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Abstract

As most users access the Web from multiple devices with different
characteristics, ranging from powerful desktops or laptops to tablets,
mobile phones or watches and cars, liquid Web applications seamlessly
flow across multiple Web-enabled devices and adapt their distributed
user interface to the set of devices simultaneously accessing the appli-
cation. In this paper we focus on the business logic layer of rich Web
applications and explore the opportunity to reduce the execution time
of CPU-intensive tasks or limit their energy consumption by offloading
them among nearby devices running the same liquid Web application.
We extend the standard HTMLS WebWorker API with the concept
of liquid WebWorkers, so that developers can transparently offload
parallel execution of stateless tasks by managing the necessary device
selection and direct peer-to-peer data transfer. By introducing the liquid
WebWorker APl into our Liquid.js framework, we present how to create
a pool of devices sharing their CPU processing capabilities according
to different policies.
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1 Introduction

As more and more users connected to the Web own more than three
devices, ranging from powerful desktops and laptops to smaller devices,
such as tablets, smart phones or smart watches [17], this affects the
way users interact with their software applications running across their
devices [16]. Liquid software [19, 38] empowers users to run their
applications across a set of multiple heterogeneous devices. The devices
can be used one at a time (when the liquid software flows between
them) or simultaneously (when the liquid software flows to fill them
all up). In this paper we focus on the second, simultaneous screening
usage scenario, where one or multiple users run applications across
multiple devices at the same time. In our previous work, we studied how
the architecture of a liquid Web application may be designed to take
advantage of all available devices [15]. Users interacting with multiple
devices may trigger data synchronization activities that will ensure
a consistent view over the state of the distributed Web application.
Having multiple, partially idle devices also opens up the opportunity to
exploit their computational resources to speed up CPU-intensive tasks.
In this paper we focus on the business logic layer of the application
and show how to transparently offload the execution of CPU-intensive
tasks among the active devices on which the application has been
deployed. As opposed to vertical offloading which takes advantage of
remote Cloud resources [25], in this paper we introduce an horizontal
offloading approach, where only local devices are involved.
This paper makes the following contributions:

1. It presents the liquid WebWorker API, a novel abstraction built
on top of the standard HTML5 WebWorker APL! which allows
developers to add parallelism to their liquid Web applications by
offloading computational tasks from a device to another;

2. It discusses how the offloading decision can transparently follow
different policies, which may take into account user constraints and

'https://html.spec.whatwg.org/multipage/workers.html
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different trade-offs, e.g., minimizing energy consumption, reducing
communication costs or minimizing the task execution time;

3. We describe in detail how the liquid WebWorker concept has
been implemented as an extension of the Liquid.js for Polymer
framework;

4. We present empirical results showing that the performance of the
Web application can be improved by offloading CPU-intensive
tasks across different classes of devices.

This article extends our previously published ICWE2018 paper [13]
with new sections describing:

1. Fault tolerance aspects;

2. Asynchronous data exchange via liquid properties;

3. Ranking the processing capacity of heterogeneous devices with
micro-benchmarks;

4. Usage scenarios of liquid WebWorkers for horizontal computa-

tional offloading;

. New offloading policy addressing security issues.

6. Extended discussion on offloading policy rules taking into account
micro-benchmarks and asynchronous data synchronization.

9,1

The rest of this paper is structured as follows: in Section 2 we
present related work which inspired this paper; in Section 3 we discuss
the design of a liquid WebWorker, its internal architecture and then
introduce the API it exposes; in Section 4 we discuss some advanced
performance-enhancing features we built on top of the liquid Web-
Worker core design; in Section 5 we describe in which application
scenarios liquid WebWorkers could be deployed and describe some use
case scenarios; in Section 6 we present the empirical measurements we
observed during the experiments we ran on our prototype; in Section 7
and in Section 8 we summarize the results discussed on this paper and
point out additional open research challenges to further improve the
design and implementation of liquid WebWorkers.

2 Related Work

The technological foundation of liquid software emerges from the
Internet of Things [2], the Web of Things [18], or more in general
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from the Programmable World [37]. Pervasive Computing [33] shows
how microprocessors can be embedded in all sorts of objects scattered
around us. Today those “things” are not isolated from each other
anymore, they became “smart”, and they are able to communicate with
any similar object around them. The users and the devices surrounding
them make up a complex ecosystem [41] which requires software to
adapt to the set of available devices, for example whenever a smart
objectenters or leaves the proximity of the user running a given software
application. Similarly, liquid software automatically flows between
devices to adapt its deployment configuration to take full advantage
of the resources and capabilities of multiple devices. Nowadays smart
objects and devices are so common [42] and advanced [6], that users
may also interact with some devices that they do not directly own, but
nevertheless they are allowed to share some information with it in order
to run applications across particular devices. For instance, it is possible
to find public displays [5] owned by cities [44] which may allow users to
interact with them directly or by pairing their mobile smart phones with
them. This way, users could for example take advantage of the large
screen to display a picture slide show. This is a relevant scenario for
liquid software, as the application should run across multiple devices to
achieve the user’s goal. More in general, the challenge we focus on in
this paper is how to enable devices to share their available computing
resources and how to design software which can seamlessly access
them.

Mobile Computing [10] discusses the potential of creating power-
ful distributed systems made of mobile hardware that communicates
through the Internet. A mobile computing system trades portability and
social interactivity with many distributed systems challenges such as
dealing with device connectivity, discovery, trust establishment and
proximity detection. The study of context-aware systems [35] allows us
to understand how to create systems based on proximity-awereness [7].

Web technologies have been evolving towards increased support for
reliable mobile decentralized and distributed systems [12]. In the past
decade an effort has been made to improve and create new HTMLS
standards [43] that can help with the creation of complex mobile
distributed systems able to reliably maintain data synchronized between
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devices [30]. Thanks to novel standard protocols it is also possible to
interconnect any device by using any standard compliant Web browser.
Okamoto et al. [29] show how to create mobile Web distributed systems
by exploiting the WebWorker HTMLS standard.

Web browsers allow any device to connect to a Web application,
meaning that users can connect all the devices they own to run a single
liquid cross-device application. Whenever a device is connected to the
liquid application, the resources it provides are exploited by the soft-
ware. This approach is similar to the one of Volunteer Computing [1],
where users willingly connect their own devices to perform a global
computation, and share data, storage or computing resources among
them.

Edge computing [36] focuses on optimizing data processing and
storage by shifting computations closer to the source of the data, as
opposed to shipping a copy of the data to large, centralized Cloud
data centers [32]. The optimization reduces bandwidth consumption
and latency in the communication between the edge devices, making
it possible to reduce the overall processing time of an operation. Fog
computing [3, 27] takes edge computing to the extreme, by making
it possible to make all data processing computation within the IoT
ecosystem. Liquid software also incorporates such performance goals,
in order to seamlessly migrate applications among multiple user-owned
devices without relying on centralized Web servers. Similar concepts
can also be found in the ubiquitous computing [31] literature.

Traditionally large amounts of distributed computational resources
was found mainly within clusters of computers or Cloud data centers,
however recent trends show that also the Web, by employing Web
browsers running across many types of devices and WebWorkers as
a programmatic abstraction for parallel computations, can deliver a
decentralized computation platform [8] as well. While most existing
computational offloading work focuses on shifting workloads vertically
from mobile devices to the Cloud [9], in this paper we study how to
do so horizontally by using nearby devices. While these may not be as
powerful as a Cloud data center, they will remain under the full control
of their owners and enjoy a better proximity on the network.
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Hirsch et al. [20] propose a technique for scheduling computation
offloading in grids composed by mobile devices. The scheduling logic
of the system is able to offload a set of heterogeneous jobs to any
mobile device after an initial centralized decision-making phase. This
is followed by the job stealing phase, in which jobs are relocated to
other devices in a decentralized manner. The scheduler considers the
battery status, the CPU performance and the uptime expectation of
all connected devices when it has to decide where to offload jobs.
The CPU performance is computed using a benchmark. While this
approach shows promising results and it is able to increase the overall
performance of computational-intensive applications, in this paper we
present a fully decentralized approach able to operate inside a Web
browser, where complete information about the devices hardware and
software configuration is not always accessible.

Loke et al. [26], propose a similar system allowing multi-layered
job stealing techniques also with a hybrid approach (both centralized
and decentralized) for offloading decisions. The decision depends on
which devices are close to the device that starts the computation and
then tries to scatter the job between them. Their approach is not based
on a Web browser and relies on Bluetooth or WiFi for inter-device
communication.

3 Liquid WebWorkers

Like standard HTMLS WebWorkers, also liquid WebWorkers (LWW)
are designed to perform background computations in a parallel thread
of execution. Unlike standard HTML5 WebWorkers, the work can
potentially be transparently offloaded across different devices. To do
so, LWW use a simpler stateless programming model, which helps
developers identify the boundaries of the task to be offloaded. Liquid
WebWorkers receive discrete atomic jobs to be processed and produce
the corresponding results all at once. The computational offloading is
kept completely transparent from the developer, who can use specific
task placement policies to prioritize the available devices according to
different criteria.
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3.1 APIs

Liquid WebWorkers take care of executing tasks by invoking the
corresponding HTMLS5 WebWorker. Liquid WebWorkers are organized
into a pool, whose goal is to manage their lifecycle, transparently choose
on which machine tasks should be executed, and reliably dispatch tasks
towards the corresponding WebWorker, which can be located either
locally or remotely.

The liquid WebWorker pool and the liquid WebWorker expose their
own API that can be used by the developer for building multi-device
liquid applications. Operations inside the LWW pool are executed
asynchronously because they require to communicate with remote
devices or exchange messages between the global JavaScript context
and the worker. For this reason we decided to deal with asynchronous
operations with Promises,?> which may invoke either a successful or a
failing callback upon completion.

A rejected promise may return two types of error: either a commu-
nication error or an execution error. In the first case a failure happens
during the offloading of a task from a device to another due to a problem
in the sending process, either because there is no connection linking the
two devices, because the remote machine is currently unavailable, or
because a timeout happened. The second error type is thrown whenever
there is a problem with a LWW instance, either because the remote
LWW is not yet instantiated or there was an internal error in the LWW
execution.

3.1.1 Liquid WebWorker Pool API

Table 1 lists all methods exposed by the liquid WebWorker pool API.
The LWW pool can be instantiated by passing the reference to a
sendMessage function whose signature must accept two parameters:
devicelD and message. This function will be called every time the
LWW pool has to deliver a message to another device, it does not
matter to the pool how the payload is delivered, but the pool expects

Zhttps://developer.mozilla.org/docs/Web/JavaScript/Reference/Global -
Objects/Promise
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Table 1 Liquid WebWorker pool API [13]
Liquid WebWorker pool API

Constructor

LiquidWebWorkerPool(sendMessageFunction)
sendMessageFunction signature

sendMessage(devicelD, message)

Method name and parameters Return value
createWorker(workerName, ScriptURI) | Promise(workerInstance)
getWorkerList() Promise(workerNameList)
updatePairedDevice(devicelD, data) Promise(devicelD)
removePairedDevice(devicelD) Promise(devicelD)
callWorker(workerName, message) Promise(response)
_callWorker(workerName, message) Promise(response)
forwardMessage(message) Promise()

terminate Worker(workerName) Promise(workerName)

that the function reliably delivers the whole message object to the device
labeled as devicelD.
The LWW pool API exposes eight methods:

e createWorker: instantiates a new LWW and binds it to the LWW
pool automatically. The pool may contain any number of workers,
limited only by the Web browser configuration and available
resources. WorkerNames are unique, if the pool is requested to
create a worker with an already existing name, then it will fail and
return a rejected Promise. The script can be either a URI pointing
to a Web resource, or it can be a String containing the actual script
code. Both parameters are required.

e getWorkerList: this method returns a dictionary object containing
all the references to the instantiated LWW:s contained in the pool,
indexed by the corresponding workerNames.

e updatePairedDevice: this method updates the information about
the paired devices stored inside the pool. The devicelD is the same
that will be passed in the sendMessage function whenever it will
be called. The data is stored in an object that contains information
about all devices. Depending on the policy rules employed, this
object may contain different information (see Section 4.4).
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e removePairedDevice: this method removes a paired device from
the stored list of paired devices. The framework will take care
of ensuring that any task currently offloaded on the device to be
removed will eventually complete. No new tasks will be assigned
to the removed device.

e callWorker: the function is used to submit a task into the pool,
which will be executed either locally or remotely. Once submitted,
the pool decides where the task will be executed, then it creates the
corresponding promises and calls the sendMessage function if the
task is executed remotely, otherwise it will call the _callWorker
function.

e _callWorker: this method is used to submit a task into the pool
for local execution. This method directly pushes the task mes-
sage into the correspondig local LWW instance and waits for its
asynchronous response by setting up a promise object.

e forwardMessage: whenever a device receives a message sent
from another device using the sendMessage function, it must
forward such message to be processed inside the pool by calling
the forwardMessage function.

o terminateWorker: this method ends the lifecycle of a LWW
instantiated inside the pool. If the workerName is invalid or
undefined, it returns an error.

3.1.2 Liquid WebWorker API

Table 2 lists all methods exposed by the LWW API. If an invalid
or undefined LWW pool is passed as a parameter of the constructor,
then the methods callWorker and _callWorker will behave equivalently
and the liquid WebWorker will never attempt to offload the execution
on remote devices. That is because, without being connected with a
pool, the LWW cannot determine where the submitted tasks should be
executed. The LWW does not store information about paired devices
nor itknows if itis paired to other LWWs as this information is managed
by the associated pool.

Developers can call methods on the worker instances without the
need to proxy their execution requests on the pool, since the liquid
WebWorker object itself exposes an API. The LWW exposes three
methods:
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Table 2 Liquid WebWorker API [13]
| Liquid WebWorker API \

Constructor
LiquidWebWorker(LWWpool, workerName, scriptURI)

Method name and parameters | Return value \

callWorker(message) Promise(response)
_callWorker(message) Promise(response)
terminate() Promise(workerName)

e callWorker: this method submits a task into the LWW, if the
worker is bound to a LWW pool then it will request the pool
if the task should be executed remotely or not, otherwise it will
automatically call the _callWorker method.

e _callWorker: this method bypasses the LWW pool policies and
executes the tasks directly on the issued worker locally.

e terminate: this function will terminate the WebWorker instantiated
in the background, making it possible to safely delete all references
pointing to the LWW instance. The termination is immediate and
does not wait for the end of the task execution.

3.2 Design

Figure 1 shows the main components of the liquid WebWorker pool
running across two devices. Tasks can be submitted from either devices
and the pool will decide whether they will be executed using workers
of the local pool, or they will be offloaded to other devices.

In addition to the set of workers, the LWW pool stores references to
the submitted and the currently executing tasks in the form of pending
promises. It also maintains information about the paired devices:

e pending promises: for all submitted tasks, the pool creates a
promise that waits for the worker to complete the computation
and returns the results by posting the response and its associated
unique identifier. The promise contains the callback that must be
fulfilled or rejected when the remote device or the local worker
responds. The payload of the response contains the identifier of
the corresponding promise, which can be easily retrieved from the
corresponding dictionary inside the LWW pool.
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Figure1 The liquid WebWorkers Architecture. Arrows show the flow of a task and
the exchange of messages between clients. Dotted lines indicate paired relationships
between liquid WebWorker instances [13].

e paired devices: the pool keeps track of all paired devices. This
information contains the hardware specification of the devices, such
as its type (e.g. Desktop or Phone) or any other information useful
to the policy component for taking task offloading decisions (e.g.
processor specs, battery level, OS version).

The dispatcher component forwards tasks to the right LWW and thus
the right device. The decision on where the execution of the task will
happen is controlled by the policy component, which uses data fed
from the device pairings storage in order to take a decision. Whenever
the dispatcher forwards a task, then it also saves the corresponding
callback promise. In the case of remote execution offloading, the
dispatcher does not send the task directly to the remote device, but it
sends messages through a pre-configured connection middleware (see
Section 3.1.1). Each message contains in its payload the corresponding
promise identifier, the inputs of the task that need to be executed, and
the name of the worker that must be invoked on the remote machine.
The dispatcher component can create new WebWorkers either by
passing an URI pointing to a script stored in a central server, or by
passing the content of the script as a String that can be directly shared
between devices without the need to fetch it from a Web server. In the
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latter case the dispatcher is able to instantiate the WebWorker script by
converting the String to a Blob® Object.

LWW are designed to be used for stateless computation; in fact,
paired workers do not share or synchronize any data among each other.
Likewise, every job is treated as an independent computation. Never-
theless it is possible to simulate stateful computations by submitting a
task that would include as input the previous state of the worker, and
then return the new state with the result so that it can be stored and
passed along with the next task. This way, each task of the sequence
can still be transparently sent to different devices.

The sequence diagram in Figure 2 illustrates the LWW call lifecycle
and how the components inside the LWW pool communicate during
local and remote execution. The assumption is that devicel and device?2
have been paired and workers w/ and w2 have been created on both
devices. A task addressed to w2 is submitted by invoking the method
callWorker. The pool will determine where the task will be executed
by invoking the internal _where function of the policy component. In
the first case the policy component chooses to execute the task locally.
This results in the local call to the corresponding LWW. The response is
asynchronously computed within the worker and passed as a parameter
in the fulfilled promise. Internally, workers use the standard HTMLS5
postMessage/onMessage API to exchange their input and output data
with the LWW pool. This way, from the perspective of the caller,
executing a task locally or remotely is indistinguishable.

In the diagram the caller again invokes the callWorker method and
eventually receives a response inside the fulfilled promise, however
inside the pool the process changes whenever the policy component
chooses to execute the task remotely. In this case the pool first sends
a message to the remote device, the remote pool executes the task
on a remote LWW and eventually it will send back a response. If no
response is received within a given developer-configurable timeout, the
LWW pool will attempt to find another device and resubmit the task.
If eventually no more remote devices can be found, the task will be
executed locally.

3https://developer.mozilla.org/it/docs/Web/API/Blob
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Caller Policy [ Dispatcher | Worker Dispatcher | Worker
Local Local Local Local Remote Remote
Devicel Devicel Devicel Devicel Device2 Device2

Local execution)

callWorker("w2", msg)

_ where("w2", misg)
_callWorker("w2", msg)

response

Remote execution)

callWorker("w1", msg)

_ where("w1", nisg)

"device2"

sendMessage("device2", msg¥)

_ callMorker("w1", msg)

response

response

response

Figure 2 Local and remote execution sequence diagram [13].

3.3 Liquid.js Prototype

We built a liquid WebWorkers prototype within the Liquid.js for
Polymer [11] framework. Liquid.js is a Web framework for building
decentralized, component-based, liquid Web applications that can be
deployed across multiple heterogeneous devices. Applications devel-
oped with Liquid.js are built using the Web Components standard,
which provides the necessary abstractions to structure the application
user interface and its state into units that can be independently deployed
across multiple devices.
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Figure 3 Component view of the implementation of liquid WebWorkers inside the
Liquid.js for Polymer framework [13].

Figure 3 illustrates a simplified component view of Liquid.js
extended with the LWW pool. The liquid WebWorker pool is managed
by the framework itself, hidden behind its own API [ 14]. The framework
manages inter-device communication through a separated component
called Liquid Peer Connection, which automatically manages and
sends messages through peer-to-peer connections using the WebRTC
protocol. Developers who wish to use the LWW computation offload
feature need to invoke the callWorker method exposed by the Liquid.js
API. The Liquid.js framework also allows to automatically create
workers on other machines whenever the updatePairedDevice method
is called, which guarantees that a copy of each LWW can be found on
all paired devices.

4 Advanced Features

The decision on where a task should be offloaded to, should be taken
based on different criteria and following constraints established by the
liquid Web application developers, users or device owner preferences.
To do so, in this section we outline a number of advanced features
that allow to enhance the flexibility and customizability of our LWW
prototype.
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4.1 Micro-Benchmark

In order to be able to implement valid policy rules inside the LWW
pool, we need to predict what are the capabilities of each connected
device. Running a macro-benchmark [22] on all the devices before
they are allowed to join the liquid Web application would not rank
the machines correctly. Macro-benchmarks test the performance of a
whole system, however liquid applications are sandboxed inside the
Web Browser, which does not give full access to the device resources.
For this reason we aim to assess only the resources provided to the
Web browser tab that is running the application. Moreover a macro-
benchmark is an invasive process meant to be ran stand-alone to avoid
interference from other non-idle processes. This would prevent users
from interacting with their devices while the benchmark is running,
which may take a long time to complete.

In our scenarios we need to be able to predict the capabilities of
a device for as long as it connects to the liquid Web application. The
amount of available resources provided by the device may dynamically
change at runtime, because users can close or open new tabs while they
are browsing the application. The benchmark should be repeated over
time to accurately track the amount of available resources.

We decided to follow a micro-benchmarking approach [24], which
is suited for mobile Web-enabled devices and allows us to test the
performance of the active Web browser tab from within the browser
itself by exploiting HTMLS5 standard APIs.

The liquid WebWorker pool runs a micro-benchmark on startup after
the pool is instantiated, then it keeps re-running the test at regular
intervals. The interval time span is configurable by the developer of the
liquid application. The benchmark runs in a background WebWorker
and does not prevent the user from interacting with the application
while it is executing. The benchmark environment is created with the
library Benchmark.js [4] and the benchmark testbed can be customized
by the developer of the application.

The result of the benchmark represents the average number of
iteration per cycle it was able to perform during the execution. We
use this number to rank our devices, making it possible to compare
their performance.
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4.2 Failure Handling

During the task offloading process, failures may happen. The most com-
mon failure in distributed systems derives from disconnection of the
peers [34], however failures may be generated also by faulty operations
such as task executions or faulty policy rules predictions [23].

In Figure 4 we show the expected sequence diagram of the offloading
process for liquid WebWorkers with synchronous data transfer:

1. Device offloads the task to Device2;

2. Devices2 receives the task;

3. Devices2 executes the task;

4. Devices2 submits the response to Device;

5. Device receives the response and make use of it.

We recognize that in this offloading process failures can happen for
three reasons:

e Failed connectivity — the communication between the two devices
is interrupted during the offloading process;

e Liquid WebWorker failure — a run-time error during the execution
of the offloaded task occurs;

e Timeout — the task does not complete within a given amount of
time and the device does not send back a response.

In order to create a reliable system, in this section we propose a solution
for all three scenarios.

Device Device2

Offload Task _ |

Worker Execution

-

Response

A

Device Device2

Figure 4 Task offloading without failures.
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Figure 5 Disconnection.

A peer can disconnect anytime throughout the whole task offloading
process, Figure 5 shows how to recover the process when a peer
disconnects before the task has been completely sent to another device
(see Figure 5(a)), and how it recovers when the task has already been
offloaded before the peer disconnects (see Figure 5(b)). In the first case
(Figure 5(a)) Device2 can disconnect before the starting device has
chosen where to offload the task, after it chose where to offload or even
during the task offloading communication. Since the task execution
has not yet been started, the disconnected device will be excluded
from the ranking of candidate devices and the second most-suitable
device will replace it as the new offloading target. In the second case
(Figure 5(b)) it does not matter if Device2 disconnects before, during,
or after the Worker Execution, in all three cases the starting device
will immediately notice the disconnection and by default it will try to
recover the execution by running the worker locally. The LWW pool can
be configured to retry the execution on the next most-suitable device.
If there are no other devices connected, the device will attempt to run
the execution locally.

Figure 6 shows how the LWW pool recovers when an error happens
during the offloaded task execution, which may crash the LWW. The
LWW pool is able to detect when a worker throws an error, catching
it immediately and by responding to the starting device about the
failed task execution. Such error response also includes the reason



422  A. Gallidabino and C. Pautasso

Device Device2

Offload Task |

Y

Faulty Worker Execution

x—

_ Acknowledge Error

Spawn New LWW

I
1
|
r
1
|
1
1
|
1
1
|
1
I
1
|
1
1
|

Device Device2

Figure 6 Run-time error during the offloaded task execution. The remote LWW is
independently respawn but the local device should decide how to recover the task.

of the crash and will not stop the execution of the liquid application
on Device2. Once the response has been sent, a new LWW will be
spawned on Device2, which will return to be available to service other
task offloading requests. By default the starting device does not try
to locally re-execute such failed task or to offload it to a different
device. The decision is left to the developer of the application that
must define which recovery operation to execute by handling the error
acknowledgement event from the LWW pool.

In the last scenario no task execution response is sent by Device2
back to the starting device within a given amount of time even if
there are no problems with the connection (see Figure 7). This can
happen because the LWW pool decided to offload the task to a slow
device, or because Device2 cannot complete the task execution before
a timeout occurs. Whenever the timeout triggers, the starting device
starts to execute the task locally. This creates a race between the local
and remote task execution: if the local task ends before Device2 has
responded, then the starting device notifies Device2 that it does not
need its answer anymore, when Device2 receives the message it will
terminate and respawn the corresponging LWW. If Device2 answers
before the starting device finishes, then the opposite happens and the
start device terminates and respawns the LWW.

Developers can set the default timeout as part of the LWW configura-
tion and also associate a different timeout with each task. If the timeout
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Figure 7 No disconnection with timeout and local task re-execution race.

is set to zero, then the LWW pool will always start a race between the
local device and the remote peer. In this case the LWW will attempt to
compute tasks with the highest speed among two devices, however it
will also increase the energy consumption on both devices.

4.3 Synchronous vs Asynchronous Data Transfer

In Section 3.2 we showed that the messages exchanged between devices
also contain the corresponding input data that has to be passed to the
LWW in order to complete the task. In our prototype we deploy the
LWW pool on top of the Liquid.js framework, which already trans-
parently and automatically synchronize the state of liquid components
shared between devices [11].

If the data used inside the LWW pool is stored in a liguid property,
then we do not have to send it with the task offloading message, because
itis already synchronized between the devices. In Figure 8 we show that
we can abstract and separate the flow of data and task offloading with
two different channels. Data is synchronized between all paired liquid
components, while tasks offloading messages are exchanged between
the LWW pools. Whenever the data should be loaded or saved in liquid
property, then the LWW pool is allowed to interact with the liquid
components directly. To take advantage of this feature, the developer
of the application must call the LWW from inside the liquid component,
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Figure 9 Sequence diagram for asynchronous data transfer.

which transparently will allow the LWW pool to access the data and
update it. The task input and result will be automatically synchronized
among all paired devices.

In Figure 9 we show how we extended the protocol between the two
devices with the asynchronous data transfer. In the synchronous version
discussed in Section 3 the payload of the message (msg) contains all
the data needed by the LWW to execute the task, now that we rely
on the data synchronization of the Liquid.js framework, msg* contains
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only the data that is not stored and synced by the Liquid.js framework.
For the rest of the data that has to be consistently synchronized between
the devices, we pass the liquid property URIs referencing the location
of the input/output data. Since data is synchronized asynchronously
with respect to the task offloading, we cannot guarantee that when
the remote device receives the task offloading request, it also already
holds the latest version of the corresponding input data. For this reason,
whenever the device offloads a task, it also needs to specify which
version of the liquid property the remote device needs to use in order
to begin the task execution. If there is at least one liguidPropertyURI,
then the LWW pool will load the state of the liquid property and pass
it to the WebWorker. Once the execution finishes, the remote device
immediately notifies the other device that it finished executing the task.
The message includes the URI and the new version of the updated liquid
property. If any liquid property changed during the execution, these
will also be automatically synchronized to make the task execution
result accessible across all paired devices. Again, the task completion
notification and its output propagation happen asynchronously.

What are the advantages of this approach? In the first place messages
exchanged between the devices while performing the task offloading are
smaller as they carry a reference to the data vs. the actual data, meaning
that communication between the two LWW pools is faster. Additionally,
developers can access to two distinct events: executionEnd and data-
Synchronized, these two events can help the developers to report the
current status of the application to the user, or they can be used to queue
new executions as soon as they are finished. Nevertheless if the data
resulting from the offloaded computation has to be sent to the original
device, this will require to wait until the liquid properties values have
been synchronized. Since Liquid.js data synchronization was developed
using the Yjs [28] library, only incremental changes are sent, which
results in less data to be sent. More in detail, whenever a JavaScript
object property is modified, only the changed property is synchronized,
while in the synchronous mode, a copy of the whole object needs to
be transferred. Additionally, repeated task executions over the same
input data can be offloaded without repeatedly transferring the same
data along with each offloading request.
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4.4 Task Offloading Policies

Policies are needed for making the liquid WebWorker pool able of
automatically deciding where to execute tasks. This could be achieved
by feeding the policy component with predefined rules selected by
the developers of the liquid Web application to, e.g., trade-off energy
consumption vs. performance.

Policy rules can impact in the overall execution time of an applica-
tion and the developer needs to be able to enable or disable some rules
depending on the context of the application they are building.

e Battery status [21] — in the Web Browser it is possible to gain
access to the battery status of a device by using the HTMLS5 Battery
Status APL* With this API it is possible to detect whether a device
is currently charging or how much charge is left in its battery. The
policy rule can exploit this API to prioritize plugged-in devices over
battery-supported devices. Tasks would be offloaded to devices
with an higher charge level, which would decrease the energy
consumption of devices with a low battery level.

e Privacy or security constraints — the users of a liquid application
can interact with devices they do not directly own. Whenever the
users interact with shared or public devices, they have to be aware
that they are connected to other people’s devices. In any situation
where the users interact with any device they do not own, the
developer should make sure that the users private data is not sent to
a stranger device. The policy rule can decide to send data only to the
devices they whitelisted, or to any device owned by a whitelisted
user. Similarly, the users should be protected from receiving tasks
from devices they do not trust.

e Device types — As a heuristic, when lacking additional information,
the offloading decision can be based on expectations on the per-
formance of a device by knowing its device type, such as Desktop,
Laptop, Tablet, Phone. Our policy rule would for example assume
a desktop computer to be faster than a smartphone. However, this
is only a heuristic.

“https://developer.mozilla.org/en-US/docs/Web/API/Battery_Status_API
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Another way to infer the type of device from within a Web
browser relies on checking the size of the screen or the user-agent
property, which however may be changed by the users and would
not give any direct evidence about the performance of a device [40].
Precise information about the underlying hardware is unfortunately
hidden from within the Web browser. Thus, classifying device by
their type only may result in incorrect offloading decisions and
should be complemented with, e.g., a benchmark or some statistics
over some probe task execution times as described in Section 4.1.

e Communication and Computation Time — the policy component
should consider the exchanged data size, the available bandwidth
(both upload and download because it could be asymmetric) and
the latency between the devices into the decision. This policy
rule makes offloading decisions based on Equation 1, where the
communication time is defined in Equation 2.

local
time

&)

: : o remote
Communicationgy,. + Computation;,

< Computation

Communicationym. = (Datal?, | Bandwidth.pioud)

size

+ (Data™., | Bandwidthgmwnioad)

size

+ (2 - Latencysime) ()
While the Data®™,, and the network parameters (Bandwidth and

size
Latency) can be measured before taking the offloading decision,’
the size of the result and the computation time may only be
estimated or learned based on the characteristics of the LWW script
and the history of its past executions.
The advanced features we described in this section allow to
simplify some of the terms of the inequality. With the micro-

benchmark results we can attempt to predict beforehand which

>The Latency can be measured while the devices exchange the connec-
tion handshake. The Bandwidthypioeqa and Bandwidthgownioad can be esti-
mated only after some large messages are exchanged between the two peers
as unfortunately the Network Information API (https://developer.mozilla.org/en-
US/docs/Web/API/Network _Information_API) is not advanced enough to return the
exact values for the upload and download speed, but it can only describe the type of
connection, e.g. wifi, cellular.
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device has the lower Computation;m and Computation'®.
If the remote time is lower, then we can analyze what is the
communication cost of the offloading process.

With the asynchronous data synchronization we try to lower the
size of Data™,, and Data2 . In the best case scenario, where

all the data is already stored on the remote device, Data™,, and

size

Data®" become negligible as only a reference to the data is sent.

size

5 Scenarios

Liquid WebWorkers can be used to improve the performance of liquid
Web applications in simultaneous usage scenarios featuring the oppor-
tunity to offload local computations to remote devices owned by the
same user or by multiple users (as long as the users trust one another
and are willing to share their CPU/energy resources).

Within the simultaneous use case scenario we distinguish two usage
categories:

e Unrestricted — In this category the environment is composed only
by devices that volunteer to freely share computations with each
other. All the devices agree that they trust all other devices and they
can offload computations freely. The devices will also attempt to
execute all offloaded tasks whenever they receive them and promise
to return valid results.

e Restricted — In this category the connected devices only offer
limited access and a lower degree of trust, where they cannot
always execute or exchange tasks between each other. Devices
can be restricted from executing or offloading tasks for multiple
reasons, €.g.:

— privacy — in order to guarantee data privacy in multi-users
scenarios, the application may restrict to offload tasks to
devices owned by strangers. In this case, the offloading will
take place only among devices of the same owner. When
users bring only one single device to run the collaborative
application, this device can be prevented to offload tasks to
others devices, meaning it has to execute all of them locally;
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— security — arbitrary LWWs migration and execution can be
used to push malware to the neighbour connected devices and
they can be used to execute malicious tasks on other users
devices. LWW policies can be implemented in such a way
they limit the offload execution of certain tasks (identified by
their names) and thus prevent the execution of unknown tasks
on unaware devices.

— application dependencies — restrictions can also be pro-
grammed to satisfy application specific requirements or depen-
dencies, e.g. in an [oT scenario only some kind of devices is
entitled to receive offloaded tasks, because the tasks would
need to access some specific sensor attached to the device.

More in general, we distinguish between push or pull restrictions.
A specific device can be restricted from pushing tasks that need to
be offloaded on other connected devices, or a specific device can be
blocked from pulling tasks which have been offloaded from other
devices. In the extreme case, it could be possible that a device can
only offload tasks to other devices without ever accepting to run
tasks offloaded from other devices (or viceversa).

5.1 Simultaneous Use - Single User Scenario

5.1.1 Editors (e.g. image processing)

LWWs can be used to speed up the process of applying computationally
intensive image filters on the pictures displayed in a multi-device Web
application (see Figure 10). The liquid application is meant to operate
on three different devices:

e asmartphone, which is used to take pictures through the integrated
camera Sensor;

e a tablet, which is used to browse the pictures and is used to select
which filters should be applied to the images;

¢ a laptop or a computer, which is used to display the pictures on
a big screen.

The three devices run the same application simultaneously and they
share the pictures between each other, e.g. whenever a picture is taken
on the smartphone, it is copied across all other devices.
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Figure 10 Liquid image processing scenario.

Without LWWs the tablet is in charge of computing and executing
all possible edit operations selected by the user, while the smartphone
and the laptop would be idle most of the time as they would only serve
as input/output devices.

When LWWs are activated, the devices are able to offload compu-
tations among one another. In this case the tablet does not have to be
burdened with all the image processing tasks, but also the smartphone
and the laptop can participate with the goal of improving the overall
response time of the image filtering feature of the application. In this
particular scenario all the devices are owned by the same user and
they are unrestricted, that means that any device can freely accept all
incoming offloading requests and it can forward them to any other
device.

5.1.2 Public displays

In Figure 11 we show a scenario where a single user runs an application
on multiple devices, however not all of the devices are owned by the
user. In this case the user owns the smartphone, while the public display
is owned by the city, which deployed it outside of a train station. The
display can be used by anyone by scanning a QR-code printed on the
frame of the screen so that the encoded URL is opened on their device
mobile Web browser. Once the phone is connected to the screen, the user
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Figure 11 Public display scenario with liquid WebWorkers.

can search on the displayed map for any interesting place in the city, or
even compute the shortest path to a given location. While searching for
a building is not a complex operation, computing the shortest path may
take some time and, since the display should always be responsive to
the user interaction, the computation for the shortest path is offloaded
to the smartphone. In this use case scenario there is a clear trade-
off between the execution time of the algorithm and the bandwidth
required to send the map to the smartphones. In the case that the display
owners consider the execution time on the display more costly than the
bandwidth usage, then they will prefer to offload the execution on the
smartphones, even when the phone CPU is weaker than the one on
the smart display. They are likely to choose the asynchronous data
synchronization, as it will cache the map on the smartphones and it will
make it available on the devices for multiple consecutive computations
of the shortest route.

While users wait for the task completion, they can browse for other
locations or even queue up new computations on their smartphone.
Once the requested shortest path tasks are computed, the solutions are
stored directly on the phone and the user may display them at any time,
even if the smartphone is not connected to the public display anymore.
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5.2 Simultaneous Use — Multiple Users Scenarios

5.2.1 Education - teaching programming

In this multi-user scenario we have two user categories: the students
and the professors. The professors run the application on their own
computers, while the students can access it with their laptops, or even
with their tablets or smartphones [39] (see Figure 12). The professors
can create new questions at any time, e.g. “transform this for loop into
a while loop” or similar programming-related questions. The students
can see the questions and they can answer by sending a piece of code to
the professor. The professors can then choose to display any received
answer, they can edit the answers if they spot some errors and then they
can display the result of the code execution returned by re-running the
code. In order to display the result, the professors need to execute the
code, which may lead to three main problems:

e the execution never finishes or it takes to long to finish;
e the code is malicious and tries to block the professor’s computer;

X

Professor

Professor|Computer

Create question

Student Computer Student Computer

Answer qr% Display questions and answers wquestion
E Test student's T

edited answers

Student Student

Figure 12 Education scenario with liquid WebWorkers.
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e the code is malicious and attempts to corrupt the data contained
in the professor’s browser storage, e.g. it tries to display on the
screen some private data, or it tries to communicate with external
Websites;

Without LWWs the code submitted by students must be executed on
the professor device, with all the risks to execute buggy or malicious
code that can stop the application or disrupt the lesson taught by the
professor. In this scenario, LWWs are useful to offload the computation
on the computer that originally sent the answer. In this case the
professor computer usage is restricted, because it does not accept any
incoming execution request, but it always offloads them to the students’
computers.

6 Evaluation

In order to study the feasibility and performance of the liquid Web-
Worker concept, in this section we present the results of an evaluation
of the Liquid.js prototype implementation.

6.1 Test Scenario: Offloading Image Processing Tasks

The Liquid.js framework comes with various demo applications,
including the liquid camera. This allows users to take pictures with
their devices’ Webcams, share pictures and display them across multiple
devices, and apply a variety of image transformation filters. Applying
filters to the images displayed on one device will immediately show
the result on all copies of the image found across all connected devices.
Since filtering images is a CPU-intensive operation, we have migrated
the existing implementation based on WebWorkers to use the LWW
pool. Figures 13 and 14 show the results of our preliminary experiments
using LWWs.

6.2 Testbed Configuration

All experiments described hereafter are ran using different machines
connected to the same private WiFi 5GHz network with the following
hardware and OS specification:
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Figure 13 Average Processing and Communication Time of the liquid WebWorkers
offloaded across different pairs of devices (L, Laptop, T, Tablet, P, Phone) [13].
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Figure 14 Boxplots of the Total Process Execution Time of the LWW offloaded
across different pairs of devices (L, Laptop, T, Tablet, P, Phone) [13].

e Laptop (L): MacBook Pro (Retina, 15-inch, Mid 2014), 2.2 GHz
Intel Core i7, macOS High Sierra Version 10.13.2, Chrome Version
64.0;

e Tablet (T): Samsung Galaxy Tab A (2016), Octa Core 1.6 GHz,
Android Version 7.0, Chrome Version 64.0;

e Phone (P): Samsung J5 (2015), Quad Core 1.2 GHz, Android
Version 5.1.1, Chrome Version 62.0.
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In this study we show the performance for all shown configurations
given the three different kind of devices. The policy loaded inside the
LWW takes the decision not to or to offload the execution to other
devices based on a predefined static configuration used to explore all
possible device combinations in the experiments.

6.3 Workloads

In this evaluation we run two different experiments by applying various
filters to the same picture. In the first “Edge Detection” experiment
(Figure 13(a)) we apply to the image the Sobel operator filter (using
a 3x3 convolution matrix kernel). In the second “Improved Edge
Detection” experiment (Figure 13(b)) we improve the result of the edge
detection by chaining multiple filters. Compared to the first, the second
experiment puts a larger workload on the device CPUs as they run
multiple filters with larger kernels. The chained filters are:

1. a sharpening filter implemented by using a convolution filter with
a 5x5 kernel;

2. an embossing filter using a 5x5 kernel;

3. the Sobel operator filter using a 5x35 kernel.

For each experiment we apply the filter on two different image res-
olutions, consequently changing the size of the message exchanged
between devices. Both versions of the image are encoded using the
PNG format and are transferred with messages of size 94196 bytes and
198560 bytes.

6.4 Measurements

Each experiment was ran 10 times, during each trial we applied the
filters 25 times for both image sizes for all different device offloading
combinations. Between two trials we reset the execution environment
by restarting the Web browser on all devices. The values of the execution
time shown in Figure 13 are computed as the average over the 10 trials.

6.5 Results

The charts show the average time spent by the devices in order to
execute a submitted task. Using three different colors we highlight
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the time elapsed during (see Equation 3): the worker processing time
in blue, the remote (or cross-device) communication time in ,
and the local (or intra-device) communication time in red. The worker
time represents the time spent running the LWW script to process the
submitted task; the remote communication time is spent during the
transfer of the submitted task and its output result between the local
and remote devices; the local communication time includes the time
for sending and receiving back the task from the main thread to the
LWW, the time employed for message marshalling and unmarshalling,
the time spent idle in a message queue, and the overhead of the logging
needed to gather performance data for this evaluation.

i;’fﬁé = Promise PreProcessime
+ + MessageQueuejme
+ Worker Executionme + Marshallingime

+ + PromisePost Processiime  (3)

Process

6.5.1 Edge detection case (Figures 13(a) and 14(a))

The fastest execution happens on the laptop (L) without any offloading.
The laptop finishes the process on average about five times faster than
the tablet (T), and nine times faster than the phone (P) for both image
sizes. It is interesting to see that every time the laptop was configured
to offload work to any other device (L—T, and L—P), the overall
execution took longer due to the slower worker processing time of the
remote devices and the additional remote communication time required
to transfer the task and the response between the devices; the same
behavior can be observed when the tablet offloads its work to the phone
(T—P).

In the T—L and P—L offloading configurations, the overall execu-
tion is faster when compared with the local execution without offloading
cases. The elapsed worker time of the laptop is so low compared to the
one of the tablet and the phone that, despite the penalty due to the remote
communication time, the total execution time remains lower. T—L is
on average 81% faster than T and P—Lis on average 64% faster than P.
Despite the expectation that also the configuration P—T would execute
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faster than P, this was not observed because of the communication time.
So there were no benefits in offloading the task from the phone to the
tablet, in fact in this case the performance worsened.

As a side note, we observed that the WiFi data transmission perfor-
mance depends on the device, with the phone’s available bandwidth
being smaller than on the other devices. This behavior is evident when
comparing all offloading configurations where the phone is involved
with all other configurations. In particular the communication time
between the phone and the tablet is double than the time between
the laptop and the tablet. This could also be caused by the physical
proximity of the devices during the tests which may have led to some
interference as indicated by changes of the WiFi signal strength on the
devices. We did not attempt to shield the devices to reduce measurement
noise because our goal was to reproduce real-world usage conditions.

From this experiment we can conclude that it is possible to benefit
from using LWWs and thus it is possible to lower the total processing
time by offloading tasks to nearby devices. However, this can be
achieved only when the extra communication overhead is smaller than
the gained processing time due to the faster remote CPU.

6.5.2 Improved Edge Detection case (Figures 13(a)

and 14(b))
In this experiment we stress the devices more as we increase the
workload exerted on the LWWs. On average the worker processing
time for this experiment is 248% longer on all devices when compared
to the previous experiment.

We can observe that the local communication time is unaffected by
the experiment, but the average remote communication time slightly
changes due to the previously discussed noisy WiFi channel.

Offloading computations to the phone never registers lower process
execution times (L—Pand T—P), which is the conclusion we observed
before.

Particularly interesting in the second experiment are the values
registered in configuration P—T compared to values registered in
P. In this case we observe that again on average P is slightly faster
(82—-85ms difference) than P—T. Still, if we examine the trend by
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including the data from the experiment before we can see that the
longer the worker time, the better it is to offload workload from
P to T. Eventually, for heavy workloads, offloading to a tablet would
be better than executing the tasks on the phone, because the remote
communication time remains mostly constant for the same image size
while the worker time constitutes the dominant factor.

6.6 Micro-Benchmark Evaluation

Can the micro benchmarking score accurately predict the capabilities
of a connected device? We answer this question by comparing the
scores returned by the test benchmark against the results obtained in
the previous sections.

Figure 15 shows the results obtained by running the benchmark
a total of 200 times for each device. The benchmark is executed
at startup and then it is repeated periodically every 300 seconds.
The application is restarted after it has completed 50 benchmarks,
meaning that the application runs continuously for 15000 seconds
(approximately 4 hours), before the device is restarted. In order to
reduce the measurements noise, during the benchmark execution the
user does not interact with the device, simulating a comparable scenario
with the previous evaluation.

Ranking
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Figure 15 Boxplot of the benchmark scores for each device.
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Table 3 Average Benchmark Ranking and Average Processing

94kb 198kb
Comb Sobel Comb Sobel Benchmark
ms][ % [[ms]| % [[ms][ % [[ms]| % | Score [ %'
laptop | 91 33 145 60 17898
tablet | 466 == 196 {6 953 2 345 72 2707 Lol
laptop | 91 33 145 60 17898
phone | 662 e 363 o 1413 HE2 569 e 1550 e
tablet | 466 196 953 345 2707
phone | 662 363 1413 569 1550

As expected the score for the laptop is higher than the other devices,
with an average score of 17898, while the tablet scores 2707.3 and the
phone 71550.4.

In Table 3 we compare the average worker execution times against
the benchmark scores. We list all possible pairs of devices and compute
both the ratio between their respective average worker execution times
and their average score returned by the benchmark. In yellow , [orange

and - we highlight the average ratios computed for the same
couple of devices. Since the machines do not change, we expect that
the execution ratios do not change within the same pair even if the
experiment is different. Whenever the LWW executes a longer task
on a machine, then we expect it proportionally increases also on the
other one. In all three couples, we see that the average ratio between
the sampled bencharked ratio and the real world example are similar.
The benchmarked ratio for taptop-tablet differs on average the /3%

of the real world scenario ratio, the 'laptop-phone ratio differs on

average the 20% from the real world ratio, and the _ ratio
only 9%.

Figure 16 shows how much time it takes to execute the benchmark
on each device. The execution time is stable, with very few outliers on
the tablet device. On average, between all three the devices, it takes 9.3
seconds to execute the micro-benchmark.
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Figure 16 Boxplot of the benchmark execution times.

7 Conclusions

The HTMLS standards and the latest evolution of Web technologies
are shifting the center of Web application towards the edge. As Web
applications are growing more and more complex, and as users interact
with more and more devices simultaneously, we need to understand
how devices can support each other in a distributed mobile Web
environment. As described in this paper, horizontal task offloading with
liquid WebWorkers can benefit both single and multi-user real-world
use case scenarios.

More in detail, in this paper we presented the design of liquid
WebWorkers and their implementation within the Liquid.js frame-
work. LWWs are designed for building liquid application featuring
heavy computations which are dynamically redeployed across multiple,
partially-idle heterogeneous devices. The goal is to avoid slowing
down the overall performance of the application because some of its
components are running on a slow, bottleneck device. The preliminary
evaluation of the liquid WebWorkers concept and our prototype imple-
mentation shows that there is the opportunity for increasing the overall
performance of a liquid Web applications when LWW are migrated
from slow to more powerful devices.

Overall, with the extension of Liquid.js presented in this paper,
we can create complex device ensembles able to directly connect and
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transparently share storage and computation resources between them.
This allows developers to control how their liquid Web applications
trade off performance against energy consumption.

8 Future Work
8.1 Failure Handling — Automatic Timeout Configuration

In Section 4.2 we discussed how to handle errors thrown in the remote
execution process. When we discussed the timeout case we stated that
the timeout should be configured by the developer of the applica-
tion. The timeout value directly depends on the expected execution
time of the remote peer, which completely depends on the task it
executes. There is no default timeout value that satisfies all possible
applications, meaning that the developer should know beforehand what
is the expected timeout value for his application. The worker execution
time may depend on the power of the device, the size of the data and
the complexity of the algorithm ran inside the task, and can be difficult
to predict it for the developer. In the future we plan to understand how
to predict the value for the timeout, in such a way that the developers
do not have to configure it if they do not want to set a constant value.

8.2 Stateful LWWs

The current LWW programming model simplifies the HTMLS5 Web-
Worker model to run stateless computations, where each task can be
independently re-assigned to a different device. We plan to extend
LWWs to support stateful workers exchanging an arbitrary number of
messages during arbitrary computations, making the transparent migra-
tion of such workers more challenging. This can be solved by reusing
existing liquid storage facilities of Liquid.js that have been originally
designed to migrate and synchronize stateful Web components.
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