of each xi in 0(x) ∪ {ϕ(x)} by ci , one wants to show that T ∪ 0(c) |H ϕ(c).
By making this change of notation from the start, one may assume that M contains at
least one constant symbol, that ϕ(x) = ϕ is a sentence, and that 0(x) = 0 consists
of all bounded-∀∃ sentences implied by ϕ modulo T . Since M contains constant
symbols, any subset X of an M-structure A has a convex hull A(X) ≤ A. When
X = ∅, let bA—the bounded part of A—be A(∅).

Suppose A0 |H T ∪ 0, and let diagb∀(bA0) be the set of all bounded-universal
MbA0 -sentences true in bA0. If

T ∪ diagb∀(bA0) ∪ {ϕ}

has no model, then by the compactness theorem there are δ1, . . . , δl ∈ diagb∀(bA0)
with

T ∪ {δ1, . . . , δl} |H ¬ϕ
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and so T |H ϕ → ∨l
i=1¬δi . If the constant symbols of MbA0 −M in ∨l

i=1¬δi
correspond to a1, . . . , an ∈ bA0, then one may show as in the proof of Theorem 2.2
that modulo T , ϕ implies

∀x1,1 G t1,1 . . . ∀x1,l1 G t1,l1(x1,1, . . . , x1,l1−1) . . .∀xn,ln G tn,ln (xn,1, . . . , xn,ln−1)θ,

where θ results from ∨l
i=1¬δi when for each j , the constant symbol correspond-

ing to a j is replaced by t j,l j+1(x j,1, . . . , x j,l j ). The displayed sentence is logically
equivalent to a bounded-∀∃ sentence, and so belongs to 0 and is true in A0. But by
arguing as in the proof of Theorem 2.2 one finds that the truth of this sentence in A0
would imply the truth of ∨l

i=1¬δi in bA0, though each δi belongs to diagb∀(bA0).
Thus T ∪ diagb∀(bA0) ∪ {ϕ} has a model (A1)bA0 , and bA0 ⊆ bA1. One may

assume that A0 ∩ (bA1 − bA0) = ∅.
If Th((A0)A0)∪diag(bA1) has no model, then by the compactness theorem there

are δ1, . . . , δl ∈ diag(bA1) for which

Th((A0)A0) |H ∨
l
i=1¬δi .

If the constant symbols of MbA1,A0 − MA0 in ∨l
i=1¬δi correspond to a1, . . . , an

∈ bA1, then, since A0 ∩ bA1 ⊆ bA0, any constant symbols of MA0 in ∨l
i=1¬δi

correspond to elements of bA0. As in the proof of Theorem 2.2 one may show that
Th((A0)A0) implies

∀x1,1 G t1,1 . . . ∀x1,l1 G t1,l1(x1,1, . . . , x1,l1−1) . . .∀xn,ln G tn,ln (xn,1, . . . , xn,ln−1)θ,

where θ results from ∨l
i=1¬δi when for each j , the constant symbol correspond-

ing to a j is replaced by t j,l j+1(x j,1, . . . , x j,l j ). The displayed sentence belongs to
diagb∀(bA0) and so is true in A1, but since the δi s belong to diag(bA1), one may
argue as in the proof of Theorem 2.2 that the displayed sentence fails in A1. This
contradiction implies that Th((A0)A0)∪diag(bA1) has a model (A2)A0,bA1 , and thus
A0 4 A2 and bA0 ⊆ bA1 ⊆ bA2.

Repeating this argument countably many times, one obtains models {Ai }i∈N

of T such that {bAi }i∈N is a chain, {A2i }i∈N is an elementary chain, and every
A2i+1 |H ϕ. If

A∞ = ∪iA2i ,

then A0 4 A∞ and

bA∞ = ∪i bA2i = ∪i bA2i+1.

So A∞ |H T , A∞ |H ϕ by (ii), and A0 |H ϕ if A0 |H T ∪ 0. Thus T ∪ 0 |H ϕ and
the argument is complete. �

One may illustrate Theorem 2.4 by looking at definable sets in the ordered Abelian
group H = Q

←−
×
←−
5 0<i≤ωZ. In this polyregular group of rank ω + 1, every L-

formula is equivalent to a bounded formula by Theorem 5.2 and Lemma 5.4 of [9].
The convex subgroup Q

←−
×
←−
5 0<i<ωZ of H is ∅-definable ([9], Theorem 5.6), and so

K = H − Q
←−
×
←−
5 0<i<ωZ is ∅-definable. A bounded formula will do the trick—in

fact, a b54-formula will work; see Section 4—and if one does not confine attention
to bounded formulas, one may use ϕ(x) =

∀y(|y| > |x | → ∃|z| ≤ |x |∃|w| ≤ |2y|(y = z + 2w)),
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which is logically equivalent to an essentially universal formula.3 But one may show
that no b52-formula defines K in H . For i ≥ 1, let

Hi = Q
←−
×
←−
5 0< j≤i Q

←−
×
←−
5 i<l≤ωZ :

that is, replace the first i Z-factors of H by Q. H ⊆ H1 ⊆ H2 ⊆ · · · are models of
Th(H) ([9], Theorem 4.1) in which the element

a = (0, 0, . . . , 1)

obeys ϕ(x). The union

H ∪
⋃
i≥1

Hi =
←−
5 0< j<ωQ

←−
×Z

of this chain is convex in
←−
5 0< j<ωQ

←−
×Z
←−
×
←−
5 0<l≤ωZ,

a model of Th(H) ([9], Theorem 4.1) in which the element (0, 0, . . . , 1, 0, 0, . . . )
corresponding to a does not obey ϕ(x). So by Theorem 2.4 ϕ(x) is not equivalent in
H to a b52-formula, though ϕ(x) is equivalent in H to a bounded formula and to a
52-formula.

One may devise model-theoretic tests for formulas in arbitrary classes b5k
or b6k . Since the rest of this paper will not need such tests they will not be
proved here but merely illustrated with a version of the Keisler sandwich theo-
rem. Start by defining a bounded n-sandwich to be a collection of M-structures
B0 ⊆ A0 ⊆ B1 ⊆ A1 ⊆ · · ·An−1 ⊆ Bn for which there are M-structures
A′i ≥ Ai (for 0 ≤ i < n) and B ′i ≥ Bi (for 0 ≤ i ≤ n) with A′0 4 · · · 4 A′n−1 and
B ′0 4 · · · 4 B ′n . Given this definition, one may state the following result.

Theorem 2.5 Let M be a language with at least one constant symbol and T ∪ U
be a set of M-sentences. The following conditions are equivalent:

(i) Modulo T , U is equivalent to a set of b52n-sentences.
(ii) If {Ai }i∈N is a b62n−1-chain4 of models of T ∪ U and ∪i∈NAi |H T , then
∪i∈NAi |H U.

(iii) If A |H T ∪U, B |H T , and there is a bounded n-sandwich B0 ⊆ A0 ⊆ B1
⊆ A1 ⊆ · · ·An−1 ⊆ Bn with B = B ′0 and A 4 A′0, then B |H U.

Analogous results hold for b52n+1-sentences and for b6k-sentences.

3 Lower Bounds on Bounded-Quantifier Complexity

For many ordinals θ , the L-structure
←−
5 0<i<θZ admits elimination of unbounded

quantifiers but the relevant bounded formulas cannot be too simple, that is, cannot be
restricted to b6n ∪ b5n if n is too small. As noted in Section 1, one may calculate
such n by linking the complexity of bounded formulas in

←−
5 0<i<θZ with the prefix

complexity of axioms for
←−
5 0<i<θZ, linking the prefix complexity of such axioms

with the prefix complexity of axioms for (θ,≤, 0), and invoking Fraïssé’s lower
bounds for such complexity ([4], 5.5, 5.3.2; [5], Note 1 on p. 60; and [6], 5.2.2). One
may link the prefix complexity of axioms for

←−
5 0<i<θZ with the prefix complexity of

axioms for (θ,≤, 0) by making a detour through the two-sorted theories of ordered
Abelian groups described in [9] and noting that the relative quantifier-elimination
procedure of Gurevich in general does not increase prefix complexity. To link the
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complexity of bounded formulas in
←−
5 0<i<θZ with the prefix complexity of axioms

for
←−
5 0<i<θZ, one exploits Corollary 5.3 of [9], which shows that in the cases of

interest
←−
5 0<i<θZ has axioms built in a special way from bounded formulas.

As in [9], Section 2, let EXL# be an expansion of the two-sorted language EXL of
[7] by symbols purely of subgroup sort, and let EXT1 be the first-order EXL-theory
in which the relative quantifier-elimination of Gurevich succeeds.

Lemma 3.1 Let ϕ(x, y, Z) be a 6n- (5n-) formula of EXL# without group-sort
quantifiers. Then ∃xϕ is equivalent modulo EXT1 to a6n- (6n+1-) formula of EXL#

without group-sort quantifiers.

Proof One reaches the desired conclusion by applying Gurevich’s quantifier-
elimination procedure ([7], Part 2). Though arbitrary applications of his Lemmas
7.2 and 7.3 could increase prefix complexity, here they do not because he applies
these lemmas only to quantifier-free formulas βi or β. Applications of his Lemma
7.4 here adjoin additional existential quantifiers on subgroup variables to the start of
a formula. �

ELL = {+,−, <, 0} is the group-sort reduct of EXL#.

Corollary 3.2 A 6n- (5n-) formula of ELL is equivalent modulo EXT1 to a 6n-
(5n-) formula of EXL# without group-sort quantifiers.

Proof The argument, based on Lemma 3.1, goes by induction on n. �

Again as in [9], ẼXL# is an expansion of EXL− {+} by symbols purely of subgroup
sort, and ẼXT1 is a corresponding first-order theory in which the relative quantifier-
elimination procedure of Gurevich succeeds.

Lemma 3.3 Let ϕ(x, y, Z) be a 6n- (5n-) formula of ẼXL# without group-sort
quantifiers. If n ≥ 2 (n ≥ 1), then ∃xϕ is equivalent modulo ẼXT1 to a 6n- (6n+1-)
formula of ẼXL# without group-sort quantifiers.

Proof The argument is just the same as in Lemma 3.1 but yields a weaker conclu-
sion because the function symbol + need not be available. So when Gurevich uses
the formula

X ⊂ X+

on pp. 216–17 of [7], one must write

∃Y (X ⊂ Y ∧ ∀Z(X ⊂ Z → Y ⊆ Z)) ∨ ∀Y (Y ⊆ X)

instead, and this 62-formula will boost prefix complexity unless n is sufficiently
large. �

Let ẼXL#
s be the set of symbols of ẼXL# purely of subgroup sort, as in [9], Section

2.

Corollary 3.4 When n ≥ 2, a 6n- (5n-) formula of ELL is equivalent modulo
ẼXT1 to a 6n- (5n-) formula of ẼXL# without group-sort quantifiers. There is such
a 6n- (5n-) formula which is a positive propositional combination of atomic ELL-
formulas, ±D(p, s, k, t), ±E(p, s, c, t), ±t Rl mod A(t) (R ∈ {=, <,>}, l 6= 0),
and formulas obtained from 6n- (5n-) formulas of ẼXL#

s through replacement of
certain free variables of subgroup sort by terms A(t) or F(p, s, t).
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Proof One establishes the first claim by induction on n as in Corollary 3.2, but with
the help of Lemma 3.3 instead of Lemma 3.1. The second claim follows from the
first by the proof of Theorem 2.2 in [9] together with the fact that since n ≥ 2, one
may assume that terms of subgroup sort that contain terms of group sort are terms
A(t) or F(p, s, t) (see the remarks about unnested formulas in [8], pp. 58–59). �

The next results concern the two-sorted theories Lex(Tv,F ) introduced in Sec-
tion 4 of [9]. Given the Lv-theory Tv of linearly ordered sets with least element
0 and the family F of Lv-formulas Z(α) and Ip,n(α) (p prime, n ≥ 0), one
may define an expansion (L2

v)ˆ of L2
v and an (L2

v)ˆ-theory Lex(Tv,F )ˆ extending
Lex(Tv,F ) as follows. (L2

v)ˆ is the disjoint union of L2
v with the symbols of

ẼXL − (ELL ∪ {∅,⊂,∈, A( ), F(p, s, ), = 0 mod . . . , < 0 mod . . . ,
> 0 mod . . . }): so to L2

v one adds the relation symbols D(p, s, k, ),
E(p, s, c, ), E(. . . ), p(s, k, . . . ) > r , and Rl mod . . . , where p is prime,
1 ≤ k ≤ s, c ∈ Z, r ≥ 0, R ∈ {=, <,>}, l ∈ Z − {0}, and (. . . ) is an argument
place for terms of group (value) sort. Lex(Tv,F )ˆ is the definitional expansion of
Lex(Tv,F ) by axioms with the following import (initial universal quantifiers are
dropped for the sake of legibility; the numbering continues that of [9], Section 4):

(13) D(p, s, k, x) ↔ ∃|y| ≤ |ps x |(x = ps y ∨ ‖x − pk y‖ps < ‖x‖ps = ‖y‖ps )
(for p prime and 1 ≤ k ≤ s);

(14) E(α)↔ Z(α);

(15) y = 1 mod α ↔ E(α)∧ 0 < y ∧ α ≤ ‖y‖ ∧ ∀|z| ≤ |y|(0 < z ∧ α ≤ ‖z‖ →
‖z − y‖ < α);

(16) E(p, s, c, x)↔ ∃|y| ≤ |2x |(y = 1 mod ‖x‖ps ∧‖x − cy‖ps < ‖x‖ps )) (for
p prime, s ≥ 1 and c ∈ Z);

(17) p(s, s, α) > r ↔ Ip,r+1(α) (for p prime, 1 ≤ s and r ≥ 0);

(18) ¬p(s, k, α) > r (for p prime, 1 ≤ k < s and r ≥ 0);

(19) y = l mod α ↔ ∃|z| ≤ |y|(z = 1 mod α ∧ ‖y − lz‖ < α) (when l 6= 0, 1);

(20) y < l+ mod α ↔ E(α) ∧ (α ≤ ‖y‖ → ∃|z| ≤ |y|(z = 1 mod α ∧ y <
l+z ∧ α ≤ ‖y − l+z‖)) (when 0 < l+);

(21) y > l+ mod α ↔ E(α)∧∃|z| ≤ |y|(z = 1 mod α∧l+z < y∧α ≤ ‖l+z − y‖)
(when 0 < l+);

(22) y < l− mod α ↔ E(α)∧∃|z| ≤ |y|(z = 1 mod α∧y < l−z∧α ≤ ‖l−z − y‖)
(when l− < 0);

(23) y > l− mod α ↔ E(α) ∧ (α ≤ ‖y‖ → ∃|z| ≤ |y|(z = 1 mod α ∧ l−z <
y ∧ α ≤ ‖l−z − y‖)) (when l− < 0).
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Lemma 3.5 Suppose Lv contains no function symbols5 and Tv implies that every
element with a successor has an immediate successor. If n ≥ 2, then every 6n-
(5n-) formula of L is equivalent modulo Lex(Tv,F )ˆ to a 6n- (5n-) formula of
(L2

v)ˆ without group-sort quantifiers. There is such a 6n- (5n-) formula which is a
positive propositional combination of atomic and negated atomic L-formulas, for-
mulas ±D(p, s, k, t), ±E(p, s, c, t), ±t Rl mod ‖t‖ (R ∈ {=, <,>}, l 6= 0), and
formulas obtained from 6n- (5n-) formulas of Lv through replacement of certain
free variables of value sort by terms ‖t‖ or ‖t‖ps .

Proof Let ϕ(x) be a 6n- (5n-) formula of L and ẼXL#
= ẼXL q (Lv − {≤, 0}).

The proof of Theorem 4.1 in [9] provides an ELL-formula ϕ̃(x) such that if
A |H Lex(Tv,F ) and Ã |H ẼXT1 is built from A as in the proof of Theorem 4.1,
then

A |H ϕ[a] iff Ã |H ϕ̃[a]

for all a from A. The definition of ϕ̃(x) makes it a 6n- (5n-) formula if ϕ(x) is
a 6n- (5n-) formula. Corollary 3.4 provides a 6n- (5n-) formula ϕ̃♦(x) of ẼXL#,
without group-sort quantifiers, that is equivalent to ϕ̃(x) modulo ẼXT1; one may
assume that ϕ̃♦(x) is a positive propositional combination of atomic ELL-formulas,
formulas ±D(p, s, k, t), ±E(p, s, c, t), ±t R mod A(t) (R ∈ {=, <,>}, l 6= 0),
and formulas obtained from 6n- (5n-) formulas of ẼXL#

s through replacement of
certain free variables of subgroup sort by terms A(t) or F(p, s, t). One obtains the
desired 6n- (5n-) formula of (L2

v)ˆ by translating ϕ̃♦(x) into (L2
v)ˆ according to the

following scheme, which as in the proof of [9], Theorem 4.1, relies on a bijection
γi 7→ Gi between value-sort variables γi and subgroup-sort variables Gi . First one
associates with each ẼXL#-term t an (L2

v)ˆ-term t∗ as follows: variables of group
sort and the group-sort constant 0 are fixed; ∗ commutes with the function symbols
+,− of group sort; each Gi goes to γi ; the subgroup-sort constant ∅ goes to the
value-sort constant 0, and all other constants of subgroup sort are fixed; A(t)∗ is
‖t∗‖; and F(p, s, t)∗ is ‖t∗‖ps . When t, u are ELL-terms, (t = u)∗ is t∗ = u∗ and
(t < u)∗ is t∗ < u∗;6 ∗ commutes with every D(p, s, k, ), E(p, s, c, ), E(. . . ),
p(s, k, . . . ) > r , Rl mod . . . (R ∈ {=, <,>} and l 6= 0), and relation symbol
of Lv − {≤, 0}; when t is a term of group sort and R, S are terms of subgroup sort,
(R ⊂ S)∗ is R∗ < S∗, (t ∈ R)∗ and (t = 0 mod R)∗ are ‖t∗‖ < R∗, (t < 0 mod R)∗

is t∗ < 0 ∧ R∗ ≤ ‖t∗‖, and (t > 0 mod R)∗ is t∗ > 0 ∧ R∗ ≤ ‖t∗‖. Finally,
∗ commutes with all connectives and quantifiers. Certainly ψ∗ is 6n (5n) if ψ is
6n (5n), and will have the extra structure described in Lemma 3.5 if ψ has the extra
structure described in Corollary 3.4. The remarks below will explain why ϕ(x) is
equivalent modulo Lex(Tv,F )ˆ to ϕ̃♦∗(x).

Suppose Aˆ |H Lex(Tv,F ) .̂ As noted above, for all a from A,

Aˆ |H ϕ[a] iff (Aˆ � L2
v)˜ |H ϕ̃[a],

and since (Aˆ � L2
v)˜ |H ẼXT1,

(Aˆ � L2
v)˜ |H ϕ̃[a] iff (Aˆ � L2

v)˜ |H ϕ̃
♦
[a].

Because every element of ‖A‖ with a successor has an immediate successor, the
mapping

α ∈ ‖A‖ 7→ [0, α) ∈ Io
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is a surjection of the value domain of Aˆ onto the subgroup domain I ⊇ Is of
(Aˆ � L2

v) .̃ Because this mapping is order-preserving, it is an order-isomorphism,
and but for different choices of symbols and primitives Aˆ � Lv and (Aˆ � L2

v)˜

� ẼXL#
s would be isomorphic. In fact, the definitions allow one to show, by induction

on logical complexity,7 that if ψ(x, Y ) is any ẼXL#-formula, b comes from A, and
0 comes from ‖A‖, then

(Aˆ � L2
v)˜ |H ψ[b, [0, 0)] iff Aˆ |H ψ∗[b, 0].

So
Aˆ |H ϕ[a] iff Aˆ |H ϕ̃♦∗

[a]

for all a from A, and the argument is complete. �

One may apply Lemma 3.5 to sentences as follows.

Lemma 3.6 Suppose Lv contains no function symbols, Tv implies that elements
with successors have immediate successors, and every formula in F is logically
equivalent to an Lv-formula in 6m and to an Lv-formula in 5m . If n ≥ 2, then
every6n- (5n-) sentence of L is equivalent modulo Lex(Tv,F ) to a6n+max(m−1,0)-
(5n+max(m−1,0)-) sentence of Lv.

Proof Let ϕ be a 6n- (5n-) sentence of L. Since n ≥ 2, there is a 6n- (5n-)
sentence ψ of (L2

v) ,̂ equivalent to ϕ modulo Lex(Tv,F ) ,̂ which has all the special
properties noted at the end of Lemma 3.5. When t is a closed term of group sort,
Lex(Tv,F ) |H t = 0: so in ψ , occurrences of ‖t‖ or ‖t‖ps may be replaced by
0 (∈ Lv), occurrences of D(p, s, k, t) may be replaced by 0 = 0, occurrences of
t = 1 mod ρ, E(p, s, c, t), t = l mod ρ (l 6= 0, 1), t > l+ mod ρ (l+ > 0), and
t < l− mod ρ (l− < 0) may be replaced by 0 6= 0, and occurrences of t < l+ mod ρ
(l+ > 0) and of t > l− mod ρ (l− < 0) may be replaced by E(ρ). The new ax-
ioms of Lex(Tv,F )ˆ also allow one to replace occurrences of p(s, k, ρ) > r by
0 6= 0 when s 6= k. One thus obtains a (prenex) 6n- (5n-) sentence θ of (L2

v) ,̂
equivalent to ϕ modulo Lex(Tv,F ) ,̂ whose quantifier-free matrix is a propositional
combination of Lv-formulas and formulas p(s, s, ρ) > r and E(ρ) for certain Lv-
terms ρ. By hypothesis each formula p(s, s, ρ) > r and E(ρ) is equivalent modulo
Lex(Tv,F )ˆ to an Lv-formula in 6m and to an Lv-formula in 5m : so θ is equiv-
alent modulo Lex(Tv,F )ˆ to a 6n+max(m−1,0)- (5n+max(m−1,0)-) sentence γ of Lv.
Because Lex(Tv,F )ˆ is a definitional expansion of Lex(Tv,F ), ϕ is equivalent to γ
modulo Lex(Tv,F ). �

Let Tv be the Lv = {≤, 0}-theory of linearly ordered sets, with least element 0,
in which elements with successors have immediate successors. In the family F
of Lv-formulas Z(α) and Ip,n(α) let Z(α) be α 6= 0, Ip,0(α) be α = α, Ip,1(α)

be α 6= 0, and Ip,n(α) be 0 6= 0 when n > 1.8 Because every formula of F
belongs to 60 ∩ 50, Lemma 3.6 says that when n ≥ 2, every 6n- (5n-) sentence
ϕ of L is equivalent modulo Lex(Tv,F ) to a 6n- (5n-) sentence ϕ∗ of Lv. If
θ > 0 is an ordinal, then since Tθ = Th(θ,≤, 0) ⊇ Tv, Lex(Tθ ,F ) ⊇ Lex(Tv,F )

and ϕ is equivalent to ϕ∗ modulo Lex(Tθ ,F ), the complete L2
v-theory of

←−
5 0<i<θZ

([9], Theorem 4.1). When θ is congruent9 modulo ωω to an ordinal ≤ ωω—for
example, when θ ≤ ωω—Tθ,F , the set of L-consequences of Lex(Tθ ,F ), admits
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elimination of unbounded quantifiers ([9], Theorem 5.2, Lemma 5.4). But there may
be no limit to the complexity of the bounded formulas, as the following result shows.

Theorem 3.7 There is no n ≥ 0 such that every L-formula is equivalent modulo
Tωω,F to a b6n-formula.

Proof Suppose otherwise, and fix a suitable n ≥ 0. By Corollary 5.3 of [9], Tωω,F
may be axiomatized by the L-axioms To for ordered Abelian groups together with a
set Tb of L-sentences

∀x1∃x2β(x1, x2),

where β(x1, x2) is a bounded L-formula. By hypothesis each such β(x1, x2) is
equivalent modulo Tωω,F to a formula β̃(x1, x2) in b6n . So Tωω,F may be ax-
iomatized by To together with all 5n+1-sentences

∀x1∃x2β̃(x1, x2)

and all essentially universal sentences

∀x1∀x2(β ↔ β̃),

where in both cases ∀x1∃x2β(x1, x2) ∈ Tb. Without loss of generality, n ≥ 1:
so each 5n+1-sentence ∀x1∃x2β̃(x1, x2), as above, is equivalent modulo
Lex(Tv,F ) to a 5n+1-sentence (∀x1∃x2β̃(x1, x2))

? of Lv. Since the Lv-theory
Tωω ⊆ Lex(Tωω ,F ) is complete,

Tωω |H (∀x1∃x2β̃(x1, x2))
?.

[4], 4.3.1; [5], Note 1 on p. 60; and [6], 5.2.2, imply that Tωω and Tωn have the same
52n consequences,10 and so the same 5n+1 consequences (n ≥ 1): thus

Tωn |H (∀x1∃x2β̃(x1, x2))
?

and so
Lex(Tωn ,F ) |H (∀x1∃x2β̃(x1, x2))

?.

Because Lex(Tv,F ) ⊆ Lex(Tωn ,F ),

Lex(Tωn ,F ) |H ∀x1∃x2β̃(x1, x2)

and
Tωn ,F |H ∀x1∃x2β̃(x1, x2)

whenever ∀x1∃x2β ∈ Tb. Since
←−
5 0<i<ωn Z is a convex subgroup of

←−
5 0<i<ωωZ, in

which the essentially universal sentences ∀x1∀x2(β ↔ β̃) are true, they are true in
←−
5 0<i<ωn Z. So its complete L-theory Tωn ,F implies a set of axioms for the complete
L-theory Tωω,F , and

Tωn ,F = Tωω,F .
Yet the proof of Lemma 5.1 in [9] provides an L-formula defining ‖x‖ ≤ ‖y‖ in the
L2

v-structures based on
←−
5 0<i<ωn Z and on

←−
5 0<i<ωωZ ([9], Section 4). So one may

conclude that
(ωn,≤, 0) ≡ (ωω,≤, 0),

contrary to [4], 5.3; [5], Note 1 on p. 60; and [6], 5.2(2,3). �

A similar argument yields the following conclusion.

Theorem 3.8 If n ≥ 1, not every L-formula is equivalent modulo Tωn ,F to a b6n-
formula.
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Proof When n ≥ 3, one may repeat the proof of Theorem 3.7 to show that if ev-
ery L-formula is equivalent modulo Tωn ,F to a b6n-formula, then (ωn−1,≤, 0) ≡
(ωn,≤, 0), contrary to [4], 5.3; [5], Note 1 on p. 60; and [6], 5.2(2,3). The assump-
tion that n ≥ 3 implies that n + 1 ≤ 2(n − 1), and so allows one to invoke 4.3.1 of
[4] to conclude that Tωn and Tωn−1 have the same 5n+1 consequences.11

If n = 2, one may use an example like that at the end of Section 2 to reach the
desired conclusion. For i ≥ 0 let

Hi = Z
←−
×
←−
5 0< j≤i Q

←−
×
←−
5 i<l≤ωZ

and
Ki = Hi

←−
×
←−
5 0<m<ωZ.

Hi ≤ Ki |H Tω2,F for all i , and {Hi }i≥0 is a chain whose union

H = Z
←−
×
←−
5 0< j<ωQ

←−
×Z

is a convex subgroup of

K = Z
←−
×
←−
5 0< j<ωQ

←−
×Z
←−
×
←−
5 0<m<ω2 Z |H Tω2,F .

There is an L-formula ϕ(x) defining the set of elements of value ω in any model of
Lex(Tω2 ,F ) ([9], Theorem 5.6). The element (0, 1) ∈ H0 obeys ϕ(x) in every Ki
but not in K (where (0, 1) has value 2): so by Theorem 2.4, ϕ(x) is not equivalent
modulo Tω2,F to a b52-formula. Thus ¬ϕ(x) is not equivalent modulo Tω2,F to a
b62-formula.

If n = 1, the identity map embeds
←−
5 0<i<ωZ |H Tω,F in Z

←−
×Q
←−
×
←−
5 3≤i<ωZ

|H Tω,F . There is an L-formula ψ(x) defining the set of elements of value 2 in any
model of Tω,F ([9], Theorem 5.6). Since (0, 1, 0) obeys ψ(x) in

←−
5 0<i<ωZ |H Tω,F

but not in Z
←−
×Q
←−
×
←−
5 3≤i<ωZ |H Tω,F —where (0, 1, 0) has value 1—Corollary 2.3

implies that ψ(x) is not equivalent modulo Tω,F to a b61-formula. �

When θ > ωω is not congruent modulo ωω to ωω, Tθ,F does not admit elimination
of unbounded quantifiers ([9], Section 5, Note 9). In this case there is no n ≥ 0 such
that every bounded L-formula β(x) is equivalent modulo Tθ,F to a formula β̃(x) in
b6n : otherwise, the essentially universal sentences

∀x(β ↔ β̃)

would follow from Tθ,F and so hold in the convex subgroup
←−
5 0<i<ωωZ of

←−
5 0<i<θZ, contrary to Theorem 3.7.

4 Upper Bounds on Bounded-Quantifier Complexity

When 0 < θ < ωω has Cantor normal form

θ = ωr nr + · · · + ω
sns

and Tθ,F is the set of L-consequences of Lex(Tθ ,F ) as in [9], Section 5, one may
show that every L-formula is equivalent modulo Tθ,F to a formula in b62r+11. So
an L-formula ϕ(x) will be equivalent in

←−
5 0<i<ωn Z to a b62n+11-formula, though

by Theorem 3.8 ϕ(x) need not be equivalent to a b6n-formula. To obtain such upper
bounds for the bounded-quantifier complexity of formulas equivalent to ϕ(x), one
starts by invoking Lemma 3.5 to find an (L2

v)ˆ-formula ϕ′(x), equivalent to ϕ(x)
modulo Lex(Tθ ,F ) ,̂ which is a positive propositional combination of atomic and
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negated atomic L-formulas, formulas±D(p, s, k, t),±E(p, s, c, t),±t Rl mod ‖t‖
(R ∈ {=, <,>}, l 6= 0), and formulas obtained from Lv-formulas through re-
placement of certain free variables of value sort by terms ‖t‖ or ‖t‖ps . Because
Lemma 5.1 of [9] allows one to translate formulas of (L2

v)ˆ into formulas of L,
the rest of the argument involves estimating the bounded-quantifer complexity of
L-formulas equivalent to D(p, s, k, t), E(p, s, c, t), t Rl mod ‖t‖ (R ∈ {=, <,>},
l 6= 0), and substitution instances (as above) of Lv-formulas. To handle the latter
type of formula one exploits the fact that there is an upper bound, determined by r ,
for the bounded-quantifier complexity of any Lv-formula.

Starting with the Lv = {≤, 0}-theory of well-ordered sets, one may define
bounded Lv-formulas as in Section 2 by letting u G v be u ≤ v. This choice deter-
mines classes b6n , b5n of Lv-formulas as before. In their study of the {≤}-theory
W of well-ordered sets, Doner, Mostowski, and Tarski introduce {≤}-formulas

Lκ(x),Mκλ(x, y), Nκλ(x)

when κ ≥ 0 and λ ≥ 1 (see [2], pp. 12, 16).12

Lemma 4.1

(i) Lκ(x) is equivalent modulo W to a b52κ -formula of Lv.
(ii) Mκλ(x, y) is equivalent modulo W to a b62κ+1-formula of Lv.

(iii) Nκλ(x) is equivalent modulo W to a b62κ+2-formula of Lv.

The proof is a simple induction on κ , based on the definitions in [2], pp. 12, 16.
Doner, Mostowski, and Tarski also define, for each positive α < ωω, a {≤}-

formula Hα(x) that defines α in (θ,≤) whenever α < θ ([2], p. 42).

Lemma 4.2 When 0 < α < ωω has Cantor normal form

α = ωνλν + · · · + ω
0λ0,

Hα(x) is equivalent modulo W ∪ {∀x(0 ≤ x)} to an Lv-formula in b52ν+3.

Proof By definition Hα(x) is

¬Mν+1,1(0, x) ∧
∧
κ≤ν

Gκ(x),

where

Gκ(x) =
{

Nκ,λκ (x) ∧ ¬Nκ,λκ+1(x) if λκ 6= 0
¬Nκ,1(x) if λκ = 0.

By Lemma 4.1,¬Mν+1,1(0, x) is equivalent modulo W∪{∀x(0 ≤ x)} to a formula in
b52(ν+1)+1, Nκλ(x) is equivalent modulo W to a formula in b62κ+2, and ¬Nκλ(x)
is equivalent modulo W to a formula in b52κ+2: so the prenexing rules give the
result desired. �

Tθ is the Lv-theory of (θ,≤, 0). Lemmas 4.1 and 4.2 yield the following conclusion.

Lemma 4.3 When 0 < θ < ωω has Cantor normal form

θ = ωr nr + · · · + ω
sns,

every Lv-formula is equivalent modulo Tθ to a formula in b62r+5.
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Proof The proof of Lemma 5.4 in [9] shows that every Lv-formula is equivalent
modulo Tθ to a propositional combination of quantifier-free formulas and formulas

Lκ(t),Mκλ(t, u), Nκλ(t), and ∀y ≤ x¬Hγ (y)

where 0 < γ < θ . Corollary 5 and Theorem 25 of [2] allow one to assume that
κ ≤ r in all these formulas. So by Lemmas 4.1 and 4.2 they are equivalent modulo
Tθ to formulas in

b52r , b62r+1, b62r+2, and b52r+4.

Propositional combinations of such formulas will be equivalent to formulas in
b62r+5. �

Turn now to L2
v and the theories Tθ,F studied in Section 5 of [9]. These correspond

to classes F of Lv-formulas Z(α) and Ip,n(α) (p prime, n ≥ 0) chosen so that

(?) There are primes p1 < · · · < pk such that in (θ,≤, 0)

∀α∀β(0 < α < β ∧ ¬L1(β)→ ∨
k
j=1 Ip j ,1(β)).

For such θ and F one may state the following result.

Lemma 4.4 The L2
v-formulas

‖x‖ ≤ ‖y‖, ‖x‖ ≤ ‖y‖l , ‖y‖l ≤ ‖x‖, and ‖y‖l ≤ ‖z‖m

are equivalent modulo Lex(Tθ ,F ) to L-formulas in

b52, b52, b63, and b54.

Proof See the proof of Lemma 5.1 in [9]. �

Combining the last two lemmas, one reaches the following conclusion.

Lemma 4.5 Suppose 0 < θ < ωω has Cantor normal form

θ = ωr nr + · · · + ω
sns .

If α1, . . . , αm, β1, . . . , βn are m + n distinct variables of Lv, ϕ(α1, . . . , αm, β1,
. . . , βn) is an Lv-formula, and k1, . . . , kn are prime powers greater than one, there
is an L-formula ϕk(x1, . . . , xm, y1, . . . , yn) in b52r+9 such that

ϕ(‖x1‖, . . . , ‖xm‖, ‖y1‖k1 , . . . , ‖yn‖kn )↔ ϕk(x, y)

modulo Lex(Tθ ,F ).

Proof By Lemma 4.3 one may assume that ϕ belongs to b52r+5, that none of the
αs or βs is bound in ϕ, and that ϕ is a {≤}-formula (0 may be inserted later as ‖0‖).
Let

δ 7→ vδ

be a bijection, between the variables of Lv and the variables of L, that sends each
αi to xi and each βi to yi . Suppose ϕ is

∀γ1 ≤ δ1 . . . ∃γt ≤ δt . . . θ,

where θ is the quantifier-free matrix of ϕ. For variables δ in ϕ let

wδ =


‖vδ‖ if δ is bound in ϕ
‖xi‖ if δ is αi
‖yi‖ki if δ is βi .
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The value domain of any model of Lex(Tθ ,F ) consists of the elements ‖x‖, and
when ‖x‖ ≤ ‖y‖ (or ‖x‖ ≤ ‖z‖l ), then ‖x‖ = ‖x ′‖ for some x ′ with |x ′| ≤ |y|
(or ‖x‖ = ‖x ′′‖ for some x ′′ with |x ′′| ≤ |z|). So ϕ(‖x1‖, . . . , ‖xm‖, ‖y1‖k1 ,

. . . , ‖yn‖kn ) is equivalent modulo Lex(Tθ ,F ) to the L2
v-formula

∀|vγ1 | ≤ |vδ1 |(wγ1 ≤ wδ1 → . . . ∃|vγt | ≤ |vδt |(wγt ≤ wδt ∧ . . . θ
′) . . . ),

where θ ′ results from θ when each variable δ in θ is replaced by wδ . The prenexing
rules allow one to convert the displayed formula to an equivalent one with quantifier
prefix

∀|vγ1 | ≤ |vδ1 | . . . ∃|vγt | ≤ |vδt | . . .

of class b52r+5 (in L) and matrix a propositional combination of formulas

‖x‖ ≤ ‖y‖, ‖x‖ ≤ ‖y‖l , ‖y‖l ≤ ‖x‖, and ‖y‖l ≤ ‖z‖m .

Lemma 4.4 implies that the matrix is equivalent modulo Lex(Tθ ,F ) to an L-formula
in b55; so since 2r+5 is odd, ϕ(‖x1‖, . . . , ‖xm‖, ‖y1‖k1 , . . . , ‖yn‖kn ) is equivalent
modulo Lex(Tθ ,F ) to an L-formula in b52r+9. �

As an example of the procedure described in the proof of Lemma 4.5, consider the
L2

v-formula

x 6= 0 ∧ ∀α ≤ ‖x‖(‖x‖ 6≤ α→ ∃β ≤ ‖x‖(β 6≤ α ∧ ‖x‖ 6≤ β)),

which in the L2
v-structure H corresponding to H = Q

←−
×
←−
5 0<i≤ωZ defines the set

of elements of value ω. Following the proof of Lemma 4.5, one obtains

x 6= 0 ∧ ∀|y| ≤ |x |(‖y‖ ≤ ‖x‖ ∧ ‖x‖ 6≤ ‖y‖
→ ∃|z| ≤ |x |(‖z‖ ≤ ‖x‖ ∧ ‖z‖ 6≤ ‖y‖ ∧ ‖x‖ 6≤ ‖z‖))

and

x 6= 0 ∧ ∀|y| ≤ |x |∃|z| ≤ |x |(‖y‖ ≤ ‖x‖ ∧ ‖x‖ 6≤ ‖y‖
→ ‖z‖ ≤ ‖x‖ ∧ ‖z‖ 6≤ ‖y‖ ∧ ‖x‖ 6≤ ‖z‖).

Since ‖x‖ ≤ ‖y‖ is equivalent in H to an L-formula in b52 (Lemma 4.4), the last
formula displayed is equivalent in H to an L-formula in b54.

One may now combine all these lemmas to state the following theorem.

Theorem 4.6 Suppose 0 < θ < ωω has Cantor normal form

θ = ωr nr + · · · + ω
sns .

Every L-formula is equivalent modulo Tθ,F to an L-formula in b52r+11.

Proof Let ϕ(x) be an L-formula. Lemma 3.5 says that modulo Lex(Tθ ,F ) ,̂
ϕ(x) is equivalent to a positive propositional combination of atomic and negated
atomic L-formulas, formulas ±D(p, s, k, t), ±E(p, s, c, t), ±t Rl mod ‖t‖ (R
∈ {=, <,>}, l 6= 0), and formulas ψ(‖t1‖, . . . , ‖tm‖, ‖u1‖k1 , . . . , ‖un‖kn ), with
ψ(α1, . . . , αm, β1, . . . , βn) an Lv-formula. Lemma 4.5 says that each formula
ψ(‖t1‖, . . . , ‖tm‖, ‖u1‖k1 , . . . , ‖un‖kn ) is equivalent modulo Lex(Tθ ,F ) to an L-
formula in b52r+9. Lemma 4.4 implies that D(p, s, k, t) is equivalent modulo
Lex(Tθ ,F )ˆ to an L-formula in b65, and Lemma 4.5 implies that t = 1 mod ‖t‖
is equivalent modulo Lex(Tθ ,F )ˆ to an L-formula in b52r+9 (E(‖t‖)—that is,
Z(‖t‖)—dominates). Thus E(p, s, c, t) is equivalent modulo Lex(Tθ ,F )ˆ to an L-
formula in b62r+10 (y = 1 mod ‖t‖ps dominates). A similar argument shows that
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each formula t = l mod ‖t‖ (l 6= 0, 1) and each formula t Rl mod ‖t‖ (R ∈ {<,>},
l 6= 0) is equivalent modulo Lex(Tθ ,F )ˆ to an L-formula in b62r+10. So ϕ(x)
is equivalent modulo Lex(Tθ ,F )ˆ to a propositional combination of L-formulas
in b62r+10, and so to an L-formula in b52r+11. Lex(Tθ ,F )ˆ is a conservative
extension of Lex(Tθ ,F ), and Tθ,F consists of the L-consequences of Lex(Tθ ,F ).
So the argument is complete. �

The arguments for Lemma 4.5 and Theorem 4.6 also yield an answer to the question,
raised in the Conclusion to [9], about normal forms for formulas modulo theories
Tθ,F which may not admit elimination of unbounded quantifiers (but for which (?) is
still assumed). By [2], Theorem 19 and Theorem 24, every {≤}-formula is equivalent
modulo Tθ to a propositional combination of atomic formulas and formulas

Lκ(x), Mκλ(x, y), Mκλ(0, y), Nκλ(x), and Mκλ(x,∞).

All these formulas, except possibly Mκλ(x,∞), are equivalent to bounded formu-
las. But one may show that modulo Tθ , Mκλ(x,∞) is equivalent to an essentially
existential formula: the sentence Lκ(∞) occurring in the definition of Mκ,1(x,∞)
([2], p. 16) has fixed truth value in (θ,≤, 0) and so may be replaced in Mκ,1(x,∞)
by an appropriate quantifier-free sentence of {≤, 0}; since formulas Lκ(x) are
bounded, an easy argument by induction on λ shows that each Mκλ(x,∞) is equiv-
alent modulo Tθ to an essentially existential formula. The proof of Lemma 4.5 now
shows that for each essentially existential {≤, 0}-formula ϕ(α1, . . . , αm, β1, . . . , βn)
and sequence k1, . . . , kn of prime powers greater than one, there is an essentially
existential L-formula ϕk(x1, . . . , xm, y1, . . . , yn) for which

ϕ(‖x1‖, . . . , ‖xm‖, ‖y1‖k1 , . . . , ‖yn‖kn )↔ ϕk(x, y)

modulo Lex(Tθ ,F ). The only change in the argument concerns unbounded existen-
tial quantifiers

. . . ∃γi . . .

which may occur in the quantifier prefix of the (prenex) formula ϕ(α, β): such quan-
tifiers are changed to

. . . ∃vγi . . . ,

while occurrences of γi in the matrix of ϕ are changed to wγi (the notation here is
as in the proof of Lemma 4.5). Combining this new version of Lemma 4.5 with the
argument for Theorem 4.6, one concludes that every L-formula is equivalent modulo
Tθ,F to a propositional combination of essentially existential formulas.

5 Conclusion

One may improve Theorem 4.6 when θ < ω and Z(α) never holds: that is, when
Tθ,F is the complete L-theory of a polyregular group G of finite rank in which
no quotient of successive groups in the polyregular system is a Z-group. For
Weispfenning has shown that the theory of such a group admits elimination of
quantifiers in the language

L(I ) = {0,+,−,≡n, <, Sk,≡
k
n}1≤n<ω,1≤k≤K ,

where K is the polyregular rank of the group ([1], p. 106), ≡n stands for congruence
mod n in G, Sk singles out the elements of value at most k in the group, and

x ≡k
n y iff x + Sk is congruent mod n to y + Sk in G/Sk
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([10],Theorem 2.9). In G,

x ≡n y iff ∃|z| ≤ |x − y|(x = y + nz),

Sk(x) iff ∀|y1| ≤ |x | . . . ∀|yk | ≤ |x |(‖y1‖ < · · · < ‖yk‖ < ‖x‖ → y1 = 0),
and

x ≡k
n y iff ∃|z| ≤ |x − y|(Sk(z) ∧ ∃|w| ≤ |x − y − z|(x = y + z + nw)).

So with the help of Lemma 4.4 one may show that x ≡n y, Sk(x), and x ≡k
n y

are equivalent in G to L-formulas in b61, b52, and b63. Weispfenning’s quan-
tifier elimination therefore implies that every L-formula is equivalent in G to an
L-formula in b64.

Though a version of Weispfenning’s quantifier elimination still works when var-
ious factor groups Sk/Sk−1 are Z-groups, this version introduces, for each k with
Sk/Sk−1 ≡ Z, a new constant symbol 1k corresponding to the least positive element
1k + Sk−1 of Sk/Sk−1, and when k > 1 such elements 1k are not L-definable in G.
Yet when k = 1, 1k will be the least positive element of G, and so may be defined
by the L-formula

0 < x ∧ ∀|y| ≤ |x |(0 < y → y = x).

If one supposes that G is a lexicographic extension of Z by a finite lexicographic
product of regular groups that are neither divisible nor Z-groups, then for any L-
formula ϕ(x) the argument sketched above provides an L-formula ψ(x, y) of b64
such that if 1 is the least positive element of G, ϕ(x) is equivalent in G to ψ(x, 1).
Let

γ =

{
0 = 0 if G |H ψ[0, 1]
0 6= 0 otherwise.

Then ϕ(x) is equivalent in G to

(x = 0 ∧ γ ) ∨
∨

j

[x j 6= 0 ∧ ∃|y|

≤ |x j |(0 < y ∧ ∀|z| ≤ |y|(0 < z→ z = y) ∧ ψ(x, y))],

which is equivalent in G to an L-formula in b64. So in a finite lexicographic prod-
uct H1

←−
× · · ·

←−
× Hk of regular groups Hi that are neither divisible nor Z-groups if

i > 1, every L-formula is equivalent to an L-formula in b64 rather than b611 as
Theorem 4.6 would claim.

To bring the lower and upper bounds of Sections 3 and 4 still closer together,
one might try to apply back-and-forth arguments in the style of Fraïssé directly to
the ordered Abelian groups

←−
5 0<i<θZ (and not merely to the ordered sets (θ,≤, 0)).

Developing Ehrenfeucht-Fraïssé games for bounded-quantifier equivalence in this
context might also yield a model-theoretic test for b52n-sentences alternative to
Theorem 2.5.

Notes

1. See [9], Section 4, for a definition of Hahn products
←−
5 0<i Gi of ordered Abelian groups

{Gi }0<i∈I over an ordered index set (I, <, 0) with least element 0; an element (gi )0<i
of
←−
5 0<i Gi is positive just in case it is not zero and g j is positive when j is the greatest

coordinate at which (gi )0<i is nonzero.
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2. See the Introduction of [9] for a definition of lexicographic products H←−× K of ordered
Abelian groups H , K ; an element (h, k) of H←−× K is positive just in case it is not zero
and either 0 < k or both 0 = k and 0 < h.

3. An essentially universal (existential) formula ([3], p. 31) is a formula built from atomic
and negated atomic formulas with the help of conjunction, disjunction, bounded quanti-
fiers, and universal (existential) quantifiers.

4. In a b62n−1-chain, a tuple from A j which satisfies a b62n−1-formula in A j satisfies
the same formula in A j+1.

5. Here and in Lemma 3.5 this restriction may be avoided. Because n > 0, one may assume
that all formulas are unnested ([8], pp. 58–59), and then a slight change in the definition
of ˜ from [9], Theorem 4.1, will still work.

6. Note that strict inequalities are not atomic L-formulas; thus the need for “negated
atomic” in the statement of Lemma 3.5.

7. See Lemma 2.4 of [9] for justification of the bounded quantifiers in the axioms for
D(p, s, k, x) and E(p, s, c, x).

8. So Lex(Tv,F ) is true in Hahn products of Z over ordered sets, with least element, in
which elements with successors have immediate successors.

9. According to a slight variant of [2], p. 51, ordinals α and β are congruent modulo ωω

just in case α = β < ωω or α, β ≥ ωω and there is an ordinal δ with α = ωωδ + β or
β = ωωδ + α.

10. Though [6] uses a language without constant symbols, its results apply here because
2n ≥ 2: so when θ > 0 is an ordinal, ∀x1 . . . ∃x2nϕ(x, 0) is equivalent in (θ,≤, 0) to
∀y∀x1 . . . ∃x2n∃z(y ≤ z→ ϕ(x, y)).

11. Since n − 1 > 0, the results of [6] still apply to a language with a constant symbol for
zero; see Note 10.

12. To follow the notation of [2], the next few lemmas use lowercase Roman letters for
variables in Lv-formulas.
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