
A Boxology of Design Patterns for
Hybrid Learning

and Reasoning Systems

Frank van Harmelen and Annette ten Teije

Department of Computer Science, Vrije Universiteit Amsterdam, Netherlands
E-mail: frank.van.harmelen@vu.nl; annette.ten.teije@vu.nl

Received 06 January 2019;
Accepted 01 March 2019

Abstract

We propose a set of compositional design patterns to describe a large
variety of systems that combine statistical techniques from machine
learning with symbolic techniques from knowledge representation. As
in other areas of computer science (knowledge engineering, software
engineering, ontology engineering, process mining and others), such
design patterns help to systematize the literature, clarify which com-
binations of techniques serve which purposes, and encourage re-use
of software components. We have validated our set of compositional
design patterns against a large body of recent literature.

Keywords: Hybrid systems, neurosymbolic systems, knowledge
representation, machine learning, design patters.

1 Motivation

Recent years have seen a strong increase in interest in combining
Machine Learning methods with Knowledge Representation methods.

Journal of Web Engineering, Vol. 18 1-3, 97–124.
doi: 10.13052/jwe1540-9589.18133
c© 2019 River Publishers

98 F. van Harmelen and A. ten Teije

The interest in this is fuelled by the complementary functionalities
of both types of methods, and by their complementary strengths and
weaknesses. This is witnessed by keynote addresses at all the major
conferences in recent years (Hector Geffner and Josh Tenenbaum
at ECAI/IJCAI 2018 [23, 33], Lise Getoor at NIPS 2017 [25], and
William Cohen at ILP 2018 [55] to name just a few in the last two
years), and by publications that have attracted widespread attention
such as [6] and [34]. The workshop series on Neural-Symbolic Learning
and Reasoning stretches back to over a decade1 but has seen a sharp
rise in interest in recent years, and many of the major conferences have
dedicated workshops to the topic, such as the MAKE workshop at the
AAAI Spring Symposium 20182, the Induce and Deduce workshop3

and the workshop on Hybrid Reasoning and Learning4 at KR 2018, the
workshop on Relational Representation Learning5 at NIPS 2018 and
many others.

This increasing interest has resulted in an explosion of a large
volume of diverse papers in a variety of venues, and from a variety
of communities (of course from machine learning and knowledge
representation, but also from semantic web, from natural language,
from cognitive science, etc). Both this volume and this diversity of
origin has created a very diffuse literature on the subject, with no
consensus of which approaches are promising, using very different
formalisms (ranging from graph theory to linear algebra and continuous
differentiable functions), different architectures, different algorithms,
often even different vocabularies to speak about the same concepts
depending on the community of origin, and spread out over a large
space of journals and conference, typically not surveyed by any single
researcher.

This paper is an attempt to create some structure in this large, diverse
and rapidly growing literature. We do not think it is possible anymore

1http://neural-symbolic.org/
2https://www.aaai-make.info/
3https://sites.google.com/view/r2k2018/home
4https://www.hybrid-reasoning.org/kr2018 ws/
5https://r2learning.github.io/

A Boxology of Design Patterns for Hybrid Learning 99

to provide an exhaustive overview of the entire literature. The literature
is simply too voluminous, heterogeneous and spread out for such an
exhaustive overview. Instead, what we aim for in this paper is to present
a conceptual framework that can be used to categorize much if not all of
the techniques for combining learning and reasoning. Our framework
takes the form of a set of design patterns, which we will motivate
in the next section. Our claim is not the that we cite and discuss the
complete relevant literature on this topic (as stated, we think this would
be impossible by now). Instead, our completeness claim is that our set of
patterns covers all design variations that appear in the literature. Thus,
referring to an additional paper would not by itself be an extension to
this work, but would only be an extension to this work if such a paper
describes a hybrid learning-and-reasoning architecture not yet covered
by our set of patterns.

We have validated our set of design patterns against a set of more
than 50 papers from the research literature from the last decade. Our
claim is that each of the systems that we encountered in those references
is captured by one of our design patterns.

In the next section we will discuss the basic distinction between
learning systems and reason systems. In Section 3 we introduce our
graphical notation, before the main Section 4 where we present our
library of compositional patterns. Section 5 discusses future work and
Section 6 concludes.

2 The Two Families of Techniques

Although not universal, there is some consensus in the literature as
to the need for combining methods for learning (which are most
predominantly statistical in nature) with methods for reasoning (which
are predominantly discrete in nature): “Our general conclusion is
that human-level AI cannot emerge solely from model-blind learning
machines; it requires the symbiotic collaboration of data and models”
[38]; “By pushing beyond perceptual classification and into a broader
integration of inference and knowledge, artificial intelligence will
advance greatly.” [34] ; “the question is not whether it is functions

100 F. van Harmelen and A. ten Teije

or models but how to profoundly integrate and fuse functions with
models”6 [15].

Other papers extensively discuss the advantages and disadvantages
of both types of approaches in depth, but we briefly summarize the
main points here, citing from [34] and the introductory section of [22]:

Limitations of (deep) learning systems:

• Data hungry: Learning systems (and in particular modern deep
learning systems) need very large training sets;

• Limited transfer: a trained network that performs well on one
task often performs very poorly on a new task, even if the new
task is very similar to the one it was originally trained on;

• Brittle: they are susceptible to adversarial attacks, meaning that
even for seemingly similar inputs for the same task, the outputs
may differ significantly;

• Opaque: and they are opaque, meaning that is typically difficult
to extract a humanly-comprehensible chain of reasons for output
of the system.

• No use of prior knowledge: the performance of learning systems
is based on the data they see during their training phase, and is
not informed by general principles such as causality, or general
domain knowledge.

Limitations of symbolic reasoning systems:

• Brittle: their foundation in discrete formalisms makes it hard to
capture exceptions, and make these systems very unstable in the
presence of noisy data.

• Size: acquiring explicit knowledge-bases (typically from experts)
is error-prone and expensive, typically limiting the scope of such
systems

• Efficiency: the logic-based reasoning methods are typically sub-
ject to combinatorial explosions that limit both the number of
axioms, the number of individuals and relations described by these
axioms, and the depth of reasoning that is possible.

6See our discussion for an explanation of this terminology.

A Boxology of Design Patterns for Hybrid Learning 101

Many authors in the literature have noted that these two sets of
limitations are strongly complementary, and that furthermore the two
families of techniques have seen successes in very different application
scenario’s, with statistical learning techniques successful in pattern
recognition (e.g. image interpretation, speech recognition, natural lan-
guage translation, board games and video games), while the successes
of symbolic reasoning techniques are in such applications as planning
(e.g. in robotics), diagnosis, design tasks and question answering (e.g.
in personal assistants). This begs the question of the more precise
delineation of these two families of systems.

Task-based distinction

A first characterization found in the literature is based on the task
performed by the system:

Deduction vs. Induction: the classical distinction between reasoning
and learning is the late 19th century Peirce-ian distinction between
deduction and induction. Deduction derives specific conclusions from
general statements, where conversely induction derives general state-
ments from specific observations. More formally, deduction is the
derivation of specific conclusions φ given a set of general formulae
T and a deductive calculus �: T � φ. Conversely, induction is the
derivation of a set of general formulae T given a set of specific
observations φ1, . . . , φn such that T � φi for all i = 1, . . . , n: deduction
is the problem of deriving φ given T, while induction is the problem of
deriving T given φ1, . . . , φn.7

Compression vs. decompression: a more recent characterization is
that of learning as compression [13]. The intuition here is that an
inductive learning process “compresses” a large set of observations
φ1, . . . , φn into a more compact model T, using the Minimum Descrip-
tion Length principle [5] as a complexity measure for both data and
model. Conversely, reasoning is then the process of producing (other)
predictions φ from such a model T, which can be seen as a form of

7Confusingly, in logic T is called a “theory”, while in machine learning, T would
be called the “model”, whereas the term “model” is used in a very different sense in
logic.

102 F. van Harmelen and A. ten Teije

decompression: after all, all the conclusions φ were already “implicitly”
present in T, and the job of deduction is to simply “decompress” the
general theory T into the more specific conclusions φ.

Both of these characterizations impose a strict dichotomy between
the two modes of learning and reasoning. Other authors have instead
tried to conceptualize a continuum of options that interpolate between
induction and deduction (e.g. [9]), but these have not been widely
adopted.

Representation-based distinction

Whereas the above dichotomies tried to capture the different tasks
that are performed by reasoning or learning systems, another popular
and somewhat orthogonal distinction in the literature is based on the
representation that is used by different systems.

Pearl [38] uses the term “model-free” for the representations typi-
cally used in many learning systems, and Darwiche [15] described them
as “function-based”8, to emphasize that the main task performed by
deep learning systems is function-fitting: fitting data by a complex func-
tion defined by a neural network architecture. Such “function-based”
or “model-free” representations are in contrast to the “model-based”
representations typically used in reasoning systems.

There is no consensus in the literature what precisely constitutes
such a “model-based” representation, but typical properties that are
ascribed to such model-based representations are that they are

• compositional: the meaning of model is a function of the meaning
of its components,

• referential: the model is constructed out of symbols that refer to
objects and relations in the world

• homologous: the structure of the model mirrors the structure of
the world it is modelling,

• interpretable: the structure and content of a model is human-
understandable and traceable,

• symbolic: as opposed to numeric,
• discrete: as opposed to real-valued, continuous and differentiable.

8Other names used for inferences at this layer are: “model-blind,” “black-box,” or
“data-centric” [38]

A Boxology of Design Patterns for Hybrid Learning 103

Examples of such models are of course logical formalisms (such as
propositional, first-order, modal and non-monotonic logics [26]), but
also grammars, knowledge graphs [54], ontologies [47], graphical
models [30], models from qualitative physics [48], etc.

Notice that the distinction of “model-based” vs. “model-free” (or:
“function-based”) representations is orthogonal to the previously dis-
cussed task-based dichotomy: systems such as Markov Logic Networks
[41] do perform a learning task (in order to learn weights on the relations
between variables from data), but do so based on an explicit (graphical)
model. Similarly, Inductive Logic Programming (ILP [29]) performs a
learning task, but again does so on an explicit model (and even on a
model (Horn Clauses) originally intended for deductive reasoning). In
the words of Darwiche [15]: “Machine learning [...] has a wide enough
span that it overlaps with the model-based approach; for example,
one can learn the parameters and structure of a model but may still
need non-trivial reasoning to obtain answers from the learned model”.
Nevertheless, it would be fair to say that the vast majority of modern
work on machine learning (and in particular work on deep learning)
uses a “model-free” (or: “function-based”) representation of data.

We will use both of the above distinctions (task-based and rep-
resentation based) in the design patterns that we will introduce
next.

3 Design Patterns and Notation

The notion of re-usable design patterns has been successfully used in
many different areas of Computer Science. Perhaps the best known
of these are the Design Patterns from Software Engineering [19, 20].
These Design patterns have successfully captured general reusable
solutions to commonly occurring problems in software design in the
form of a template for how to solve a problem, that can be used in many
different situations. These design patterns are organized in a hierarchi-
cal taxonomy, and typically expressed in a graphical notation9. Around

9sometimes described tongue-in-cheek as a boxology: “A representation of an
organized structure as a graph of labelled nodes and connections between them”,
https://www. definitions.net/definition/boxology

104 F. van Harmelen and A. ten Teije

the same time, a similar set of design patterns were developed for
Knowledge Engineering in the form of the CommonKADS task library
[45, 46]. In a similar vein to the patterns from Software Engineering,
the CommonKADS library identified frequently occurring problem
templates (called “tasks”), together with known templates for solv-
ing these problems (called “inference structures”), these templates
were again organized in a hierarchical taxonomy, and expressed in
a UML-like graphical notation. Other examples of Computer Science
subdisciplines which have developed such design patterns are ontology
design [21] and process mining [7].

Broadly recognized advantages of such design patterns are they
distill previous experience in a reusable form for future design activities,
they encourage re-use of code, they allow composition of such patterns
into more complex systems, they provide a common language in a
community, and they are a useful didactic device [1, 8]. In this paper
we aim to define such a set of design patterns for capturing the wide
variety of theories, proposals and systems in the literature on hybrid
systems that combine learning and reasoning. Our patterns distinguish
between systems both on the functionality of their components and
on the representations that they deploy, using both of the distinctions
discussed above. We show that our patterns are indeed composi-
tional (complex configurations can be built by composing simple
architectures), and we claim a substantial degree of completeness
for our library of compositional patterns, by validating them against
a body of more than 50 papers from the research literature of the
past decade.

We will now introduce the informal graphical “boxology” notation
that we use to express our patterns. We use ovals to denote algorithmic
components (i.e. objects that perform some computation), and boxes
to denote their input and output (i.e. data structures). Following the
task-based dichotomy described above, we distinguish two types of
algorithmic components (ovals): those that perform some form of
deductive inference (labelled as the “KR” components) and those
that perform some form inductive inference (the “ML” components):
KR ML . Based on the representation-based distinction discussed

above, we also use two kinds of input- and output-boxes: those that

A Boxology of Design Patterns for Hybrid Learning 105

contain “model-based” (symbolic, relational) structures, those that
contain “model-free” data: sym data
The sym-boxes are the input and output of a classical KR reasoning
system:

sym KR sym
(1)

and idem the data boxes are the typical input and output boxes of an
ML system:

data ML data (2)

Based on the discussion in the previous section, the labels “induc-
tive” and “deductive” for the algorithmic components would have been
more accurate, but we use the labels “KR” and “ML” for brevity.
Similarly, the labels “model-based” and “model-free” (or “model-
based” and “function-based”) would have been more accurate for the
input- and output-boxes, but again we use the labels “sym” and “data”
for brevity.

4 A library of Patterns

In this section we identify common patterns for hybrid systems that
perform reasoning and learning.

Learning with symbolic input and output

Instead of applying ML techniques to model-free data such as images,
text or numbers, the ML techniques can be applied to symbolic
structures, also yielding symbolic output:

sym ML sym
(3)

A classical examples of this are the aforementioned approaches
based on Inductive Logic Programming [29, 42], Probabilistic Soft
Logic [3, 24] and Markov Logic Networks [41]. Even this simple
example shows the value of these abstract patterns: even though the
algorithms and representations of ILP, PSL and MLN’s are completely

106 F. van Harmelen and A. ten Teije

different, the architecture patterns shows that they are all aimed at the
same goal: inductive reasoning over symbolic structures.

From symbols to data and back again

A more recent class of this “graph completion” systems [35, 37, 50]
also satisfies this design pattern: a machine learning algorithm takes
a knowledge graph as input and uses inductive reasoning to predict
addition edges which are deemed to be true based on observed pat-
terns in the graph, even though they are missing from the original
graph. However, allmost all graph completion algorithms perform
this task by first translating the knowledge graph to a representa-
tion in a high-dimensional vector space (a process called “embed-
ding”), to the following refinement of pattern (3) would be more
accurate:

sym ML data ML sym
(4)

Learning from data with symbolic output

A variation of the above is when ML techniques are applied to model-
free, but still yielding symbolic, model-based output:

data ML sym
(5)

The typical example here is ontology learning from text [2]. Again,
a large number of different approaches are captured by this single
pattern: ontology learning using Inductive Logic Programming [31],
using conceptual spaces [10] or text mining [52] are all described by
pattern (5). A related but different instantiation of this patter is the
use of text-mining not to learn full-blown ontologies, but to learn just
the class/instance distinction (which is always problematic in ontology
modelling), as done in [36]. As concerns the design patterns, this work
only differs in the actual content of the symbolic output: a full-blown
ontology, or only a class/instance label.

A Boxology of Design Patterns for Hybrid Learning 107

An entirely different application of this pattern is not to learn an
ontology, but instead to learn a knowledge graph, as done in [40] by
using Probabilistic Soft Logic as the learning engine. It is useful to note
that many “classical” learning algorithms such as decision tree learning
and rule mining are also covered by this design pattern.

Explainable learning systems

Amajor motivation for pattern (5) is the opaqueness problem mentioned
in Section 2: the symbolic output is more amenable to crafting an
explanation of the learning results [51]. A natural extension of this
pattern is therefore to use the symbolic output as input for a classical
reasoning system, where the reasoning systems is used to craft an
intelligible explanation of the results of the machine learner.

data ML sym KR sym
(6)

Explainable learning systems with background knowledge

An extension of this pattern describes the work in both [44] and [49],
where background knowledge is used in the process of deductively
reconstructing an explanation for the results of the learner:

data ML sym KR sym

sym

(7)

Explainable learning systems through inspection

An alternative approach to explainable systems is taken in [11], where
the behaviour of machine learning system (in this case: a neural net
classifier trained with transfer learning) is inspected by a reasoning
system (in this case: a Description Logic reasoner), which then tries to
explain the behaviour of the learner (in this case: which features were
succesfully used in the transfer learning process).

108 F. van Harmelen and A. ten Teije

data ML data

KR

sym

(8)

Learning an intermediate abstraction for learning

In pattern (4) we have already seen a case where an intermediate
representation is produced by one learning system as the input for
a subsequent learning system. This turns out to be a rather generic
pattern, of which also other variations are possible. One such variation
is described in [22], where perceptual (“model-free”) input is used to
learn an intermediate symbolic (“model-based”) representation of a the
environment, and this symbolic spatial representation is then used in a
reinforcement learning step to learn optimal behaviour:

data ML sym ML data (9)

The results in [22] show that the intermediate (and more abstract)
symbolic representation gives a more robust behaviour of the system
and allows for transfer learning between situations. Besides learning
a spatial abstraction (as in [22]), the work in [28] uses the same
architecture pattern for deriving a temporal abstraction of sequence
of subtasks, which are then input to reinforcement learning agents.

Learning an intermediate abstraction for reasoning

Contrary to widespread popular belief, the Alpha Go system is not a
single machine learning system. It is in fact built out of a machine
learning component which learns functions for board valuation and
region selection, which are subsequently used as components in a
(classical) Monte Carlo search. This architecture can be described as

A Boxology of Design Patterns for Hybrid Learning 109

data ML sym KR sym
(10)

Deriving an intermediate abstraction for reasoning

In [32] a raw data-stream is first abstracted into a stream of symbols
with the help of a symbolic ontology, and this stream of symbols is then
fed into a classifier (which performs better on the symbolic data than
on the original raw data).

data KR

sym

sym ML sym
(11)

Learning with symbolic information as a prior

The following design patterns aims to resolve one of the issues men-
tioned in Section 2, namely how to enable machine learning systems
to use prior knowledge:

data ML data

sym

(12)

An example of this are the Logic Tensor Networks in [17], where
the authors show that encoding prior knowledge in symbolic form
allows for better learning results on fewer training data, as well as
more robustness against noise. A similar example is given in [4], where
knowledge graphs are successfully used as priors in a scene description
task, and in [16] where logical rules are used as background knowledge
for a gradient descent learning task in a high-dimensional real-valued
vector space.

The work by [53] is at first sight apparently unrelated: it investigates
the use of a semantically formulated loss-function to drive the gradient
descent learning process (the semantic loss function is defined as a
propositional formula in conjunctive normal form, which is then made

110 F. van Harmelen and A. ten Teije

differentiable by weakening satisfiability to maximal satisfiability). But
when drawing the design pattern for this work we arrive at precisely
diagram (12) above. This suggests that we could look at [17] and [4]
with entirely different eyes, namely that they are in essence using their
background knowledge as encoding a “semantic loss” function, and on
closer inspection this is in fact a rather faithful account of what these
papers are doing. This analogy was not mentioned at all in these papers,
but was revealed by the design pattern that describes these systems.

Learning with derived symbolic information as a prior

Of course the “inductive bias” (using the terminology from [6]) does
not need to be given, but can itself be derived by a reasoner, leading to
a variation of pattern (12):

data ML data

symKRsym

(13)

Meta-reasoning for control

There is a long-standing tradition in both AI [14] and in the field
of cognitive architectures (e.g. [39]) to investigate so-called meta-
reasoning systems, where one system reasons about (or:learns from)
the behaviour of another system.

In one pattern, also known as meta-cognition, symbolic reasoning
is used to control the behaviour of a learning agent, to decide what it
should learn and when, when it should stop learning, and in general to
decide on the hyper-parameters that control the learning process:

MLdata data

KR

sym
(14)

A Boxology of Design Patterns for Hybrid Learning 111

Here the KR system has a symbolic representation of the state of the
ML system, reasons about it, and effectuates its conclusions as control
instructions to the MLsystem. In a loose cognitive analogy, this could be
compared with a consciously learning student, who constantly reflects
on her learning progress to adjust her learning behaviour.

Meta-reasoning for learning to reason

In a second meta-reasoning pattern, the behaviour of one system
(a symbolic reasoner) is the input of a second, machine learning, system.
The machine learning system observes the behaviour of the symbolic
reasoner, and learns from this behaviour how to perform deductive
behaviour, which it is then able to mimic on new symbolic queries:

KRsym sym ML

sym (a query)

sym

(15)

This pattern for training a neural network to do logical reasoning
captures a wide variety of approaches such as reasoning over RDF
knowledge bases [18], Description Logic Reasoning [27] and logic
programming [43].

Compositional systems

The first of our patterns (patterns (1), (2), (3) and (5)) are the elementary
building blocks out of which the more complex patterns can all be
constructed. Compositionality can also be seen between more complex
patterns, as in the meta-reasoning diagrams.

For example, (4) is a sequential composition of (3) and (5); pattern
(13) is a non-sequential of the two elementary patterns (1) and (2).

5 Future Work

In future work, we intend to design a set of grammar rules that generate
the space of all syntactically possible combinations of our atomic

112 F. van Harmelen and A. ten Teije

patterns. This should be followed by an attempt to find examples of
all of these patters in the literature, and (if no exemplars are found in
the literature) to investigate if these are meaningful combinations that
have not yet been explored.

A simple but interesting future extension of our notation would be
to introduce a third type of processor (besides symbolic reasoner and
learning system) namely that of a human agent. This would then allow
our architecture patterns to be extended to human-in-the-loop systems,
including the recently emerging family of hybrid intelligence systems
that combine AI systems with humans in a single team.

A more fundamental and almost philosophical issue to be addressed
in future work is the distinction between data and symbols. Even
though there is a shared intuition about this distinction (as in the earlier
cited papers of Pearl [38] and Darwiche [15], we have not been able
to come up with a crisp distinction, let alone a way to capture this
distinction formally.

6 Concluding Comments

What is notably different in our approach from other survey work
in the literature is that we are not categorizing work based on the
specific techniques that are being used inside the building blocks, but
only on how the building blocks fit together. Each category abstracts
from specific mathematical and algorithmic details of the specific
approaches in that category, but only looks at the functional behaviour
of the pattern and at the functional dependencies between the ML and
KR components. This makes our categorization of systems in design
patterns much more abstract and general. For example, while major
battles are being fought in the literature between different forms of
statistical relational learning, we abstract all of these approaches into
a single design pattern (in this case pattern (5), allowing us to see that
any of them could be deployed in more complex configurations such
as (9) or (6).

Based on the experience with design patterns in other subdisciplines
of Computer Science such as Software Engineering and Knowledge
Engineering, we hope that this classification of a wide variety of systems

A Boxology of Design Patterns for Hybrid Learning 113

in a small number of compositional patterns will help with a better
understanding of the design space of such systems, including a better
understanding of the advantages and disadvantages of the different
configurations, and a better understanding which design patterns are
more suited for which kinds of performance tasks. Examples of this in
the above were the use of an intermediate symbolic representation of
space in [22] to obtain more efficient and robust learning, the use of a
symbolic representation in [44] to produce explanations of the results
of a classical learner, the use in [32] of a symbolic reasoner to obtain
a data abstraction which improved the performance of a subsequent
learning algorithm, etc.

Finally, we are experimenting with this approach as a didactic
device10

Although we have refrained from linking our design patterns to the
design of cognitive architectures (see [12] for a survey, it is tempting
to do so. System such as ACT-R, SOAR, Sigma and others distinguish
components for temporal and spatial abstraction, for short and long
term memory, for goal formulation and attention guidance, etc. Some
of the patterns we have discussed are clearly reminiscent of some of
these cognitive functions, and a study of these analogies would yield
potentially interesting insights.

Further obvious next steps in this work would be to perform a deeper
analysis in which to apply these patterns to a wider body of literature,
to formalize and further refine the informal descriptions in this paper,
and to ultimately use this approach in a prescriptive design theory of
statistical-symbolic systems.

References

[1] Ellen Agerbo and Aino Cornils. “How to Preserve the Benefits
of Design Patterns”. In: Proceedings of the 1998 ACM
SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA ’98), Vancouver,

10and in fact, two years of teaching a research seminar on combining statistical and
symbolic approaches in AI has been our main motivator for this work.

114 F. van Harmelen and A. ten Teije

British Columbia, Canada, October 18–22, 1998. Ed. by
Bjørn N. Freeman-Benson and Craig Chambers. ACM, 1998,
pp. 134–143. doi: 10.1145/286936.286952. URL: https://
doi.org/10.1145/286936.286952.

[2] Muhammad Nabeel Asim et al. “A survey of ontology learning
techniques and applications”. In: Database 2018 (2018), bay101.

[3] Stephen H. Bach et al. “Hinge-Loss Markov Random Fields
and Probabilistic Soft Logic”. In: Journal of Machine Learning
Research 18 (2017), 109:1–109:67. URL: http://jmlr.org/papers/
v18/15-631.html.

[4] Stephan Baier, Yunpu Ma, and Volker Tresp. “Improving Visual
Relationship Detection Using Semantic Modeling of Scene
Descriptions”. In: The Semantic Web – ISWC 2017 – 16th Inter-
national Semantic Web Conference, Vienna, Austria, October
21–25, 2017, Proceedings, Part I. Ed. by Claudia d’Amato
et al. Vol. 10587. Lecture Notes in Computer Science. Springer,
2017, pp. 53–68. ISBN: 978-3-319-68287-7. doi: 10.1007/978-3-
319-68288-4 4. URL: https://doi.org/10.1007/ 978-3-319-68288-
4%5C 4.

[5] A. Barron, J. Rissanen, and Bin Yu. “The minimum description
length principle in coding and modeling”. In: IEEE Transactions
on Information Theory 44.6 (Oct. 1998), pp. 2743–2760. ISSN:
0018-9448. doi: 10.1109/18.720554.

[6] Peter W. Battaglia et al. “Relational inductive biases, deep learn-
ing, and graph networks”. In: CoRR abs/1806.01261 (2018).
arXiv: 1806. 01261. URL: http://arxiv.org/abs/1806.01261.

[7] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst.
“Abstractions in Process Mining: A Taxonomy of Patterns”.
In: Business Process Management, 7th International Con-
ference, BPM 2009, Ulm, Germany, September 8–10, 2009.
Proceedings. Ed. by Umeshwar Dayal et al. Vol. 5701.
Lecture Notes in Computer Science. Springer, 2009, pp.
159–175. doi: 10.1007/978-3-642-03848-8 12. URL: https://
doi.org/10.1007/978-3-642-03848-8%5C 12.

[8] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst.
“Abstractions in Process Mining: A Taxonomy of Patterns”.

A Boxology of Design Patterns for Hybrid Learning 115

In: Business Process Management, 7th International Con-
ference, BPM 2009, Ulm, Germany, September 8–10, 2009.
Proceedings. Ed. by Umeshwar Dayal et al. Vol. 5701.
Lecture Notes in Computer Science. Springer, 2009, pp.
159–175. doi: 10.1007/978-3-642-03848-8 12. URL: https://
doi.org/10.1007/978-3-642-03848-8%5C 12.

[9] Léon Bottou. “From Machine Learning to Machine Reasoning”.
In: CoRR abs/1102.1808 (2011). arXiv: 1102.1808. URL:
http://arxiv. org/abs/1102.1808.

[10] Zied Bouraoui, Shoaib Jameel, and Steven Schockaert. “Induc-
tive Reasoning about Ontologies Using Conceptual Spaces”.
In: Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4–9, 2017, San Francisco,
California, USA. Ed. by Satinder P. Singh and Shaul
Markovitch. AAAI Press, 2017, pp. 4364–4370. URL: http:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14916.

[11] Jiaoyan Chen et al. “Knowledge-Based Transfer Learning
Explanation”. In: Principles of Knowledge Representation
and Reasoning: Proceedings of the Sixteenth International
Conference, KR 2018, Tempe, Arizona, 30 October – 2 November
2018. Ed. by Michael Thielscher, Francesca Toni, and
Frank Wolter. AAAI Press, 2018, pp. 349–358. URL: https:
//aaai.org/ocs/index.php/KR/KR18/paper/view/18054.

[12] Hui-Qing Chong, Ah-Hwee Tan, and Gee Wah Ng. “Integrated
cognitive architectures: a survey”. In: Artif. Intell. Rev. 28.2
(2007), pp. 103–130. doi: 10.1007/s10462-009-9094-9. URL:
https://doi.org/10. 1007/s10462-009-9094-9.

[13] Rudi Cilibrasi and Paul M. B. Vitányi. “Clustering by
compression”. In: IEEE Trans. Information Theory 51.4
(2005), pp. 1523–1545. doi: 10.1109/TIT.2005.844059. URL:
https://doi.org/10.1109/TIT. 2005.844059.

[14] Stefania Costantini. “Meta-reasoning: A Survey”. In: Computa-
tional Logic: Logic Programming and Beyond, Essays in Honour
of Robert A. Kowalski, Part II. Ed. by Antonis C. Kakas and
Fariba Sadri. Vol. 2408. Lecture Notes in Computer Science.

116 F. van Harmelen and A. ten Teije

Springer, 2002, pp. 253–288. doi: 10.1007/3-540-45632-5 11.
URL: https://doi.org/10.1007/3-540-45632-5%5C 11.

[15] Adnan Darwiche. “Human-level Intelligence or Animal-like Abil-
ities?” In: Commun. ACM 61.10 (Sept. 2018), pp. 56–67. ISSN:
0001-0782. doi: 10.1145/3271625. URL: http://doi.acm.org.vu-
nl.idm. oclc.org/10.1145/3271625.

[16] Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel.
“Lifted Rule Injection for Relation Embeddings”. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2016, Austin, Texas, USA, November
1–4, 2016. Ed. by Jian Su, Xavier Carreras, and Kevin Duh. The
Association for Computational Linguistics, 2016, pp. 1389–1399.
URL: http://aclweb.org/ anthology/D/D16/D16-1146.pdf.

[17] Ivan Donadello, Luciano Serafini, and Artur S. d’Avila
Garcez. “Logic Tensor Networks for Semantic Image Inter-
pretation”. In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19–25, 2017. Ed. by Carles Sierra.
ijcai.org, 2017, pp. 1596–1602. ISBN: 978-0-9992411-0-3.
doi: 10.24963/ijcai.2017/221. URL: https://doi.org/10.24963/
ijcai.2017/221.

[18] Monireh Ebrahimi et al. “Reasoning over RDF Knowledge Bases
using Deep Learning”. In: CoRR abs/1811.04132 (2018). arXiv:
1811.04132. URL: http://arxiv.org/abs/1811.04132.

[19] Erich Gamma. “Design Patterns – Past, Present and Future”.
In: The Future of Software Engineering. Ed. by Sebastian Nanz.
Springer, 2010, p. 72. doi: 10.1007/978-3-642-15187-3 4. URL:
https://doi. org/10.1007/978-3-642-15187-3%5C 4.

[20] Erich Gamma et al. Design Patterns: Elements of Reusable Object-
Oriented Software. 1st ed. Addison-Wesley Professional, 1994.
ISBN: 0201633612.

[21] Aldo Gangemi and Valentina Presutti. “Ontology Design Pat-
terns”. In: Handbook on Ontologies. Ed. by Steffen Staab and
Rudi Studer. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 221–243. doi: 10.1007/978-3-540-92673-3 10. URL:
https://doi.org/10.1007/ 978-3-540-92673-3 10.

A Boxology of Design Patterns for Hybrid Learning 117

[22] Marta Garnelo, Kai Arulkumaran, and Murray Shanahan.
“Towards Deep Symbolic Reinforcement Learning”. In: CoRR
abs/1609.05518 (2016). arXiv: 1609.05518. URL: http://arxiv.org/
abs/1609.05518.

[23] Hector Geffner. “Model-free, Model-based, and General Intelli-
gence”. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13–19,
2018, Stockholm, Sweden. Ed. by Jérôme Lang. ijcai.org, 2018,
pp. 10–17. ISBN: 978-0-9992411-2-7. doi: 10.24963/ijcai.2018/2.
URL: https://doi.org/ 10.24963/ijcai.2018/2.

[24] Lise Getoor. “Probabilistic Soft Logic: A Scalable Approach
for Markov Random Fields over Continuous-Valued Variables –
(Abstract of Keynote Talk)”. In: Theory, Practice, and
Applications of Rules on the Web – 7th International Sym-
posium, RuleML 2013, Seattle, WA, USA, July 11–13, 2013.
Proceedings. Ed. by Leora Morgenstern et al. Vol. 8035.
Lecture Notes in Computer Science. Springer, 2013, p. 1.
ISBN: 978-3-642-39616-8. doi: 10.1007/978-3-642-39617-5 1.
URL: https://doi.org/10.1007/978-3-642-39617-5%5C 1.

[25] Lise Getoor. “Statistical Relational Learning: Unifying AI and
DB Perspectives on Structured Probabilistic Models”. In: Pro-
ceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2017, Chicago,
IL, USA, May 14–19, 2017. Ed. by Emanuel Sallinger, Jan
Van den Bussche, and Floris Geerts. ACM, 2017, p. 183.
ISBN: 978-1-4503-4198-1. doi: 10.1145/3034786. 3056450.
URL: https://doi.org/10.1145/3034786.3056450.

[26] Frank van Harmelen, Vladimir Lifschitz, and Bruce W. Porter,
eds. Handbook of Knowledge Representation. Vol. 3. Founda-
tions of Artificial Intelligence. Elsevier, 2008. ISBN: 978-0-444-
52211-5. URL: http://www.sciencedirect.com/science/bookseries/
15746526/3.

[27] Patrick Hohenecker and Thomas Lukasiewicz. “Deep Learning for
Ontology Reasoning”. In: CoRR abs/1705.10342 (2017). arXiv:
1705 . 10342. URL: http://arxiv.org/abs/1705.10342.

118 F. van Harmelen and A. ten Teije

[28] Rodrigo Toro Icarte et al. “Teaching Multiple Tasks to an RLAgent
using LTL”. In: Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2018,
Stockholm, Sweden, July 10–15, 2018. Ed. by ElisabethAndré et al.
International Foundation for Autonomous Agents and Multiagent
Systems Richland, SC, USA / ACM, 2018, pp. 452–461. URL:
http://dl.acm. org/citation.cfm?id=3237452.

[29] Katsumi Inoue, Hayato Ohwada, andAkihiro Yamamoto. “Special
issue on inductive logic programming”. In: Machine Learning 106
(2017), pp. 1863–1865.

[30] Daphne Koller and Nir Friedman. Probabilistic Graphical
Models – Principles and Techniques. MIT Press, 2009. ISBN:
978-0-262-01319-2. URL: http://mitpress.mit.edu/catalog/item/
default.asp? ttype=2%5C&tid=11886.

[31] Stasinos Konstantopoulos and Angelos Charalambidis. “Formu-
lating description logic learning as an Inductive Logic Program-
ming task”. In: FUZZ-IEEE 2010, IEEE International Conference
on Fuzzy Systems, Barcelona, Spain, 18–23 July, 2010, Proceed-
ings. IEEE, 2010, pp. 1–7. doi: 10.1109/FUZZY.2010.5584417.
URL: https://doi.org/10. 1109/FUZZY.2010.5584417.

[32] Reinier Kop et al. “Predictive modeling of colorectal cancer using
a dedicated pre-processing pipeline on routine electronic medical
records”. In: Comp. in Bio. and Med. 76 (2016), pp. 30–38.

[33] Brenden M. Lake et al. “Building Machines That Learn and Think
Like People”. In: The Behavioral and brain sciences 40 (2017),
e253.

[34] Gary Marcus. “Deep Learning: A Critical Appraisal”. In:
CoRR abs/1801.00631 (2018). arXiv: 1801.00631. URL:
http://arxiv.org/ abs/1801.00631.

[35] Maximilian Nickel et al. “A Review of Relational Machine Learn-
ing for Knowledge Graphs”. In: Proceedings of the IEEE 104.1
(2016), pp. 11–33. doi: 10.1109/JPROC.2015.2483592. URL:
https://doi.org/10. 1109/JPROC.2015.2483592.

[36] Ankur Padia, David Martin, and Peter F. Patel-Schneider.
“Automating Class/Instance Representational Choices in Knowl-
edge Bases”. In: Knowledge Engineering and Knowledge

A Boxology of Design Patterns for Hybrid Learning 119

Management – 21st International Conference, EKAW 2018,
Nancy, France, November 12–16, 2018, Proceedings. Ed.
by Catherine Faron-Zucker et al. Vol. 11313. Lecture
Notes in Computer Science. Springer, 2018, pp. 273–288.
doi: 10.1007/978-3-030-03667-6 18. URL: https://doi.org/10.
1007/978-3-030-03667-6%5C 18.

[37] Heiko Paulheim. “Knowledge graph refinement: A survey
of approaches and evaluation methods”. In: Semantic Web
8.3 (2017), pp. 489–508. doi: 10.3233/SW-160218. URL:
https://doi.org/10.3233/SW-160218.

[38] Judea Pearl. “Theoretical Impediments to Machine Learn-
ing With Seven Sparks from the Causal Revolution”. In:
Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, WSDM 2018, Marina
Del Rey, CA, USA, February 5–9, 2018. Ed. by Yi Chang
et al. ACM, 2018, p. 3. doi: 10.1145/3159652.3176182. URL:
https://doi.org/10.1145/3159652.3176182.

[39] Don Perlis et al. “The Internal Reasoning of Robots”. In: Proceed-
ings of the Thirteenth International Symposium on Commonsense
Reasoning, COMMONSENSE 2017, London, UK, November 6–8,
2017. Ed. by Andrew S. Gordon, Rob Miller, and György Turán.
Vol. 2052. CEUR Workshop Proceedings. CEUR-WS.org, 2017.
URL: http://ceur -ws.org/Vol-2052/paper16.pdf.

[40] Jay Pujara et al. “Using Semantics and Statistics to Turn Data into
Knowledge”. In: AI Magazine 36.1 (2015), pp. 65–74. URL: http://
www.aaai.org/ojs/index.php/aimagazine/article/view/2568.

[41] Matthew Richardson and Pedro M. Domingos. “Markov logic
networks”. In: Machine Learning 62.1-2 (2006), pp. 107–136.
doi: 10.1007/s10994-006-5833-1. URL: https://doi.org/10.1007/
s10994-006-5833-1.

[42] Fabrizio Riguzzi, Elena Bellodi, and Riccardo Zese. “A History of
Probabilistic Inductive Logic Programming”. In: Front. Robotics
and AI 2014 (2014).

[43] Tim Rocktäschel and Sebastian Riedel. “End-to-end Differen-
tiable Proving”. In: Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information

120 F. van Harmelen and A. ten Teije

Processing Systems 2017, 4–9 December 2017, Long Beach,
CA, USA. Ed. by Isabelle Guyon et al. 2017, pp. 3791–3803.
URL: http://papers.nips.cc/paper/6969-end-to-end-differentiable-
proving.

[44] Md. Kamruzzaman Sarker et al. “Explaining Trained Neu-
ral Networks with Semantic Web Technologies: First Steps”.
In: Proceedings of the Twelfth International Workshop on Neural-
Symbolic Learning and Reasoning, NeSy 2017, London, UK,
July 17–18, 2017. Ed. by Tarek R. Besold, Artur S. d’Avila
Garcez, and Isaac Noble. Vol. 2003. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2017. URL: http://ceur -ws.org/Vol-
2003/NeSy17%5C paper4.pdf.

[45] Guus Schreiber et al. “CommonKADS: A Comprehensive
Methodology for KBS Development”. In: IEEE Expert 9.6 (1994),
pp. 28–37. doi: 10.1109/64.363263. URL: https://doi.org/10.1109/
64.363263.

[46] Guus Schreiber et al. Knowledge Engineering and Management
The CommonKADS Approach. MIT Press, 1999.

[47] Steffen Staab and Rudi Studer, eds. Handbook on Ontolo-
gies. International Handbooks on Information Systems. Springer,
2009. ISBN: 978-3-540-70999-2. doi: 10.1007/978-3-540-92673-
3. URL: https: //doi.org/10.1007/978-3-540-92673-3.

[48] Peter Struss. “Model-based Problem Solving”. In: Handbook of
Knowledge Representation. Ed. by Frank van Harmelen, Vladimir
Lifschitz, and Bruce W. Porter. Vol. 3. Foundations of Artificial
Intelligence. Elsevier, 2008, pp. 395–465. doi: 10.1016/S1574-
6526(07)03010-6. URL: https://doi.org/10.1016/S1574-6526(07)
03010-6.

[49] Ilaria Tiddi, Mathieu d’Aquin, and Enrico Motta. “Data Pat-
terns Explained with Linked Data”. In: Machine Learning
and Knowledge Discovery in Databases – European Con-
ference, ECML PKDD 2015, Porto, Portugal, September 7–
11, 2015, Proceedings, Part III. Ed. by Albert Bifet et al.
Vol. 9286. Lecture Notes in Computer Science. Springer,
2015, pp. 271–275. doi: 10.1007/978-3-319-23461-8 28. URL:
https://doi.org/10.1007/978-3-319-23461-8%5C 28.

A Boxology of Design Patterns for Hybrid Learning 121

[50] Q. Wang et al. “Knowledge Graph Embedding: A Survey of
Approaches and Applications”. In: IEEE Transactions on Knowl-
edge and Data Engineering 29.12 (Dec. 2017), pp. 2724–2743.
ISSN: 1041-4347. doi: 10. 1109/TKDE.2017.2754499.

[51] Daniel S. Weld and Gagan Bansal. “Intelligible Artificial Intel-
ligence”. In: CoRR abs/1803.04263 (2018). arXiv: 1803 .04263.
URL: http : //arxiv.org/abs/1803.04263.

[52] Wilson Wong, Wei Liu, and Mohammed Bennamoun. “Ontology
learning from text: A look back and into the future”. In:
ACM Comput. Surv. 44.4 (2012), 20:1–20:36. doi: 10.1145/2333
112.2333115. URL: https://doi.org/10.1145/2333112.2333115.

[53] Jingyi Xu et al. “A Semantic Loss Function for Deep Learn-
ing with Symbolic Knowledge”. In: Proceedings of the 35th
International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018. Ed. by
Jennifer G. Dy and Andreas Krause. Vol. 80. JMLR Workshop and
Conference Proceedings. JMLR.org, 2018, pp. 5498–5507. URL:
http://proceedings.mlr.press/v80/ xu18h.html.

[54] Jihong Yan et al. “A retrospective of knowledge graphs”. In:
Frontiers of Computer Science 12.1 (Feb. 2018), pp. 55–74.
ISSN: 2095-2236. doi: 10.1007/s11704-016-5228-9. URL:
https://doi.org/
10.1007/ s11704-016-5228-9.

[55] Fan Yang, Zhilin Yang, and William W. Cohen. “Differentiable
Learning of Logical Rules for Knowledge Base Reasoning”. In:
Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4–9
December 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon
et al. 2017, pp. 2316–2325. URL: http://papers.nips.cc/paper/6
826-differentiable-learning-of-logical-rules-for-knowledge-base-
reasoning.

122 F. van Harmelen and A. ten Teije

Biographies

Frank van Harmelen is professor of Knowledge Representation and
Reasoning at the VU University Amsterdam, and adjunct professor at
Wuhan University and Wuhan University of Science and Technology.
He played a leading role in the development of the Semantic Web,
which aims to make data on the web semantically interpretable by
machines through formal representations. He was a contributor to
the Web Ontology Language OWL, now a standard in worldwide
commercial use, and the basis for an entire research community. He
is one of the architects of the semantic storage engine Sesame (now
RDF4J). This work received the 10-year impact award of the Semantic
Web community. He co-authored the Semantic Web Primer, the first
text book on the semantic web (now translated into 5 languages), and
he co-edited the standard reference work in his field (The Handbook of
Knowledge Representation). He is a member of the Royal Netherlands
Academy of Arts and Sciences, the Royal Holland Academy of Sci-
ences, and Academia Europea, and fellow of the European Association
for Artificial Intelligence.

A Boxology of Design Patterns for Hybrid Learning 123

Annette ten Teije is an associate professor at the Vrije Universiteit
Amsterdam. Her interests are in knowledge modelling, representation
and reasoning in particular in the medical domain. She earned a
PhD (1997) from the University of Amsterdam (SWI) for her thesis
entitled “Automated configuration of problem solving methods in
diagnosis”. She was involved in a number of EU-funded projects
IBROW project under the FET-O programme, Protocure-II project,
concerned with formal modelling and verification of medical guidelines
and protocols, WS-DIAMOND FET-Open project concerned with
self- healing web-services, FP7-ICT EURECA project concerned with
enabling information re-use by linking clinical research and clinical
care. She was program co-chair for the 18th International Conference
on Knowledge Engineering and Knowledge Management (2012), and
was the general chair of the 16th conference on Artificial Intelligence
in Medicine.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

