Model-Driven Integration Testing
of Hypermedia Systems

Henry Vu, Tobias Fertig and Peter Braun

PENTASYS AG, Riidesheimer Str. 9, 80686 Munich, Germany

University of Applied Sciences Wiirzburg-Schweinfurt, Wiirzburg, Germany
E-mail: henry.vu@pentasys.de; tobias.fertig @fhws.de;
peter.braun@fhws.de

Received 12 January 2019;
Accepted 04 June 2019

Abstract

The proper design of Representational State Transfer (REST) APIs
is not trivial because developers have to deal with a flood of recom-
mendations and best practices, especially the proper application of the
hypermedia constraint requires some decent experience. Furthermore,
testing RESTful APIs is a missing topic within literature. Especially
hypermedia testing is not mentioned at all. Manual hypermedia testing
is time-consuming and hard to maintain. Testing a hypermedia API
requires many test cases that have similar structure, especially when
different user roles and error cases are considered. In order to tackle
this problem, we proposed a Model-Driven Testing (MDT) approach
for hypermedia systems using the metamodel within our existing
Model Driven Software Development (MDSD) approach. This work
discusses challenges and results of hypermedia testing for RESTful
APIs using MDT techniques that were discovered within our research.
MDT allows white-box testing, hence covering complete program
structure and behavior of the generated application. By doing this, we
are able to achieve a high automated test coverage. Moreover, any

Journal of Web Engineering, Vol. 18_4-6, 381-408.
doi: 10.13052/jwe1540-9589.18465
© 2019 River Publishers

382 H. Vuetal

runtime behavior deviated from the metamodel reveals bugs within the
generators.

Keywords: REST, Integration Testing, RESTful API, Hypermedia
Testing, MDSD, MDE, MDT, Model-Driven Testing.

1 Introduction

The Web has become the de facto deployment environment for soft-
ware systems and applications. Office productivity applications and
corporate tools such as invoicing, purchasing and expense reporting
systems have migrated to the Web [19]. Web APIs have become the
vital backbones for these applications and services. While the number of
Web APIs is increasing, the need for good API design has become more
crucial than ever before. Good APIs can be among a company’s greatest
assets, as customers invest heavily in buying, writing and learning them.
However, bad APIs can also be among a company’s greatest liabilities
as they result in never-ending streams of maintenance and support [2].

1.1 Representational State Transfer

In 2000 Fielding [8] presented an architectural design approach for
building networkbased applications that resemble the Web through
principled use of architectural constraints called Representational State
Transfer (REST). Inits simplest form, REST requires that an application
server must adhere to a set of constraints, such as client-server, stateless,
cache, uniform interface, layered system and hypermedia. But many
APIs that claim to be RESTful often neglect the hypermedia aspect.
Fielding also criticizes in his blog [7] that many existing APIs are called
RESTful even though they lack hypermedia controls. This circumstance
leads to a widely-held misconception of RESTful API design among the
developer community, subsequently there is a lack of existing RESTful
APIs that adhere to the hypermedia constraint. Since hypermedia is not
present there is no awareness for testing it. An API defined as RESTful is
fully matured when making use of every Fielding’s constraint including
hypermedia[15]. Hypermedia constraint has tree jobs according to [14]:

Model-Driven Integration Testing of Hypermedia Systems 383

1) It tells the client how to construct an HTTP request, what method to
use, what URL to use, what HTTP headers and/or entity-body to send.
2) It makes promises about the HTTP response, suggesting the status
code, the HTTP headers, and/or the data the server is likely to send.
3) It guides the client through the application workflow given by the
server, and hence complying to the stateless constraint. An API that
do not generate any hyperlink response to navigate a client through its
application workflow has two major problems: a) For application states
do not generate any follow up hyperlinks, clients are forced to construct
these hyperlinks piece by piece which would require prior knowledge
about the implementation details of the server and b) since there are no
hyperlinks for clients to follow, there is no application workflow, thus
it is rather a static API. Besides the lack of a workflow, this described
client-server architecture is tightly coupled and is likely to break due
to changes on either side: If the server change the URISs, the clients will
break and if any client is to be modified, the server must remain the
same.

1.2 Model-Driven Software Development of RESTful APIs

We decided to tackle the challenges of RESTful API development with
a MDSD approach. In 2015 we proposed Generating Mobile Applica-
tions with RESTful Architecture(GeMARA) [16]. Instead of a data-first
approach which uses data models for creating an API, we went for an
API-first approach which aims at a proper API design first which then
automatically creates the underlaying database. The main idea of this
projectis to take RESTful API development to a higher level of abstrac-
tion by using a metamodel as input. We use our own Domain Specific
Language (DSL) to describe a metamodel which is then to be translated
into a RESTful API. This way, we can force consistency and achieve
a higher standard of quality by encapsulating reliable and wellknown
libraries, frameworks and RESTful best practices behind our DSL.

1.3 Model-Driven Testing

As this project matures, we also explored the possibility of Model-
Driven Testing (MDT) [5] and realized the lack of information about

384 H. Vuetal

quality assurance for MDT and for our domain regarding RESTful
systems. In general, MDSD processes are very sensitive to the intro-
duction of defects. Any defect in a model or a model transformation
can be easily propagated to the subsequent stages, thus causing the
production of faulty software [11]. However, MDT is a possible way
to achieve correctness the generators. Test cases can be generated from
the underlying model. Any deviating behavior of the application on a
runtime environment could reveal possible bugs within the generators.
Moreover, even third-party frameworks and libraries can be updated
or replaced over time, these generated test cases can also be used to
verify our platform code. In 2017 we proposed several approaches to
deal with MDT for RESTful systems which include server-side testing
and client-side testing [20]. The server-side testing is separated into two
phases: static and dynamic analysis. The main goal of the static analysis
is to reveal errors at the highest level of abstraction, guaranteeing that
a model must be designed correctly before triggering any source code
transformation. Our findings within the static analysis were presented in
[21] covering up an automatic verification process for the input-model,
thus ensuring its hypermedia characteristic as a Finite-State Machine
(e-NFA).

This paper is a follow-up contribution within our research regarding
testing RESTful APIs using MDT techniques from [20] and [21].
Facing the need for better RESTful API design and deficits in its
quality assurance, we are focusing on answering the following research
questions (RQ):

RQ 1) How to generate appropriate test cases from an existing meta-
model to test role-based behavior for every application state
within a RESTful API?

RQ 2) How can test cases deviated from RQ 1 be verified automatically
on runtime?

RQ 3) Can the proposed approach completely relieve API developers
from integration testing?

We tackle this problem domain by using design science to produce
artifacts. In our case, these artifacts are models and prototypes which
can be used to help us to gain better grasp of the problem and to re-
evaluate it.

Model-Driven Integration Testing of Hypermedia Systems 385

2 Related Work

The established literature concerning REST such as [1], [14] and [22]
reveal little to no information about its quality assurance. Moreover,
hypermedia testing is not mentioned at all. They explain what hyper-
media is good for, but do not present any approach to test it. REST
API integration testing by sending HTTP-requests and verifying the
received responses was mentioned in [22].

In [10], the author suggests three different “entry levels” for inte-
gration testing: 1) At HTML level using a WebDriver tool such as
Selenium [13] to interact with HTML/CSS elements such as filling a
form or clicking on a button 2) At HTTPlevel by sending HT TP requests
and checking HTTP responses 3) At controller level by directly testing
the methods. The main idea of this book is testing must be efficient
and economic, thus recommending against a high test coverage and
complex logic. However, our MDT approach enables automation of
integration testing with a high test coverage with minimum manual
effort, hence generating great economic return. Nevertheless, the author
also neglects the hypermedia by suggesting to manually craft each
HTTP request with a fix URL.

In [3], the authors present their own framework Test-the-Rest to
test HTTP based web services. The test cases are written in a test
specification language based on XML to give the tester a structured
approach. Other than that, response validation only depends on check-
ing media type and status code. This approach does not fully address
the challenges of testing RESTful APIs.

To the best of our knowledge, there is limited information about
testing RESTful systems. Especially, the hypermedia constraint is often
praised as the key feature of a RESTful system but testing it is not
mentioned at all. As opposed to existing literature, the aim of this work
is to fill in this gap by providing guidance and methodology for testing
hypermedia.

3 Challenges

Building distributed hypermedia systems using REST requires some
decent experience and knowledge, particularly in the design phase.

386 H. Vuetal.

REST has become a major paradigm, but unfortunately it means
different things to different people. Some call it a standard, others call
it a specification, while REST purists and its creator Fielding consider
it as an architectural style. So, in order to fix these misconceptions, we
have carefully analyzed Fielding’s dissertation [8] to derive REST key
components for our model from our experience in implementing several
RESTful APIs over the last years. The focus lies in the development of
a metamodel that has the ability to describe key components of REST
and to form their relationships via hypermedia in a convenient way
while considering all other REST constraints.

The most important component in our metamodel to describe
RESTTful API is the application state. An application state is a pair
of a HTTP method and a resource. It represents a valid REST request
to access a resource. Figure 1 shows a simplified class diagram that
expresses our application state concept. Also one of the central key
elements in a RESTful system is the resource. It is important to note
that resource is not a storage object but is, instead, a conceptual entity.
A resource represents a single object or a collection of objects. The
intention of HTTP verbs should be fixed, and developers should not be
free to choose wrong verbs. The four basic operations to create, retrieve,
update and delete (CRUD) resources are mapped to the four HTTP
verbs POST, GET, PUT and DELETE. This mapping is unambiguous
regarding to the HTTP specification [9].

A transition is our formal way of modeling relationships between
application states. A client can navigate from one application state to
another via transitions. Technically speaking, a transition is comprised
by a hyperlink, a media type and a relation type. A relation type is

HTTP Method

6

Transition —— | Application State

¢

Grant Resource

Figure 1 UML class diagram for application state.

Model-Driven Integration Testing of Hypermedia Systems 387

akin to the rel attribute of HTML link tags. Our application state
can be protected from unauthorized access by adding specific grant
feature to deal with authorization e.g., role-based access control and
authentication with HTTP Basic or OAuth.

Our MDSD approach has two distinct artifacts that need to be tested
on the serverside: the model and the generated code from the model.
These artifacts are to be tested in a bottom up manner because they
are built on top of each other. Errors within the model can propagate
subsequent bugs in the generated source code which leads to undesired
system behavior at runtime or production. Therefore, our Model-Driven
hypermedia testing on the server-side is divided into two sequential
steps: static and dynamic analysis.

MDSD is a software engineering paradigm that promotes the
utilization of models as primary artifacts in all software engineering
activities [11], therefore, we have to ensure that there are no defects
in our model in the first place. The static analysis verifies our model
and a model is verified when its design represents a e-NFA. In theory,
a static analysis requires no code execution which is comparable with
a code review or a Unified Modeling Language (UML) model check
[12]. However, we consider using our MDSD tool to solve this problem
in a sophisticated way. Since our metamodel already provides concrete
information about every application state and its possible transitions,
we are able to perform an automatic verification process. On the
implementation level, our metamodel is comprised of Java objects. This
model includes all necessary information for the generators to transform
itinto a RESTful API. The e-NFA check process takes advantage of this
and is able to extract all required information from the model to carry
out its verification without any additional external libraries [21]. The
transformation process can start if the model is correct-meaning every
application state has at least one incoming and one outgoing transition.
Whenever there is a missing incoming or outgoing transition, it would
throw an appropriate exception to make the API designer aware of this.
The goal of this e-NFA check is to identify any error at the highest level
of abstraction before triggering any source code transformation.

Dynamic analysis, as opposed to static analysis, always requires
the execution of the software. The simplest form of dynamic testing is

388 H. Vuetal

the execution of the software by a test person, thereby the tester can
enter any input to operate the software. This is an unsystematic ad-
hoc approach and thus inaccurate and usually not reproducible [12].
However, using MDT techniques allows us to follow a more novel
approach. Once the static analysis is successfully carried out, our tool
will generate a functional server. This generated server should work
correctly and include all the features described by its model. But since
the generators are manually implemented, we cannot guarantee this.
Besides that, the platform code in our MDSD approach consists of third-
party components and these components will eventually be updated or
replaced over time. Therefore, we also have to check whether these
changes affect the transformation process. Due to these reasons, we
must carry out a dynamic analysis to test the generated code on a
runtime environment. The aim of this procedure is to test the correct
functionality of the transformation process, thus detecting bugs within
the generators. The dynamic analysis can be used to test several aspects
of a RESTful API: 1) It checks whether a e-NFA-compliant model
correctly produces a e-NFA-compliant RESTful API 2) We also have
to consider the authorization concept of the application. 3)Additionally,
we can also provoke negative tests to see how the server handles error
cases on runtime.

The main goal of the dynamic analysis is to automate hypermedia
test case generation using our existing Model-Driven approach. The
generated test cases must guarantee the correct hypermedia behavior
of the actual generated RESTful API as designed in the model.
Hypermedia behavior concerning role-based accessibility of applica-
tion states, response validation and negative testing will also be tested.
The dynamic analysis is a rather more complex task, thus it must be
divided into three phases: First, model crawling phase, second, building
an HTTP crawler, and third, generation of test classes. Each of this phase
has its own sub-goals, these sub-goals are combined together to achieve
the main goal presented above.

To simplify understanding, it is necessary to present an application
example which will be the basis to demonstrate our further approaches.
Say, we want to build an online shop that sells items. There are two user
roles: customer and admin. A customer can view items whereas a shop

Model-Driven Integration Testing of Hypermedia Systems 389

Start

GET POST
Items Ttem
Ladmin] [admin]
[customer]
DELETE GET PUT
Item
Item . Item
[admin] Ladmin] [admin]
[customer] [w— 1

Figure 2 Workflow of the application example.

admin can also create, update or delete items. For the sake of clarity,
we omitted transitions back to the dispatcher state and self-pointing
transitions. The entire application workflow with all application states
and possible transitions is described as an £-NFA in the Figure 2.

3.1 &-NFA Check

The concept of e-NFAs revolves around a finite set of states with a
particular initial state, a set of possible inputs and rules to map each state
to another state, or to itself, for any of the possible inputs [23]. Speaking
in REST term, a client can enter the application workflow through the
initial state and only be in exact one state at any given time and it can
only change its current state by navigating through a directed transition
with a valid input. e-NFA compliance means that every state within
an application is accessible. The client should be able to start from
start state which is the entry point of the RESTful API, and it should be
able to visit every application state and go back to the start state without
getting stuck in a dead-end. We argue that within a RESTful application
there are no accepting states. An accepting state assumes that a client
has finished a task within the application workflow after a sequence of
inputs. The question arises “When is a task finished?”. It is hard to say

390 H. Vuetal

when a client finishes a task and want to leave the REST application.
Taking Facebook for example: Entering the Facebook app gives us our
newsfeed. This could be argued as a task done or an accepting state,
but navigate to a friend’s page could also be one and so is creating,
modifying or deleting a post. It does not matter if the client wants to
stay in the loop of the application workflow or leave it at any given
state. Due to these argumentations, we can perform this simplification
that our e-NFA model of a RESTful API does not have accepting states.

Responses of application states must contain a finite set of hyper-
links through which the user or automaton can obtain choices and select
actions. This means that we have to check whether responses of each
application state provide a correct finite set of hyperlinks at runtime.
Since each application state represents a valid REST request in our
model, we have to send request to every available application state in
order to get the corresponding response. A generated RESTful API is
considered e-NFA compliant when a client can navigate through the
application workflow visiting every states without getting stuck in a
dead-end.

3.2 Role-based Authorization

Role-based access control is a common concept in RESTful APIs.
Another challenge of hypermedia testing is to check whether the
generated RESTful API is delivering appropriate hyperlinks based on
the client’s active user role. Each role receives a different representation
of the API depending on its access rights. For instance, a customer is
only allowed to view a certain resource, whereby an administrator is
allowed to create, modify or delete this resource.

Each role is only permitted to see its designated hyperlinks to
navigate or operate through the application. In other words, the API
must guide the client through the workflow based on its current role,
otherwise the authorization concept would be corrupt. If we were
to write test cases for this application manually, we would have to
write two similar test cases to validate whether both roles (customer
and admin) can view items. This would require enormous effort if
implemented manually for a system with a dozen roles and hundreds
of application states. Figure 2 emphasizes this problem: Each role has

Model-Driven Integration Testing of Hypermedia Systems 391

a different workflow on the same application, but they also share a
common set of allowed actions.

3.3 Error Handling

Until now, we have looked at several challenges to check correct
hypermedia-driven behavior. This falls under the category of positive
testing because our model allows white-box testing, hence revealing
complete program structure and behavior. Therefore, we can perform a
sequence of valid inputs and check for expected outcomes. But what if
the client makes invalid requests? We must also test the robustness of
the system by checking its ability of handling error cases. The correct
response for an invalid request within a hypermedia-driven system
should contain at least a self-descriptive message [8] to tell a client
what to do next.

The dynamic analysis can also be used to provoke negative tests.
Instead of verifying hypermedia behavior, we can test how the server
reacts to a client’s non-hypermedia behavior. Since dynamic testing
allows runtime execution of the to-be-tested application, a client can
intentionally send false requests to see how the server handles to
error cases: Whether it remains functional or breaks, or whether an
appropriate response is given in the event of an unauthorized request.

Each state-to-state transition requires specific inputs in order to
perform. For instance, if a client wants to enter the POST Item state its
request header must include authorization with credentials of an admin
and its request body must include a proper Itemresource representation
(e.g. JSON) as payload. The server has to validate two input types and
handle several error cases:

1. Authorization header: If the client is not authenticated to the
server, the server must response with a proper HTTP code such
as 401 Unauthorized, indicating that the request lacks valid
authentication credentials for the target resource. Or if the client
is authenticated to the server but does not have permission to
access the application state, the HTTP response code has to be 403
Forbidden, indicating that the server understood the request but
refuses to authorize it due to the application logic.

392 H. Vuetal

2. Entity-body: If the request body is empty or not in the correct
format, the server has to return a 400 Bad Request, indicating
the request could not be understood by the server due to malformed
syntax. The client should not repeat the request without modifi-
cations. If the request body is in the correct format but contains
invalid data e.g. price of an item should not be smaller than 0,
the server has to respond with a 422 Unprocessable Entity,
meaning the server understands the content type of the request
entity but was unable to process the contained instructions due to
the application logic.

In addition to self-descriptive messages, we also have to ensure that
the client will be redirected to its previous application state or at least
to the dispatcher state.

4 Approach

The dynamic analysis is considered successful when a client is able to
travel and perform all its permitted and unpermitted actions generated
by the server for every user role. This again can be verified by the
underlying model. Ultimately, any undesired behavior can reveal bugs
within the generators. In order to carry out a dynamic analysis, it is
necessary to perform two crawling processes: First model crawling and
then HTTP crawling. The model crawling process is intended to derive
information from the underlying model and to build appropriate test
cases. Afterwards, an HTTP client will test against these test cases when
the server is deployed on a runtime environment. It is also necessary
to generate test data based on the model to prevent a client from
navigating on an empty server. At last, a generator will combine test
cases information provided by the model crawler and functionalities of
the HTTP client to produce runnable test classes.

4.1 Model Crawling

The model crawling process is divided into three parts to retrieve
crucial information for our test case generation: Verifying hypermedia

Model-Driven Integration Testing of Hypermedia Systems 393

response, deriving test paths to visit every state based on the application
workflow and negative testing.

Verifying Hypermedia Responses A client expects to only see its
permitted hyperlinks at any given state. If a request is valid because
the client is authorized to enter an application state, response of this
application state must contain the same hyperlinks as given by the
model to this role. If a request goes wrong, the client must be provided
with an appropriate response code or redirected to the dispatcher state.

To accomplish this task, we have to map every incoming transition
of an application state with its outgoing transitions with respect to a
specific user role. This is necessary, because the only URI known to the
client is the one that leads to the entry state of the RESTful API. Every
other hyperlink is dynamically generated by the server, and therefore
clients cannot make any presumption about them. Technically speaking
as shown in Listing 1, a transition in our model is comprised of a
hyperlink, a media type and a relation type. The hyperlink is generated
by the server. The media type is given so the client can understand the
representation of a response. The relation type is akin to the rel attribute
of HTML link tags and this serves as a method call for the client. In
other words, the client, when assigned with a user role, can only move
forwards from the dispatcher state by making requests to these relation

types.

.transitions ()
.fromState ("Start")
.toState ("GetItems")
.usingRelationType ("getItems")
.fromState ("GetItems")
.toState ("PostItem")

.usingRelationType ("createltem")

Listing 1 Textual definition of transitions in our metamodel.

So, in order to determine whether a hypermedia response is correct
we have to map every relation type to permitted following relation types
with respect to the current assigned user. This way, an HTTP client is
able to make a request to a relation type and expects to see the exact

394 H. Vuetal

set of following relation types as designed in the model by checking
these mappings. In order to accomplish this, we loop through every
state and check if a state can be accessed by the current user role. From
any given state: A user role is permitted to access a set of following
states. So we can map a state’s incoming transition as a key to a set of
permitted outgoing transitions.

Deriving Positive Test Paths In the previous step we know what
hypermedia response to expect after making a request to a particular
application state through our mappings. Nevertheless, once the serveris
deployed on a runtime environment, the HT TP client cannot verify these
responses by making direct requests the URI endpoints but it rather must
start from the entry state and navigate through the application workflow
to visit every state. This way, we can make sure that responses of every
application state have been tested at least once. The main challenge
here is to derive all possible test paths within a role-based workflow
from the existing model to generate test cases for the crawler.

A naive solution approach would be letting an HTTP client embody
a user role and start from the dispatcher state and randomly chooses
next transition to walk through the application and it will eventually
visit all application states. This approach is problematic because: First,
due to its random nature, we cannot determine the time crawler requires
to visit every state, it can take very long to fully test a large API. Second,
if the crawler fails, we cannot reproduce the test case to find the error
cause.

Another more sophisticated approach is to develop a depth-first
search algorithm that derives all possible paths for a specific user role
from the model. This algorithm spans a role-based specific workflow
from a directed graph into a tree. The tree represents every possible
path within a workflow. Each path represents a task. For instance, a
task could be update an item. To manage this task, a client with admin
role must sequentially visit these application states: Start, Getltems,
Getltem, Putltem. The root element is the Start state, it represents the
entry point of the API. A valid path ends when the client is directed back
to one of the previous states in the path. For example, after changing
the price of an item from a Putltem state, the server will redirect the
client to Getltem state which the client has visited before. When a valid

Model-Driven Integration Testing of Hypermedia Systems 395

path ends, it is marked as visited and the HTTP client starts at the Start
state again to crawl next test path.

A task is considered successfully tested when an HTTP client is
able to visit all edges of the role-based specific application workflow.
By doing this, any occurring error can be tracked down by looking at
the path where the client fails to walk through. By design, every task
within the workflow must be manageable from the entry point, so this is
the best way to approve this premise. Once the client manages to walk
through every path of the tree and to verify every obtaining response
on its way, then we can make a definite statement about the correct
hypermedia behavior of the RESTful API.

This step is to derive role-based positive test paths from the model
for an HTTP client to test against later on runtime. To achieve this, we
have to span the role-based representation of the application workflow
into a tree with the start state as root. In our formal definition, every
hypermedia system represents a e-NFA or it can also be formally defined
as an complete unweighted directed graph G = (V, E') with Vis the set
of possible application states and E is the set of possible state-to-state
transitions.

Assuming our e-NFA is a directed graph G = (V, E) with V= {A, B,
C,D, E} and E = {(A, B), (B, A), (B, C),(C, B), (B, D), (D, C), (C, E),
(E, B)} shown in Figure 3.

At the beginning we have not walked down any path yet, hence
the Visited edges set and the List of paths are empty and the Unvisited
edges set contains all available edges. A path is defined as a sequential

47

Figure 3 Graph representation of the application workflow.

396 H. Vuetal.

list of edges and an edge is equivalent to a transition in our RESTful
context.

— Unvisited edges = {(A, B), (B, A), (B, C), (C, B), (B, D), (D, C),
(C E), (E B)}

— Visited edges = {}

— List of paths = {}

Next, we start to walk down from A until we find a leaf which is a
node that we have visited before along the current path, which is B in
this case. A path is derived once we found a leaf, then we can mark its
incoming edge as visited and start to walk backwards until we find a
node that has unvisited edges. In this example, node C has an unvisited
edge. Node E does not have any unvisited edge. Therefore, its incoming
edge (C, E) will also be marked as visited as shown in Figure 4.

At this point, we have the following data:

— Unvisited edges = {(A, B), (B, A), (B, C), (C, B), (B, D), (D, C)}
— Visited edges = {(E, B), (C, E)}
— List of paths = {{(A, B), (B, C), (C, E), (E, B)}}

The algorithm terminates when the last edge has been visited at
(B, A), it walks backwards and finds no further unvisited outgoing edge
from every node along the path, subsequently it marks all edges left as
visited.

Our final list of paths now contains all possible paths from the start
node A and there is no unvisited edge left.

Figure 4 Deriving first path.

Model-Driven Integration Testing of Hypermedia Systems 397

Figure 5 Deriving last path.

— Unvisited edges = {}
— Visited edges = {(A, B), (B, A), (B, D), (D, C), (E, B), (C, E),
(C B), (B, O)}
— List of paths = {{(A, B), (B, C), (C, E), (E, B)},
{(A,B), (B, 0), (C, B)},
{(A,B), (B, O), (C,B)},
{(A,B), (B, A)}}

4.2 Generation of Test Data

In order to test our generated server, we have to populate it with
test data. Otherwise a client would not be able to obtain or modify
any resource while navigating through the application workflow. Our
MDSD approach allows automated test data generation based on our
existing metamodel. This means, once written, this process will start to
generate adequate test data by looking for available resources within
our model. Our resource definition is straightforward as presented in
Listing 2.

.defineResourceWithName ("Item")
.withAttribute("name"). asString()
.withAttribute("price"). asFloat()

Listing 2 Textual definition of a resource in our metamodel.

398 H. Vuetal

4.3 Building HTTP Client

For our hypermedia testing purpose, we need to build our own
hypermedia-driven HTTP client. First, the client represents a specific
user role while testing, so it makes sense to save this authentication
information. Then it must to be able to make request to relation types
instead of sending request directly to URIs. A response link of our of
our RESTful API consists of four parts: resource URI, rel as relation
type, for media type and method for HTTP verb.

These elements need to be extracted and parsed, so the HTTP
client can understand and make request to it. This is necessary because
technically speaking an HTTP client requires merely a URI to make
request to, butitis not recommended to hard code these so called “REST
endpoints” into clients [6], because they can change, e.g, to resource
renaming. So our hypermedia response is always provided with a fixed
relation type serving as a method call to guide action and of which the
client has knowledge.

4.4 Generation of Test Classes

The actual model is encapsulated behind the generation process, and
therefore in order to run these test cases out of the box, we have to
combine the retrieved data from the model crawling process with the
functionalities of the HTTP client and embed them in generated test
classes. This can be done by a generator producing test class files as
shown in Figure 6. There are three crucial parts of information that must
be persisted in a test class for an HTTP client to be able to begin with
the test cases: 1) List of paths that represents given positive test cases,

Model Crawler

> Test Class e Test

Generator Classes

HTTP Client

Figure 6 The model crawler and the HTTP client are required by the test class
generator to create test classes.

Model-Driven Integration Testing of Hypermedia Systems 399

Algorithm 1: Integration testing procedure for hypermedia in
pseudo code.

1 initialize client with specific user role;

2 initialize mapRelT oPermitted Rels with relation type to permitted
following relation types;

3 initialize mapRelT oUnpermitted Rels with relation type to unpermitted
following relation types;

4 initialize all Paths as list of paths;

5 initialize entryUri as entry point of the API;

¢ foreach path in allPaths do

7 client sends request to entryUrt;

8

9

foreach relationType in path do
client makes request to relationType;

10 if request is successful then
il verify response by looking up in mapRelT oPermitted Rels;
12 foreach relationType in mapRelT oUnpermittedRels do
13 test all unpermitted relationTypes;
14 verify response code;
15 end
16 end
17 else
18 ‘ report error;
19 end
20 end
21 end

2) mappings between relation type and correct outgoing relation types
which allow the HTTP client to verify response after each request and 3)
mappings between relation type and unpermitted relation types which
allow the HTTP client to perform negative testing. This information will
be generated and initialized as hard-coded objects in each test class.
For the sake of clarity, we explain the dynamic integration testing
procedure with the aid of pseudo code as listed in Algorithm 1 instead of
listing the generated source code. First, the HTTP client loops through
each path in allPath given a specific user-role. Each path is comprised of
a sequential list of relation types starting from the entry URI. Therefore,
the client must enter the API here. For a client to make a proper request
to a relation type, it must parse the hypermedia response and extract

400 H. Vuetal.

the URI, and whether it is necessary to send an entity-body (e.g. at
POST or PUT). After each successful request the client starts to validate
the obtained response by comparing its content with the one given in
the mappings. Following that, the client starts with negative testing
phase by looking for unpermitted relation types at this state in the
correlate mappings and try to perform these actions. The application
behavior will be validated by the test cases generated from the model,
any misbehavior will be reported as error.

5 Conclusion

The main goal of this paper is to automate integration testing with the
focus on hypermedia testing using MDT. In order to accomplish this
goal, we have separated the server-side hypermedia testing into static
and dynamic analysis.

First, we carry out a model verification process via static analysis.
This procedure makes sure our model is designed as an e-NFA, hence
hypermedia compliant, before allowing any source code transformation
[21]. Afterwards, we continue with a dynamic analysis. The main goal
of the dynamic analysis is to automate hypermedia test class generation
using our MDT approach. The generated test classes must guarantee
the correct hypermedia behavior of the actual generated RESTful
API as designed in the model. This approach consists of four parts:
model crawling process, test data generation, building HTTP client
and generation of test classes. The model crawling process extracts
information from the model to build proper test cases, such as role-based
test paths, response validation and negative testing. To verify these test
cases, an HTTP client was built with the ability to authenticate, navigate
via relation types and understand hypermedia responses of application
states. Finally, we had to combine both: test case data retrieved by
the model crawler and functionalities of the HTTP client to generate
ready-to-run test classes via a generator. We present a small application
example to demonstrate our approach. This application also includes
role-based access control with two user roles: admin and customer.

To address RQ 1, we propose a model crawling process to extract
information from the model to build appropriate test cases. These test

Model-Driven Integration Testing of Hypermedia Systems 401

cases must consider role-based access of application states, hypermedia
response validation and negative testing. In order to retrieve informa-
tion for role-based access of application states, we have developed
an algorithm to derive all possible test paths for each user role.
According to our assumption every task within a hypermedia system
must be manageable from the entry state, and therefore, a path must
represent a distinct task. Our algorithm is able embody an user role to
navigate through the application workflow, visiting every transition and
application state. As a result, it delivers a set of distinct test paths for
each role. Validation of application state responses requires mapping
information between relation type and role-based follow-up relation
types. We have achieved these mappings by letting the model crawler
loop through every application state and map all incoming transitions
of an application state with permitted outgoing transitions for each
user role. Our model crawler also managed to retrieve information
for negative testing by mapping relation type to unpermitted relation
types. Our model also allows a straightforward approach towards test
data generation. This was achieved by generating test data based on
meta information of the resources given by the model.

Approaching RQ 2, we first build an HTTP client to verify hyper-
media test cases. This HTTP client must be able to authenticate as a
pre-defined user role, make request to relation types and understand
hypermedia responses. We made use of an open source Java HTTP
client named OkHttp [18] and added necessary features. These objec-
tives were accomplished with no further complication. Afterwards, we
combine both information of role-based test cases retrieved by the
model crawler and functionalities of the HTTP client to generate ready-
to-run test classes. For this purpose, we used an open source library
named JavaPoet [17] to handle source code generation. As a result,
we successfully generated role-based test classes, including test paths,
validation mappings, negative testing, HTTP crawler and all required
imports.

In order to answer RQ 3, we must take several aspects of integration
testing into consideration: By using the underlying model, we were able
to generate test classes to cover all possible tasks within the example
application workflow, assuring white-box hypermedia testing of the

402 H. Vuetal.

Table 1 Overview of test paths and requests generated for different user roles
Admin Customer

Number of test paths 4 2
Valid requests 8 4
Invalid requests 0 3
Total requests 8 7

overall system. This would be a time consuming task if implemented
manually because a) deriving all distinct role-based test paths without
an algorithm would be inconceivable, b) role-based hypermedia test
cases are repetitive causing a developer to write many similar test cases
and c) negative testing also requires enormous amount of time when
unpermitted actions have to be verified for every application state. To
illustrate the effort saved by our Model-Driven approach, we take a
look at the number of generated test cases. Our application example has
two user roles, one resource, six application states and ten transitions.
Table 1 indicates the amount of generated requests for each user role,
which the dynamic analysis is able to generate for our application
example.

In comparison to the existing related works which only focus on
functional testing of RESTful APIs and completely neglect the hyper-
media constraint, our Model-Driven approach automatically generates
testing artifacts to ensure its presence.

6 Outlook

On the server-side, we managed to generate positive test cases, by
making valid requests with valid data as inputs and checking whether
the application response as expected. These results are quite satisfactory
as our generated test cases could cover all possible tasks within a
application and verify role-based responses of every application state.
Nevertheless, the type of negative testing we were able to accomplish
within the scope of this work was sending unauthorized requests
once the HTTP client enters an application state. There are many
other possibilities to generate different types of negative testing, such
as applying not allowed methods, trying to access a (sub-)resource

Model-Driven Integration Testing of Hypermedia Systems 403

after deleting it or forcing the HTTP client to send wrong resource
representations. We can extend the model crawler to extract more
possible test cases to achieve larger test coverage. These features only
need to be implemented once and test cases will be generated for free.
We can strive to reveal more bugs or as Dijkstra states in his article [4]:
testing can only reveal the presence of bugs, but not their absence.

Additionally, we should discuss more about how the application
should behave in case of invalid requests. As for the scope of this work,
we only expect to see an appropriate response code. We have also
discussed a bit about whether the server should send a client back to
its previous state. However, this approach would violate the stateless
constraint. Always sending a client back to the start state would, on
the other hand, reduce the usability of the application, forcing the user
to repeat many unnecessary steps again, especially when the intended
task is nested deep within the application workflow. Further research
would be needed to clarify this matter.

RESTful APIs can be consumed by third-party clients. Clients that
make proper use of hypermedia would require less manual adaption to
server updates than those that do not. Once our server-side hypermedia
testing process is fully automated, we will address the client-side
hypermedia testing. Our motivation on the client-side testing is to find
out whether a client is hypermedia-driven or not. This assumption can
be confirmed if a running client can handle certain types of change
within the server. We will discuss the degree to which a server can be
changed without negatively impacting hypermedia clients. In our future
works, we will address the practicality of automating server updates for
hypermedia client testing.

References

[1] Mike Amundsen. RESTful Web Clients — Enabling Reuse Through
Hypermedia. Sebastopol: O’Reilly Media, 2017. ISBN: 978-1-
491-92190-6.

[2] Joshua Bloch. How to design a good API and why it matters.
http://static. googleusercontent.com/media/research.google.com/
en/pubs/archive/32713.pdf. Last accessed on May 23,2018. 2014.

404 H. Vuetal.

[3] S.K. Chakrabarti and P. Kumar. “Test-the-REST: An Approach
to Testing REST-ful Web-Services”. In: Future Computing, Ser-
vice Computation, Cognitive, Adaptive, Content, Patterns, 2009.
COMPUTATIONWORLD °09. Computation World: Nov. 2009,
pp- 302-308.

[4] Edsger W. Dijkstra. “The Humble Programmer”. In: Com-
mun. ACM 15.10 (Oct. 1972), pp. 859-866. ISSN: 0001-0782.
DOI: 10.1145/355604.361591. URL: http://doi.acm.org/10.1145/
355604.361591.

[5] Tobias Fertig and Peter Braun. “Model-driven Testing of
RESTful APIs”. In: Proceedings of the 24th International
Conference on World Wide Web Companion. WWW 15
Companion. Florence, Italy: International World Wide Web
Conferences Steering Committee, 2015, pp. 1497-1502. ISBN:
978-1-4503-3473-0. DOI: 10.1145/2740908.2743045. URL.:
http://dx.doi.org/10.1145/2740908.2743045.

[6] Roy T. Fielding. WTF is a “REST endpoint”. https://twitter.com/
fielding/status/324448353180061696. Last accessed on May 22,
2018. 2013.

[7] R.T.Fielding. RESTAPIs must be hyper-text driven. http://roy.gbiv.
com/ untangled/2008/rest-apis-must-be-hypertext-driven. Last
accessed on May 23, 2018. Oct. 2008.

[8] R.T. Fielding. “REST: Architectural Styles and the Design of
Network-based Software Architectures”. Doctoral dissertation.
University of California, Irvine, 2000.

[9] R.T. Fielding, UC Irvine, and J. Gettys. Hypertext Transfer Proto-
col — HTTP/I.1. https://tools.ietf.org/html/rfc2616. Last accessed
on May 22, 2018. 1999.

[10] Nicolas Frankel. Integration Testing from the Trenches. Leanpub,
2015. ISBN: 978-2-955-02143-9.

[11] Carlos A. Gonzdlez and Jordi Cabot. “Test Data Generation for
Model Transformations Combining Partition and Constraint Anal-
ysis”. In: Theory and Practice of Model Transformations. Ed. by
Davide Di Ruscio and Déniel Varr6. Cham: Springer International
Publishing, 2014, pp. 25-41. ISBN: 978-3-319-08789-4.

Model-Driven Integration Testing of Hypermedia Systems 405

[12] Peter Liggesmeyer. Software-Qualitiit — Testen, Analysieren und
Verifizieren von Software. 2. Aufl. Berlin Heidelberg: Springer
Science and Business Media, 2009. ISBN: 978-3-827-42056-5.

[13] The Selenium Project. Selenium. https://www.seleniumhq.org/.
Last accessed on May 24, 2018. 2018.

[14] L. Richardson, M. Amundsen, and S. Ruby. RESTful Web
APIs. O’Reilly Media, 2013. ISBN: 9781449359737. URL:
https://books.google.de/books?id= ZXDGAAAAQBAIJ.

[15] Leonard Richardson. The Maturity Heuristic. https://
www.crummy.com/writing/speaking/2008-QCon/act3.html. Last
accessed on May 16, 2018. 2009.

[16] V. Schreibmann and P. Braun. “Model-Driven Development of
RESTful APIs”. In: Proceedings of the 11th International Con-
ference of Web Information Systems and Technologies. (Lisbon,
Portugal). INSTICC. SciTePress, May 2015.

[17] Inc. Square. JavaPoet. https://github.com/square/javapoet. Last
accessed on May 23, 2018. 2017.

[18] Inc. Square. OkHttp. http://square.github.io/okhttp/. Last accessed
on May 23, 2018. 2017.

[19] Antero Taivalsaari and Tommi Mikkonen. “The Web as a Software
Platform: Ten Years Later”. In: Proceedings of the 13th Interna-
tional Conference of Web Information Systems and Technologies.
(Porto, Portugal). INSTICC. SciTePress, May 2017.

[20] H. Vu, T. Fertig, and P. Braun. “Towards model-driven hypermedia
testing for RESTful systems”. In: WEBIST 2017 — Proceedings of
the 13th International Conference on Web Information Systems
and Technologies. 2017.

[21] Henry Vu, Tobias Fertig, and Peter Braun. “Verification of
Hypermedia Characteristic of RESTful Finite-State Machines”.
In: Companion Proceedings of the The Web Conference 2018.
WWW °18. Lyon, France: International World Wide Web Con-
ferences Steering Committee, 2018, pp. 1881-1886. ISBN:
978-1-4503- 5640-4. DOI: 10.1145/3184558.3191656. URL:
https://doi.org/10.1145/3184558.3191656.

406 H. Vuetal.

[22] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in
Practice — Hypermedia and Systems Architecture. Sebastopol:
“O’Reilly Media, Inc.”, 2010. ISBN: 978-1-449-39702-9.

[23] David Wright. Finite State Machines. http://www4. ncsu.edu/~
drwrigh3/docs/courses/csc216/fsm—notes.pdf. Last accessed on
May 16, 2018. 2005.

Biographies

Henry Vu is a software engineer and consultant. He attended
the University of Applied Sciences Wiirzburg-Schweinfurt Germany
(FHWS) where he received his B.Eng. in Computer Science in 2015
and his M.Sc. in Information Systems in 2017. After completing his
master’s degree, he was employed as a research associate and lecturer at
the FHWS until 2018. During this time, he has published several papers
about Model-Driven Engineering of systems with REST architecture.
He is currently a software consultant at PENTASYS AG Germany
where he is working for big names in the automobile industry (Porsche,
BMW) in innovative topics such as autonomous driving and virtual
reality.

Model-Driven Integration Testing of Hypermedia Systems 407

=

Q‘ . -

Tobias Fertig completed his bachelor’s degree at the University
of Applied Sciences Wiirzburg-Schweinfurt (FHWS). He was the best
of year and also scholarship holder. He then switched to the Friedrich-
Alexander-University Erlangen-Niirnberg (FAU) to do his master’s
degree in Computer Science. As part of his master’s thesis, he dealt
with the offline support of RESTful Systems. Since his graduation,
Tobias has been employed as a research associate and lecturer at the
FHWS. He teaches programming, software engineering and operating
systems. In addition to his work as a research assistant, he is a Ph.D.
student in cooperation with FAU. In his dissertation he is focusing
on the automated measurement of information security awareness
within companies. Before starting his dissertation, he was researching
in Model-Driven software development and low-code platforms. In
addition, Tobias advises companies on blockchain technology and
is author of the german book “Blockchain for Developers™.

»

?
M
Peter Braun is software architect, computer scientist, and

entrepreneur. He works as Professor of Computer Science at the
University of Applied Sciences Wiirzburg-Schweinfurt. Before, he was

408 H. Vuetal.

Head of Technology (CTO) of match2blue in Jena, Germany. The
company develops and markets complex mobile information systems.
Besides match2blue, Peter has co-founded two other companies in the
area of mobile solutions. Peter earned a doctorate degree (Ph.D.) in
software engineering from University of Jena. He is co-author of about
40 peer-reviewed papers and author of the first text-book about mobile
software agents.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

