Model Driven Development
of Gamified Applications

Piero Fraternali and Sergio Luis Herrera Gonzalez*

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, Milan, 20133, Italy

E-mail: piero.fraternali@polimi.it, sergioluis.herrera@polimi.it

*Corresponding Author

Received 02 July 2019; Accepted 12 November 2019;
Publication 02 December 2019

Abstract

Gamification is defined as the injection of game elements in applications
with non-gaming purposes. This technique has shown outstanding results
in promoting the engagement and activity on communities of users, in both
business and non-for-profits fields. Often, gamification features are added late
in the application life-cycle and must be weaved into the existing functions.
In this paper, we present a model-driven approach to the design of gamified
applications, which accelerates the introduction of gamification elements in
pre-existing or new applications. The approach relies on a data model of
gamification features and on design patterns for the front-end, which encode
the essential elements of gamification in a platform independent way.

Keywords: Model Driven Engineering, gamification, rapid prototyping,
code generation, IFML.

1 Introduction

Gamification is defined as the injection of game elements in non-gaming
applications [9]. Its main purpose is to boost the capacity of an application

Journal of Web Engineering, Vol. 18_7, 655-694.
doi: 10.13052/jwe1540-9589.1874
(© 2019 River Publishers

656 P Fraternali and S. Herrera

to engage users, improve their proficiency and satisfaction, and retain them.
Gamification techniques have been applied in a variety of domains, both com-
mercial and non-for-profit: customer relationship management [18], travel
[33], education [25], fitness [38], and environmental awareness [16]. In its
simplest form, gamification entails monitoring the activity of the user and her
progress towards goals and providing rewards to her achievements [9]. All
the four ingredients of gamification present themselves in an ample variety
of forms: actions can be either endogenous to the application (e.g., accessing
the application, creating content, executing tasks, etc) or external to it (e.g.,
specific behaviors detected through sensing and activity recognition, such
as running, consuming less energy or water, visiting designated places, etc).
They can be individual or collective, if team formation is exploited. Goals can
be either set by the application (e.g., reaching a predefined level of expertise
or of activity) or self-determined by the user (e.g., running a given amount
of kilometers per month or saving 10% in energy or water consumption w.r.t.
the preceding month). Achievements can be established by the application
(e.g., by monitoring some progress indicators) or by other users (e.g., by
collecting votes cast by the community or by expert users). Rewards can be
intangible (e.g., promotion to a higher status in the application, assignment
of points and badges) or real (e.g., goods, services, or price discounts).
The achievement status of the user can be kept private or exposed, e.g.,
using public leaderboards. The above mentioned gamification ingredients
are intertwined with the application functions and can evolve over time;
the designer may start with a simple gamification scheme and add more
advanced features progressively or she may modify the gamification rules to
steer the users’ behavior towards a desired objective. Such a dynamic nature
of gamification requires an agile development methodology, supporting the
rapid prototyping of features and their adaptation over time. Agility can be
attained by exploiting a pattern-based model-driven development life-cycle:

e Design patterns are defined as partial solutions to recurrent design
problems [28]. They are particularly useful when some application fea-
tures repeat, albeit with variations, across multiple domains. Their use
can speed up development and also improve quality, because patterns
embody design knowledge distilled in many solutions.

e Model-Driven Engineering advocates the use of models as the central
artifacts of application development, from which the implementation
can be derived [32]. Models are abstract representations of the appli-
cation features, independent of technological details; as such, they pair

Model Driven Development of Gamified Applications 657

well to the notion of patterns, because they allow the expression of the
design knowledge embedded in patterns in a way that does not depend
on the technical space in which a specific application instance is built.

In this paper, we define the model-driven patterns that embody the design
knowledge necessary to develop a gamified application or to add gamifica-
tion features to an existing system. The contribution of the paper can be
summarized as follows:

o We recall the essential concepts of application gamification and define
a reference architecture for gamified solutions. We formalize the gam-
ification concepts and their relationships by means of a Gamification
Domain Model.

o We identify a set of design patterns that embody the essential elements
of application gamification; we represent such patterns using the Inter-
action Flow Modeling Language (IFML) [3] for the front end part, and
UML sequence diagrams [31] for the back-end business logic.

e We showcase how the proposed model-driven pattern-based methodol-
ogy has been applied to the development of two real world applications
in the area of environmental awareness.

The rest of the paper is organized as follows: Section 2 surveys the related
work in the areas of model-driven and pattern-based development, gamifica-
tion and environmental awareness applications. Section 3 briefly describes
the IFML modeling language. Section 4 defines the essential concepts of
gamified solutions and provides a reference architecture for their develop-
ment and execution. Section 5 presents the Domain Model supporting the
design of gamification patterns and Section 6 presents the game rule engine
and the exposed service API. Section 7 illustrates the patterns for the front-
end of gamified applications, expressed in IFML. Section 8 discusses the use
of the proposed model-driven pattern-based methodology in the development
and evolution of two applications. Finally, Section 9 provides the conclusions
and highlights the envisioned future work.

2 Related Work

Pattern-based Model-Driven Engineering. Model-driven engineering
(MDE) is the systematic use of models as primary artifacts throughout the
engineering life-cycle and is at the core of industrial tools such as Business
Process Management Systems (BPMS) and Rapid Application Development
(RAD) Platforms. Many sectors of the software development industry have

658 P Fraternali and S. Herrera

adopted MDE, for example, to design SOA architectures [35], to secure
SOA data flows [17], to manage [oT infrastructures [6], and even to deploy
machine learning processes on cloud infrastructures, e.g., with such tools as
Azure Machine Learning Studio'. MDE and patterns match well: patterns
capture design knowledge and models enable the reuse of such knowledge
in a platform-independent way. Several Web MDE frameworks integrate
patterns as building blocks for the automatic generation of user interfaces,
as demonstrated e.g., in [29] and [10]. Koch et al. extended UML-based
Web Engineering (UWE) to integrate patterns for Rich Internet Applications
(RIAS), such as “auto-completion” or “periodic refresh” [20]; Fraternali et al.
extended a web engineering methodology to represent the features of RIAs
by allocating specific functionality in the appropriate tier and specifying
suitable design patterns for dealing with the interaction between the tiers [12].
A pattern-based model-driven approach for safety-critical systems was pro-
posed in [14], to model dependability patterns and enable their reuse across
domains. Zdun et al. created an intermediate abstraction level consisting of
pattern primitives, which can be used as building blocks for actual patterns
applicable to the model-driven development of SOA processes [37].
Model-driven approaches for games and gamification. In this field,
Herzing proposed the Gamification Modelling Language (GaML) [23], [15],
a modelling language for game design formalized as a Xtext grammar?;
the proposed approach transforms the textual definition of the game rules
into JSON and Drools Rule Language (DRL) files, interpreted by software
components based on the Unity? achievement system plugin and Drools
Business Rule Engine* (BRE). Calderon et al. [4] proposed a graphical
modelling language for gamification, supported by the Eclipse Modelling
Framework® (EMF); the gamification domain, the rules and the interactions
with non-gamified components can be defined graphically and the resulting
model can be transformed into code for the Complex Event Engine (CEP)
and for an Enterprise Service Bus (ESB). In both the above mentioned
approaches a change of the gamification policies can only be accomplished
in one of two ways: (1) by modifying the generated code, which requires
expert programming skills to operate on generated code, which is not always
human-readable; (2) by updating the model and regenerating the gamification

Uhttps://azure.microsoft.com/en-us/services/machine-learning- studio/
Zhttps://www.eclipse.org/Xtext/

3https://unity.com/

“https://www.drools.org/

Shttps://www.eclipse.org/modeling/emf/

https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://www.eclipse.org/Xtext/
https://unity.com/
https://www.drools.org/
https://www.eclipse.org/modeling/emf/

Model Driven Development of Gamified Applications 659

artifacts, which requires the redeployment of the gamified components and
makes evolution time consuming. The approach proposed in this paper factors
out the gamification control rules from the gamification front-end patterns,
which allows developers to change the former independently of the rest of
the application.

Serious games and gamified environmental applications. Serious
games and gamification have been applied in the environmental field because
their motivational power is a desirable characteristic for engaging people
in such areas as environmental education, consumption awareness and effi-
ciency behaviours [24]. Ecogator [27] is an efficiency advisor mobile app that
scans the energy labels of an appliance and provides hints about its efficiency,
such as the annual running cost and the total cost over the product lifetime;
it also compares two products to support the user in the decision-making
and delivers energy efficiency tips on a daily basis. Drop! The question [11]
is a card game with a digital extension for educating players about water
saving; the game exploits a “push your luck” mechanics, in which the player
repeatedly draws cards, with an increasing risk of losing; the cards are illus-
trated with water efficient and inefficient behaviours; when the player draws
a “bad” card, she must scan a QR code on it with the mobile app and answer
a water-related question. Other examples of applications providing environ-
mental education are described in [22], [19] and [1]. Social Power [8] aims
at raising energy consumption awareness for users in households and shared
spaces, such as schools and libraries. It exploits social interactions and game
mechanics to drive people towards more sustainable energy consumption;
upon registration users are assigned to a team and receive individual and
collective saving goals. The app monitors consumption, by connecting to
smart meters, and assigns points to individuals and teams when they save.
The SmartH2O project [30] focuses on water saving; its gamified web portal
and mobile app connect to water smart meters and enable users to monitor
their consumption in quasi-real-time and to pursue weekly water saving
goals. enCOMPASS [13] is a project aimed at increasing awareness about
efficient energy consumption; it uses smart meters and sensors to collect
energy consumption, indoor climate and user activity information to provide
personalized recommendations for energy saving based on the user profile,
habits and preferred comfort level. The project exploits a gamified app and
a hybrid (card and digital) game, to achieve the desired impact on the con-
sumers. Some applications exploit virtual environments to teach efficient
behaviours to users. An example is Water Mansion [36], a serious game in
which users must execute daily tasks, such as showering or washing dishes;

660 P Fraternali and S. Herrera

each action increases water consumption and reduces the “gold” that the
user owns; the objective is to learn about water efficient consumption and its
economic impact. A similar approach is applied in EnerGAware [5], a mobile
simulation game, in which the objective is to reduce the energy consumption
of a virtual house with respect to the previous week. The player can execute
actions, such as changing the location of the lamps in a room or turning off
appliances (lights, TV, etc.). At the end of every week, the players receive
points based on the energy saved. The SmartH20 and enCOMPASS projects,
which have been developed with the methodology proposed in this paper, will
be described in more detail in Section 8.

3 Background: IFML in a Nutshell

The Interaction Flow Modeling Language (IFML) [26] is an OMG standard
for the platform-independent description of the front-ends of interactive
applications. With IFML developers specify the organization of the interface,
the content to be displayed, and the effect on the interface produced by the
user interaction or by system events. The business logic of the actions acti-
vated by the user interaction can be modeled with any behavioral language,
e.g., with UML sequence diagrams. Figure 1 shows the essential elements of
the IFML metamodel.

Interface Structure. The core IFML element for describing the front-end
structure is the ViewElement, specialized into ViewContainer and View-
Component. ViewContainers denote the modules that comprise the interface
content; a ViewContainer can be internally structured in a hierarchy of sub-
containers, e.g., to model a main interface window that contains several
frames, which in turn contain nested panes, and so on. A ViewContainer
can include ViewComponents, which represent the actual content of the
interface. The generic ViewComponent specializes into different elements,
such as lists, object details, data entry forms, and more. Figure 2 shows
the notation: the Search ViewContainer comprises a MessageKeyword-
Search Form ViewComponent, which represents a data entry form; MailBox
includes a MessageList List ViewComponent, which denotes a list of items;
finally, MessageViewer comprises a MessageContent Details ViewCompo-
nent, which displays one object. ViewComponents can have input and output
parameters: a Details ViewComponent may have an input parameter that
identifies the object to display, a form has output parameters corresponding
to the submitted values, and a List ViewComponent has an output parameter
that identifies the selected item.

Model Driven Development of Gamified Applications 661

B Event] [H Action] [0.1] binding | B jnteractionFlow |
7 id:ID < id:ID < id:ID |
' name : Name T name : Name
[1..*] events [B ParameterBinding] ‘ E@ NavigationFlow1
— | J |
([ActionEvent @F
i] | [1..1] target
[1..1] source

] ViewElementEvent] NavigationFlowToAction]
L 35 L)

[0..4] events [1..1] source —— -

) [1.1] target [5 NavigationFlowFromAction]
B ViewElement |)
[1..1] source -

T id:ID =] NavigationFIowBetweenViewE[ements]

5’ name : Name [1..1] target]
[0..#] children ’L‘
. . N [1..1] target

] ViewContainer| | [ViewComponent (] DataFlow
L i IR 7 [1..1] source

Figure 1 Essential elements of the IFML Metamodel.

Search MailBox MessageViewer
«Form» « List» «Details»
Message .
KeywordSearch MessagelList MessageContent

Figure 2 Example of ViewComponents within view containers.

Events, Navigation and Data Flows. ViewElements (ViewContainers
and ViewComponents) can be associated with Events, to express that they
support the user interaction. For example, a List ViewComponent can be
associated with an Event for selecting one or more items (as in Figure 3),
and a Form ViewComponent with an Event for input submission. The effect
of an Event is represented by a NavigationFlow, denoted by an arrow,
which connects the Event to the ViewElement affected by it (as shown in

662 P Fraternali and S. Herrera

MailBox

«Details»

Message
Content

«List »
MessagelList

SelectMessage

(a) NavigationFlow between ViewComponent in the same ViewContainer

MailBox Message

«Details»

Message
Content

«List » SelectMessage

MessagelList

(b) NavigationFlow between ViewComponent in different ViewContainers

Figure 3 Example of NavigationFlow between ViewComponents.

Figure 3). When an event occurs, the target ViewElement of the Navigation-
Flow associated with it gets in view and the source ViewElement may stay
in view or switch out of view, depending on the structure of the interface.
In Figure 3a, the NavigationFlow associated with the SelectMessage Event
connects its source (MessageList, which displays a list of objects), and its
target (MessageContent, which displays the data of an object). When the
Event occurs, the content of the target ViewComponent is computed so to
display the chosen object, and the source remains in view since it is in the
same ViewContainer. In Figure 3b the source and target ViewComponents
are in distinct ViewContainers (MailBox and Message); the SelectMessage
Event causes the display of the Message ViewContainer, with its content, and
the replacement of the MailBox ViewContainer, which exits from view.

IFML can also show the objects from which ViewComponents derive
content, their inputs and outputs, and the parameter passing from the source
to the target of the NavigationFlow.

In Figure 4 the ViewComponents comprise a DataBinding element that
identifies the data source, which can be an object class defined in the Domain
Model of the application. Both the ViewComponents in Figure 4 derive
their content from the MailMessage entity. MessageContent also comprises a

Model Driven Development of Gamified Applications 663

MailBox Message

«List» SelectMessage («Details»
MessagelList T > MessageContent

I «DataBinding MailMessage»

| «DataBinding» MailMessage

«ConditionalExpression»
MessagelD=Msg_ID

«ParamBindingGroup»
SelectedMessage—> Msg_ID

Figure 4 Example of DataBinding, ConditionalExpression, and ParameterBindingGroup.

ConditionalExpression i.e., a filter used to extract the content to publish; such
ConditionalExpression is parametric: it extracts the object whose MessagelD
attribute value equals the Msg_ID parameter supplied by SelectMessage
Event. The parameter passing rule is represented with a ParameterBind-
ingGroup element associated with the Navigation Flow, which couples an
output parameter of the source ViewComponent to an input parameter of
the target ViewComponent. NavigationFlows enable the expression of the
effect of an Event and the specification of parameter passing rules. Yet,
a parameter passing rule can be expressed independently of an interaction
Event, using DataFlows. Figure 5 shows the DataFlow construct, represent-
ing an input-output dependency between a source and a target ViewElement,
denoted as a dashed arrow. MailViewer includes three ViewComponents: the
MailMessages List is defined on the MailMessage entity, and shows a list of
messages; the MessageContent Details is also defined on the MailMessage
entity and displays the data of a message; the Attachments List is defined
on the Attachment entity and shows a list of mail attachments. The identifier
of the selected message is passed from MailMessages to MessageContent,
which has a parametric ConditionalExpression to extract the message with
the identifier provided in input. Also Attachments has a parametric Condi-
tionalExpression, to select the attachments of the mail message provided in
input. When the ViewContainer is accessed, the list of messages is displayed,
which requires no input parameters. The DataFlow between MailMessages
and MessageContent expresses a parameter passing rule between its source
and target: even if the user does not trigger the Select Event, an object is
randomly chosen from those displayed in the MailMessages List and supplied
as input to MessageContent, which displays its data. Similarly, the DataFlow

664 P, Fraternali and S. Herrera

[L] MailViewer

«Details» «List»
MessageContent Attachments

«List»
MailMessages

«DataBinding» «DataBinding»
MailMessage Attachment

«ConditionalExpression» «ConditionalExpressions»
MessageID=Msg_ID AttachedTo=Msg_ID

\
«ParamBindingGroup» «ParamBindingGroup»
SelectedMessage = Msg_ID DisplayedMessage = Msg_ID

Figure 5 Example of DataFlows.

between the MessageContent and Attachments specifies an automatic para-
meter passing rule for the list of attachments. By triggering the Select event,
the user can choose a specific message from the list and display its content
and attachments.

Actions. An Event can also cause the triggering of business logic, exe-
cuted prior to updating the state of the user interface; the IFML Action
construct, represented by an hexagon symbol as shown in Figure 6, denotes
the invoked program, which is treated as a black box, possibly exposing input
and output parameters. The effect of an Event firing an Action and the possi-
ble parameter passing rules are represented by a NavigationFlow connecting
the Event to the Action and possibly by DataFlows incoming to the Action
from ViewElements of the interface. The execution of the Action may cause a
change in the state of the interface and the production of input parameters for
some ViewElements; this is denoted by termination events associated with
the Action, connected by NavigationFlows to the ViewElements affected by
the Action. Figure 6 shows an example of Action, for the creation of a new
object. ProductCreation includes a Form with SimpleField sub-elements for
specifying the data entry of a new product. The CreateNewProduct Event
triggers the submission of the input and the execution of the CreateProduct
Action. A ParameterBindingGroup is associated with the NavigationFlow
from the CreateNewProduct Event, to express the parameter binding between
the Form and the Action. The Action has two termination Events: normal
termination lead to the visualization of the NewProductData ViewComponent
within the NewProductDisplay ViewContainer; upon abnormal termination,

Model Driven Development of Gamified Applications 665

Product Creation NewProductDisplay
«Form») « Details »
EnterProductData CreateNewProduct NewProductData

NormalTermination «DataBinding» Product

«SimpleField » Code: string ’

«ConditionalExpression»

L«SimpleField» Name: string | code =Prd code

«SimpleField » Price: integer

\
O \
\
:

«ParameterBindingGroup » \
ExceptionalTermination

Code - Product.code
Name - Product.name

{iEies JELIETIE Error « ParameterBindingGroup »
Product.code - Prd_code

(ErrorMessage j

\

Figure 6 Example of Actions.

an Event and NavigationFlow specify that an error message ViewComponent
is displayed in a different ViewContainer.

4 Gamification Concepts and Architecture

Application gamification aims at engaging users by fostering their involve-
ment and by enhancing their motivations to perform well in the accomplish-
ment of a task [7]. Gamified platforms expose rules that guide the users
through a progression of tasks and direct them towards the accomplishment of
the defined objectives, while providing feedback and keeping them interested
with elements that promote competition, collaboration and self-improvement.
For example, fitness applications, such as Runtastic® and Nike Run Club’,
showcase the above mentioned gamification design principles: they motivate
the users to achieve an objective, provide activity statistics, assign challenges
(personal and collaborative) adequate to the user’s level, award achieve-
ments for accomplished goals, promote competition through periodic leader
boards and offer nutritional information to guide users. Before discussing the
technical components of a gamified application, we introduce the concepts
that characterize the design of gamification in a platform-independent and
cross-domain way.

Shttps://www.runtastic.com
"https://www.nike.com/us/en_us/c/running/nike-run-club

https://www.runtastic.com
https://www.nike.com/us/en_us/c/running/nike-run-club

666 P Fraternali and S. Herrera

e Action: is an activity that the user can perform. Actions can be done
within the platform (e.g., accessing the application, watching content,
providing information or feedback, etc), or outside it; external actions
are typically measured through sensors or activity recognition (e.g.,
running an amount of kilometres, consuming less energy, etc).

e Goal: is a user-defined or platform-defined measurable objective that
involves performing a series of actions; goals are characterized by a
target value to reach (e.g., a minimum rating of produced content, an
amount of kilometers, a percentage reduction of water consumption, etc)
and optionally by a target deadline when the objective will be verified.

e Points: are the “unit of merit” used to reward actions and to recognize
the accomplishment of goals; they are sometimes called “credits”, espe-
cially when they can be redeemed or exchanged for goods within or
outside the platform.

e Achievement: is a recognition, typically a badge, assigned to the user
when a certain level of progression in a specific area is reached. Achieve-
ments should be visible to other users in the community for social
recognition and to promote competition.

e Reward: is a digital or real world item that users can claim when a pre-
defined condition is fulfilled; it may require the user to exchange points
for the reward, or it can be assigned when an achievement is attained
without further requirements.

e Leader board: is a list of the players ordered by a merit criterion,
such as collected points or completed activities. It may be computed
immediately or periodically (weekly, monthly, etc). More than one
leader board can be used: for example, a long-term leader board helps
engaging expert users, whereas a short-term (e.g., weekly) one fosters
the engagement of novices, who see their initial achievements publicly
recognized.

o Notifications: are messages about important events or states, delivered
periodically (e.g., at the end of established periods) or upon the occur-
rence of a condition (e.g., the attainment of an achievement). They help
preserve motivation and direct the user’s attention to topics or tasks of
interest. Notifications can be delivered inside the application, or outside
it, e.g. by email.

o Thematic Areas: are categories in which actions, goals, achievements,
and rewards can be grouped. They are used when engagement relies on
a plurality of stimuli: for example, in a collaborative learning platform,

Model Driven Development of Gamified Applications 667

Gamified Platiorm £]
sMTP
s i — Mail Services | ~
Gamification Notification U
Engine

Gamification Database

A ! ((
e | Mobile [\ Firebase
+ ~ | Messaging Cloud
[s - Messaging
| ~
I | Deadiine
Manager
Ganified Gamification
Application (Gamificaton Engine
Serivces
User f‘ Gaa?r GE
services Configurator

Core Business Business
Logc [~ ——— | Database

Figure 7 Proposed architecture for gamified applications.

Business
services,

thematic areas could span personal learning, collaboration with other
users, reputation improvement, etc.

4.1 A Gamification Architecture

An architecture for gamified applications should minimize the interference of
the gamification rules with the business logic of the application and limit the
integration effort. Figure 7 presents the high-level architecture experimented
in multiple gamification projects, described in Section 8, which proved effec-
tive in integrating gamification into web and mobile applications. Its modules
embed the essential functions of a gamified application.

The Core Business Logic module implements the actions to be per-
formed by the user. Given the cross-domain nature of gamification, this
module is represented as a generic software component, which delivers its
services possibly relying on an application database storing the state of the
non-gamified portion of the application. An important responsibility of this
layer is to notify the Gamification Engine about the execution of actions by
the user; the activities that are relevant for gamification should be registered
in the Gamification Engine and their implementation should integrate the
dispatching of relevant events to the Gamification Engine.

The Gamification Engine implements the registration of gamified
actions, the establishment of goals, the assignment of points based on the
executed actions, the detection of achievements, and the delivery of rewards.
The GE provides a service API for the Core business logic component to
dispatch action events; it also exposes a query API for the gamification

668 P Fraternali and S. Herrera

patterns embedded in the Gamified Application to retrieve information about
the progress of users in the gamification exercise. Configurability is attained
by factoring out the parameters that control gamification into a declarative
specification, stored in the Gamification Database.

The Gamification Database stores the entities that allow the GE to exe-
cute the gamification rules and enable the Gamified Application to publish the
user progress and state; it contains configuration parameters that enable the
declarative specification of the gamification logic and facilitate its evolution.
The domain model of the Gamification Database is discussed in Section 5.

The Notification Engine implements the logic for delivering the noti-
fications that provide feedback to the users and remind them of their goals.
Notifications can be configured to be triggered when the user perform actions,
reach goals, attain achievements or unlock rewards. Notification delivery is
controlled by parameters in the Gamification Database, to facilitate change.
Configuration data also comprise the delivery channels and message tem-
plates; examples of delivery channels comprise email messages or messages
of such systems as Google Firebase Messaging Framework®.

The Deadline Manager is a chron process, which monitors the expiry of
deadlines, configured in the Gamification Database, and calls the GE to enact
the necessary procedures to check the status of the gamification and possibly
notify users of relevant events.

The Gamified Application is the topmost layer of the architecture, which
integrates the gamified view components into the business views. It exploits
the Gamification Database, the gamification patterns, and the GE back-end
services, to present game-related information contextualized in the business
views and to capture and dispatch the user’s action events.

The architecture of Figure 7 circumscribes the effort to integrate the busi-
ness and the gamification logic within two components: (1) the Core Business
Logic must be extended in such a way that the execution of business actions
notifies the GE; no other modifications to the native business logic of the
application are required; (2) the Gamified Application must complement the
business user interface with the views and view components for disclosing
the state of the gamification and engage the user in performing the gamified
actions. It does so by incorporating the patterns illustrated in Section 7.

The extension of the Core Business Logic to support the dialogue with the
GE can be implemented with the help of the Observer pattern [28], whereby
the GE acts as an Observer notified about the occurrence of events by the

8https://firebase.google.com/docs/cloud-messaging/

https://firebase.google.com/docs/cloud-messaging/

Model Driven Development of Gamified Applications 669

business logic, which acts as the Subject. The Observer-Subject relationship
can be realized tightly, by extending the implementation of the business
actions with explicit notification calls to the GE, or loosely, by having the
GE poll the business logic component for status changes.

5 Gamification Domain Model

The Gamification Domain Model, shown in Figure 8, describes the entities
and relationships used by the Gamification Engine to regulate the gamifica-
tion actions, track user activity and progress, and assign achievements to the
performing users. The provision of a Domain Model, independent of the code
of the Gamification Engine and of the Gamified Application, facilitates the
configuration of gamification and its dynamic evolution during the applica-
tion maintenance, to adapt the engagement strategy to the evolution of the
users’ response to the gamification stimuli.
The main entities of the Gamification Domain Model are:

e User: is used for identification and profiling, with the usual information
about the username, password, email, etc. If this information is already
present in the application business database, the GE contains a replica
or a view of the original data.

o Gamification User: specializes the User entity with attributes pertinent
to gamification (total points, available credits, etc.).

e Group: is used to cluster users with different characteristics; it helps
tailor the gamification stimuli to the specific needs of a user group and
to compare users with similar characteristics, e.g., in the leader boards.

e Thematic Area: organizes actions and achievements that pertain to the
same topic of interest, to focus the attention of the user and provide
structure to her participation.

e Action Type: expresses a class of actions that can be performed, the
configuration parameters that control the evaluation of such actions
and the assignment of the points associated to them. The configuration
parameters include the number of points awarded, the repeatability of
the action, the minimum time interval between repeated executions, and
the associated rewards. Action types can be associated to thematic areas.

e Action: denotes the actual instances of an action type performed by
users.

e Goal Type: represents a category of goals. A goal type is associated with
an indicator, which measures quantitatively the attainment of the goal.

670 P Fraternali and S. Herrera

Figure 8 Gamification Domain Model.

Reward Type Group
Oid 1 Oid
Title pelorigsito Group Name
Description 1
Needed Points
Available
linage belongs (o
N N
o.N .
triggers Notification Reward User
0. [Oid Oid Oid
belong= %o Received Claimed Date UserName
Read Score Password
oN Confirmation Code Email
Delivery Status First Name
0.N Last Name
1
1 1
1
1 g Gamification User Action
Total Points Oid
Notification Type Available Credits & performs L
bk Profile photo Points
e Location Area Executor
Description B
Delivery Channel 1 Registralion ki
lcon 1 0.1
1
o.N LN
Badge Goal
Oid Oid
Received Date Target Value 1
Score Status
o.N
oN
belongs 0
Deadiine
1 Oid
Goalype =N has 4 i
iggers belongs to oid SoftHard
Periodicity N Expiration Date
belongs to
1
1
Badge Type ‘Action Type
Oid oid
Title Name
Description N awards Description T
Level N | Awarded Points
Needed Score Area
Image Repeatable
Active Time Elapsed
N Active
N N
Thematic Area
belongs to oid = belongs to
Area Name
awards

Model Driven Development of Gamified Applications 671

A goal type may be periodic or absolute: a periodic goal is checked at
recurrent deadlines (e.g., every week or month), whereas an absolute
goal is verified at a specific deadline (e.g, the end of the gamification
exercise). A goal type is also associated with an action type, that denotes
the action that must be fired to signal that the goal has been met and to
update the gamification status of the user accordingly.

e Goal: represents the actual goals associated to the user; a goal is char-
acterized by the user it belongs to, by a target value and by a status.
The status can be in progress, achieved or missed. An achieved goal is
associated to the action that has been created to trigger the assignment
of points corresponding to its accomplishment.

e Badge Type: denotes a class of achievements, represented by badges
that show the progression of the user in a thematic area. A badge type
is characterized by a title, a description, a level, the required amount
of points to attain it, the thematic area it belongs to, and an image that
represent it visually.

e Badge: represents the actual badges acquired by the users.

o Reward Type: expresses a category of rewards, i.e., of prizes that a user
can claim once she has performed the required actions or reached the
required amount of points. Reward types have a title, a description, the
required number of points, and an image.

e Reward: denotes the instances of the reward acquired by the users,
characterized by a redemption date and by a confirmation code.

e Deadline: denotes a time point at which the status of the gamification
should be checked; deadlines can be periodic, e.g, daily or monthly,
or absolute, e.g., a fixed termination date of a gamification exercise.
Deadlines can be hard or soft: hard deadlines are associated to goals, to
force their evaluation at specified times. Soft deadlines serve the purpose
of checking the user’s progress, with the aim of notifying the user and
stimulating the attainment of goals.

o Notification Type: expresses a category of notifications, which can be
sent to alert users about events and provide feedback. Notification types
have a title, a description, an icon, and a delivery channel.

o Notification: denotes the actual notifications sent to the user.

672 P Fraternali and S. Herrera

6 Gamification Engine

The GE is the component that provides gamification services to applica-
tions. It exploits the Gamification Domain Model to manage user’s activ-
ity, assigned points, verified goals, user’s achievements, notifications, and
rewards. The data that control the GE are edited with the GE Configurator,
whereby the manager of the platform can create, modify, and remove gami-
fication elements. The GE interacts with the Notification Engine (NE), which
delivers notifications. It can be seen as a process that handles two types of
events: the posting of a user’s action from the Gamified Application and the
expiry of a gamification deadline, signalled by the Deadline Manager module.

6.1 Gamification Services

The GE exposes an API to process the user’s actions and the expiry of
deadlines, which we describe with UML sequence diagrams.

ProcessUserAction: this service takes in input the ID of a user, the ID
of an action type, and the time stamp of the action occurrence; it checks
the validity of the user’s action, grants points, and verifies achievements and
rewards. The process steps are as follows: 1. ValidateUserAndAction: if the
action type and user are valid and active, then the action is assigned to the
user; otherwise, it is ignored and the process ends. 2. ValidateExecutability:
if the action type is non-repeatable and this is the first action of the type
performed by the user, or if the action type is repeatable and the elapsed
time since the last occurrence is larger than the interval configured for the
action type, then the action is assigned to the user; otherwise, it is ignored
and the process ends. 3. GetPointsAndCheckAchievements: the total number
of points corresponding to the thematic areas of the action type is computed;
if the required amount of points for an achievement in that area is reached,
a badge is assigned to the user and a corresponding notification request is
sent to the Notification Engine. 4. CheckRewards: if the user has reached the
necessary points, the reward is made claimable for the user and a signal is
sent to the Notification Engine. 5. UpdateUserPoints: points are granted and
leader boards updated.

The ProcessUserAction service is invoked by the Gamified Application,
after a gamified action, and by the CheckUserGoals service, when the user
has met a goal at a hard deadline. Figure 9 shows the sequence diagram of
the ProcessUserAction service.

CheckUserGoals: takes in input a user ID and checks if the user has
reached the goals associated with her. A goal is reached if a performance

Model Driven Development of Gamified Applications

Gamified Gamification Notification
Application Endgine Engine
T T T
P assignActionToUser | |
(userID, actionTypelD, timestamp) — |
|
:I validateUserAndAction(userID, actionTypelD) |
|
|
|
:| validateExecutability(actionTypelD) |
|
Repeatable action :
true]

ftrue] :| verifyElapsedTime(actionTypelD) |
|
. - |

Valid Elapse time
[Valid Elapse time] setActionToUser(userlD, actionTypelD) |
[true] |
L e = A S R e s |
e o o F- |
return| -_ 1 |
:I verifyFirstExecution(actionID) :
— - |
M : setActionToUser(userID, actionTypelD) |
[true] |
_______ L - = |
[Else] |
BT} [SS—— |
|
:| getPointsByThematicArea(userlD) |
|
|
:| checkAchievements(arealD,points) |
|
|
Badge Reached I
ftrue] assignBadge(userID) |

postNotification(userlD, BADGE_WON) D
[Else] |
|
|
computeTotalPoints(userlD) |
|
|
:| checkRewards(totalPoints) |
|
New Reward Available I
[true] :] assignReward(userlD, rewardTypelD) |
postNotification(userlD,REWARD_AVAILABLE)

[Else] |
t
|
j updateUserPoints(useriD) :
e b LR L L L T I
actionintancelD L | |
| |
T | |
I 1

Figure 9 Sequence diagram of the ProcessUserAction service.

673

674 P, Fraternali and S. Herrera

Gamified Gamification Business Logic Notification
Application Engine Services Engine
T T
==
checkUserGoals(userID) =

T
|
|
|

retrieveActiveGoals(useriD) :
|

getindicatorValue(userlD, startDate, endDate)

baseline

getUserMetrics(userlD, startDate, endDate)

userMetrics

:| checkGoalAccomplisment()

|
|
|
|
|
'
Reached Goal 1
AssignActionToUser(userlD, actionID) |
[true] |
|
ref |
AssignActionToUser(userID, |
actionID) |
|
D d |
| postNotification
A (userlD, BADGE_WON)
T s s
_______________________ | notificationinstancelD
goalReached | T
- —__ - = S S l— —
[Eise) | postNotification |
| (userlD, GOAL_FAIL) D
T
S RS, I Ea notificationinstanceid
return

T
I
Figure 10 Sequence diagram of the CheckUserGoals service.

indicator, managed by the core business logic of the gamified application,
is greater or equal to its target value. For example, in a technical support
system the goal target value could represent the minimum number of “likes”
received by the user’s posts during the period. Figure 10 illustrates the
processing steps of the service: 1. RetrieveActiveGoals: fetches the goals with
“in progress” status and expired deadline. 2. GetIndicatorValue: The service
queries the Core Business Logic component to retrieve the current value
of the indicator needed to evaluate the goal. 3. CheckGoalAccomplishment:
If the indicator value is greater or equal to the target value, the goal status
is updated to “achieved”, the ProcessUserAction service is called to award
the corresponding points, and a goal accomplishment signal is sent to the

Model Driven Development of Gamified Applications 675

Notification Engine. Otherwise, the goal status is updated to “missed” and a
missed goal signal is sent to the Notification Engine.

The CheckUserGoals service is invoked by the DeadlineManager com-
ponent when a hard deadline expires.

VerifyGoalProgress: this service is similar to CheckUserGoal but computes
the percentage of the indicator value still missing to reach the goal, instead of
verifying the goal completion. The VerifyGoalProgress service is invoked by
the DeadlineManager component when a soft deadline expires.

Note that goal checking is executed asynchronously w.r.t. to the user’s
actions by the two services CheckUserGoals and VerifyGoalProgress. Both
services are triggered by deadlines. The synchronous checking could be
accomplished by extending the ProcessUserActions service with the logic
to check the goal attainment, as done for the achievements.

RedeemRewards: this service takes in input a user ID and a reward
ID and supports the redemption of rewards by the user If the operation
completes successfully, the user receives a confirmation code enabling the
claim and the platform manager is notified about the event, so that he can
handle the delivery process. Figure 11 shows the steps of the service. 1.
CheckCredit: the user’s credits and the availability of the reward are checked
to confirm that the user can claim the item. If such requirements are not met,
the service returns a failure message to the invoking Gamified Application. 2.
AssignReward: if the requirements are met, the reward is assigned to the user,
the credits are updated, a notification request including a reclamation code is
sent to the NE.

The RedeemRewards service is invoked by the Gamified Application,
whose interface allows the user to start the redemption process. Besides the
above mentioned services, the GE also exposed CRUD operations for the
management of the content of the Gamification Database (e.g., the creation
of self-assigned goals by the users).

7 Gamification front-end patterns

Gamification impacts not only the back-end of a solution, but also the front-
end, which must support the execution of the gamified actions and the
display of the gamification status. Across the different domains in which
gamification techniques can be applied, it is possible to recognize recurrent
functions. In the spirit of MDE, such features can be captured as patterns,

676 P Fraternali and S. Herrera

Gamified Gamification Notification
Application Enagine Engine
T T
L |

redeemReward(userlD, rewardID) —

:| checkCredit(userlD, rewardID)

Reward Claimable

T
|
|
|
|
|
|
|
|
[true] assignReward(userID,rewardinstancelD) :
|

postNotification(userID, REWARD_CLAIMEDD

~ YewardClaimed |~ T T T TTT |

return

= h
I
I

Figure 11 Sequence diagram of the RedeemRewards service.

<<ParamBinding>>
userName - userName
password - password

Login ' Home

' <<ParamBinding>> <<List>>
Business Task

UserlD - userl
ActionID - actionID

i j R <<DataBinding>> Business Task

<<ConditionExpression>>

i
1
i
! userlD = userlD

<<Form>> Login
<<SimpleField>>
Username

ValidateUser
Credentials ()

ProcessUser
Action

(et

Assigned | |

’Authentication
Sucess

<<ParamBinding>>

<<SimpleField>>
P logged User —useriD

Password

i
-
...................................... v
) <<List>>
Gamified Actions

<<ParamBinding>> <<DataBinding>> Action Type
logged User - userlD

Failed

Error Detailed Message |«——|

<<ConditionExpression>>
AvailableActionsForUser = useriD

Figure 12 IFML pattern for gamified login and home page.

expressed by models that can be transformed into actual application com-
ponents through model-to-text transformations. This section introduces the
patterns that express the most common features of gamified applications,
represented as IFML models following the notation explained in Section 3.

Model Driven Development of Gamified Applications 677

7.1 Gamified Login and Home Page

The Gamified Login and Home Page pattern (shown in Figure 12) extends
the well-known login functionality to award points when the user accesses
the application, with the objective of encouraging continuous usage. The
pattern consists of a ViewContainer (Login) comprising a form for inputting
the user’s credentials. The Submit event associated to the form triggers the
ValidateUserCredential action, which checks the credentials provided by the
user; in case of failure (event AuthenticationFailed), the Login ViewContainer
is re-displayed, and shows the error message output by the ValidateUser-
Credential operation; in case of success, (event AuthenticationSuccess), the
ProcessUserAction GE service is invoked, passing in input the current time
stamp, the ID of the user and the ID of the gamified action associated to the
user’s log in. Upon successful completion of the ProcessUserAction, a Home
ViewContainer is displayed. The Home ViewContainer should include a
reminder of the activities that the logged-in user can perform; these may
be a mix of non gamified tasks and of gamified activities; to express this
pattern in a general form, the model of the Home ViewContainer comprises
two List ViewComponents, one for the non gamified and one for the gamified
activities. In both ViewComponents an IFML ConditionalExpression (i.e.,
a predicate) is used to filter the operations and actions pertinent to the
logged-in user.

A variant of the basic Gamified Login and Home Page pattern is obtained
by extending the model of Figure 12 as follows: an event can be used to
capture the failure of the ProcessUserAction operation and transfer the user
to a gamification-specific error page, which contains a message warning the
user of the reason why his action failed. This extension allows, for example,

Execute Task

omplete
g>>
il
< adges
Perform User
Action Continue (o
<<Detalls>>
is Task Details
d

<<ParamBinding>>
taskiD —taskiD.

<<ParamBinding>> [
Soloctd Task - taskiD)

Figure 13 IFML pattern for Gamified Action.

678 P Fraternali and S. Herrera

to manage malicious users that perform too frequent log in and log out op-
erations with the intention of earning points and spamming the system. By
setting a proper minimum interval for the log in gamified action it is possible
to avert such an undesired behavior and warn the user of its consequences.

7.2 Gamified Action

The Gamified Action pattern, shown in Figure 13, demonstrates a generic way
to gamify a task performed within the application. The pattern comprises
a BusinessTask ViewContainer, which shows a list of available activities
related to a gamified action. The Select event of the PendingBusinessTasks
ViewComponent lets the user select the task to work on. Such a choice causes
the display of a ViewContainer (generically named CompleteBusinessTask
in Figure 13), whereby the user can perform the activity (e.g., by inputting
data into a form). When the user finishes, she submits the task data to
a core business action (generically named Executelask in Figure 13) for
validation and storage. If the business action completes successfully, then
the GE PerformUserAction service is called to assign the action to the
user. After the successful execution of the GE service, the TaskCompleted
ViewContainer is displayed, which presents the details of the performed
task. The TaskCompleted ViewContainer also includes a ProgressinArea List
ViewComponent, which shows the badges for the thematic area related to the
gamified action and provides immediate feedback about the user progress.
Note that gamification “surrounds” the interface of the business activity:
the CompleteBusinessTask ViewContainer does not contain gamification
elements, to avoid distracting the user during the execution of the task.

The basic pattern can be extended by including a ViewComponent pre-
senting the gamification status of the user in the thematic area of the gamified
task also in the BusinessTask ViewContainer, to anticipate to the user the
impact of executing an activity on her status.

7.3 Goal Selection and Progress

The Goal Selection and Progress pattern, shown in Figure 14, provides
concise feedback about the user progress towards her goals, shows the status
of the goals already established, and lets the user set her own self-assigned
goals. The pattern comprises a Goals ViewContainer, in which a List View-
Component enables the user to select the goal to visualize. The selection of
a goal causes the display of the details of the chosen goal, which typically

Model Driven Development of Gamified Applications 679

<<ParamBinding>>
select goalType — goalTypelD
select targetValue . targetValue

select deadline . deadline

Goals '

<<Form>>
Set Self Goal

<<SelectionField>> Goal Type
<<SimpleField>> Target Value
<<SimpleField>> Deadline

<<List>>
View Goal Progress
<<DataBinding>> Goal | ¥, setUser Goal

Te/ect Goal

Goal Details

/ <<Details>> R\
Goal

<<DataBinding>> Goal

<<Conditional Expression>>
oid=selectedGoallD

/ <<Details>> B\

Business Indicator
<<DataBinding>> Business
Indicator

<<ParamBinding>>
select goal . selectedGoallD [[~

<<Conditional Expression>>
oid=selectedGoallD

i

<<Details>>
Comparation Indicator

<<DataBinding>> Baseline

<<Conditional Expression>>
oid = selectedGoallD

i

Figure 14 IFML pattern for Goal Selection and Progress.

comprises the target value and the current value of the goal indicator. A
Form ViewComponent (SetSelfGoal) enables the user to set a new goal,
by inputting the goal type, a target value of the indicator and a deadline.
When the user submits the data about the new self-established goal, the
SetUserGoal action is triggered, which calls the GE CreateGoal service to
update the Gamification Database. Upon the successful completion of the
SetUserGoal action, the Goals ViewContainer is re-displayed, with the list of
goals updated.

The basic version of the pattern can be enhanced by enriching the display
of the current status of a goal with further information, e.g., a prediction of
whether the current value of the indicator is such that the goal will be met by
the deadline or else the user must increase her level of activity to attain the
objective.

680 P Fraternali and S. Herrera

User Profile

- <<Details>> N\
User Details

<<DataBinding>> Gamification User

- > <<VisualizationAttributes>>
Username, profile photo, total points

<<ConditionExpression>>
ID= userlD

<<ParamBinding>>
b et S
Logged UserlD — userlD
<<List>>

Badges

J

<<DataBinding>> Badge

<<ParamBinding>>
--q <<ConditionExpression>>
<<List>>
Action History

<<DataBinding>> Action

<<Details>>
Action Details

View

<<VisualizationAttributes>> Detais

ActionType_Description, Points,
- > Date

<<ConditionExpression>>
ActionsOfUser = userlD

<<OrderBy>>
Date DESC

<<DataBinding>> Action Type

<<ConditionExpression>>
ActionOfType = actionTypelD

J

'
'
'
'
'
'
'
'
'
'
<<ParamBinding>>
SelectedAction —> actionTypelD

Figure 15 IFML pattern for Gamified User Profile.

7.4 Gamified User Profile

The Gamified User Profile pattern, illustrated in Figure 15, shows a sum-
mary of the user status and progress in the gamification exercise. The
pattern comprises a User Profile ViewContainer with three ViewComponents:
a UserDetails ViewComponent displays both general personal information,
such as the user name and the profile photo, and gamification-specific data,
such as the total points; a Badges List ViewComponent summarizes the
acquired badges in the different thematic areas, and an ActionHistory List
ViewComponent presents the actions performed by the user, in descending
order of recentness. For each action, the execution time, the description of
the action type and the granted points are displayed.

7.5 Leader Board

The Leader Board pattern consists of a Detail ViewComponent (User-
PointSummary), showing the user points summary and personal information,
and one or more List ViewComponents, displaying a ranked list of the

Model Driven Development of Gamified Applications 681

Leader Board

<<Details>>
User Point Summary
<<DataBinding>> Gamification User
= <<VisualizationAttributes>>
Username, profile photo, total points
<<ConditionExpression>>
ID = userlD

: <<ParamBinding>>
Fo======== Logged UserGroup — grouplD
v Current Period — currentPeriod

<<List>>
Periodic Leader Board

<<DataBinding>> Gamification User

<<ParamBinding>>
Logged UserGroup —> groupID /. - 4 <<ConditionExpression>>

Logged UserID — userlD usngroup = group_ID
period = currentPeriod

<<OrderBy>>
total points DESC

/ <<List>>
Overall Leader Board

<<DataBinding>> Gamification User

- - >
‘ userGroup = grouplD

<<ConditionExpression>> |

<<OrderBy>>
total points DESC

Figure 16 IFML pattern for Leader Board.

users sorted by the selected performance criteria (points, badges, etc). The
exemplary pattern in Figure 16 includes two ranked lists. The first list
(PeriodicLeaderBoard) shows the user performance in the current period
(e.g., in the current week or month). The second list is an overall leader
board that considers the entire duration of the gamification exercise. Both
lists have a conditional expression that filters the users belonging to the
same gamification group, so that users are compared with “competitors” with
homogeneous characteristics.

682 P Fraternali and S. Herrera

<<ParamBinding>> <<ParamBinding>>
New Notification — notification!D New Notification . notificationiD
' Bussines Operations : Notifications Badges
<<Details>> ¥ <<Details>> a4 <<Details>> B
Achievement Notification ! Notification Text Badge Details
| <<DataBinding>> Notification [_Nigw <<DataBinding>> Notification Niew Achivement <<DataBinding>> Badge
i Notification Details
Assigned @)+ <sYisualzaron/trbes>> <<ConditionExpression>> <<VisualizationAltribute>>
Te 1D = notfication!D Title, Description,Level,icon
o> <<ConditionalExpresion>>
- 1D = badgelD
: <<ParamBinding>> y
Selected Notification - notificationlD ! <<ParamBinding>>
1 77] badge Area . arealD
o <<List>> N
<<List>>
Available Tasks Al Badges
<<DataBinding>> Business Task SRt <<DataBinding>> Badge
All Notifications

‘<<ConditionExpression>>

<<ConditionExpression>>
Bacl AreaOfBadge = arealD

<<DataBinding>> Notification

TaskOfUser = userlD 8ad

Figure 17 IFML pattern for Achievement notification.

7.6 Achievement Notification

The Achievement Notification pattern, shown in Figure 17, illustrates the
interplay of notifications with the application views and the interaction of the
user with the notifications. The pattern comprises a generic BusinessOpera-
tions ViewContainer, which represents the interface whereby users perform
the application activities, concisely represented by the AvailableTasks List
ViewComponent; the ViewContainer also includes a details ViewCompo-
nent (AchievementNotification), which displays the notification signalled by
the AchievementAssigned system event raised by the Notification Engine.
The AchievementNotification ViewComponent shows only the title of the
notification, to avoid cluttering the business view; however, the user can
trigger the ViewNotification event to access a separate ViewContainer (Noti-
fications) where she can inspect the whole content of the message; the
ViewContainer comprises two ViewComponents: the NotificationText View-
Component shows the full content of the current notification, including the
description of the achievement; the AllNotifications ViewComponent lists the
received notifications, so that the user can inspect also the past messages.
If the user wants to get more details about a current or past notified achieve-
ment, she can trigger the ViewAchievementDetails event, which causes the
display of the Badges ViewContainer; this comprises a BadgeDetails View-
Component showing the data (title, description, icon, and level) of the badge
associated with the selected notification; the Badges ViewContainer also
comprises an AllBadges List ViewComponent displaying all badges of the
thematic area; badges already acquired by the user should be highlighted by
the implementation of the AllBadges ViewComponent.

Model Driven Development of Gamified Applications 683

<<ParamBinding>> <<ParamBinding>> <<ParamBinding>>
Selected Reward — rewardiD Rewardinstance —rewardiD New Operation — newOperationiD

Credits ' Redeem Reward Confirmation

/ <<Details>> ' / <<Details>>
User Credit ! Reward Details
[<<DataBinding>>Gamificatior] <<DataBinding>> Reward
> <<VisualizationAttributes>>
Title, Description, Image
<<ConditionExpression>>
1D = rewardID

<<Form>>
Enter Shipment Data

<<SimpleField>>
Shiping Address

: <<Details>>
,,,,,,,,,,,,,,,,,, ' Reward Confirmation Details

. <<DataBinding>> Reward
RedecmRewald Title, Description, Image,
Confirmation Code

<<VisualizationAttribute>>
Available Credits

<<ConditionExpression>>
ID = userlD

<<List>>
Available Rewards

<<DataBinding>> Reward
<<ConditionExpression>>
available = true

<<ConditionExpression>>
ID = rewardID

Reward || Back To Rewards

<<ParamBinding>>
shipingAddress - shipingAddress

Figure 18 IFML pattern for Reward Visualization and Redemption.

The pattern can be extended in several ways: (1) including an event to
dismiss a notification, so that it will no longer appear in the AllNotifica-
tions ViewComponents; (2) and adding to the Badges ViewContainer further
components to see also the badges of other thematic areas.

7.7 Reward Visualization and Redemption

The Reward Visualization and Redemption pattern, shown in Figure 18,
captures the user interaction for viewing the available rewards and for
claiming one of them. The pattern comprises the Credits ViewContainer,
which includes the UserCredit ViewComponent summarizing the user total
points and the AvailableRewards ViewComponent showing the rewards that
the user can claim. Triggering the SelectReward event, the user accesses
the RedeemReward ViewContainer, which comprises a ViewComponent
(RewardDetails) that displays the title, description and image of the selected
reward. A Form ViewComponent (EnterShipmentData) lets the users claim
the reward by providing shipment details. When the user submits the form,
the RedeemReward action is fired, which calls the corresponding GE service.
After the successful completion of the RedeemReward action, the user is led
to the Confirmation ViewContainer, where a ViewComponent presents the
reward details and the confirmation code.

The basic pattern can be extended by making the shipping status visible
in the gamified application, so to keep the user engaged and avoid the need
of providing shipment information through other channels, such as the email.

684 P, Fraternali and S. Herrera

= Leaderboard

LAST 7 DAYS ALL TIME

5% 118.Username 63700
Save water every time you have a cuppa ® 119.joroiri 62850
Only boil the amount of water you need so that 120. Marisol 62700
you don't heat water you wonit use
AR MEREAD e 121. Calzetas 62500
122. Maria del Carmen Ros Navarro 62050
a i the Monster, who always
123.alfval 62050 wastes water. Have fun with the whole family
and learn about water and sustainability. The
@ 124, robervic 61950 Drop! board game can be played standalone or
together with the mobile app Drop!
125.tanikol 61850 TheQuestion, which even enables players to
earn points on the SmartH20 portal. The gam
@ 126.genito 61850 BEFAILS
@ 127.januhe 61800

< o o |
(a) (b) (c)

Figure 19 SmartH20 Views representing the patterns: (a) Gamified Action, (b) Leader
Board, (c) Reward Visualization and Redemption.

A
o
m}

8 Case Studies

This section discusses the use of the proposed model-driven pattern-based
methodology in the development and evolution of two real world applications
in the area of environmental awareness: SmartH20 and enCOMPASS. The
applications have been developed with WebRatio’, a model-driven develop-
ment environment based on IFML, which supports the definition of reusable
modules for patterns and code generation for web and mobile platforms.

8.1 The SmartH20 project

SmartH20 is a project aimed at engaging consumers in water saving and
at enabling water utilities to better manage water demand thanks to quasi-
real time consumption data [30]. An ICT platform collects residential water
smart meter data and a client application allows consumers to visualize their
water consumption and to receive water saving tips (an example is shown
in Figure 19a). The SmartH2O client application exploits gamification to
motivate users to change their water consumption behaviour using virtual,
physical, and social incentives. The gamified application assigns points to

*https://www.webratio.com/

https://www.webratio.com/

Model Driven Development of Gamified Applications 685

each user access (pattern Gamified login and Home page) and to a variety
of actions (pattern Gamified Action), including filling-in profile information,
reading tips, watching videos, sharing tips on social networks and inviting
friends. Users can check platform-assigned goals and set their own objectives
(pattern Goal Selection and Progress). Weekly gamification deadlines are
established and two leader boards are used: weekly and overall. Figure 19b
shows the interface of the pattern Leader Board. The top-3 users are notified
via email of their achievement (pattern Achievement notification) and receive
prizes, such as water-related board games, tickets for museums, and gift
cards. Figure 19c illustrates the interface of the pattern Reward Visualization
and Redemption. Finally, users can monitor their progress through a pro-
file widget (pattern Gamified User Profile), which summarizes the water
consumed in the period, the obtained points, the acquired badges and the
executed actions.

SmartH20 was deployed in a small municipality in Cantone Ticino in
Switzerland, and in Valencia, a large urban centre in Spain. Thanks to its
use, an average reduction in consumption of 10% in Switzerland and of
20% in Spain has been observed [34]. After the end of the project, the
participants kept the water saving habits, which provides evidence of the
long-lasting behavioral change effects that a gamified platform can have over
a community.

8.2 The enCOMPASS project

enCOMPASS is an ongoing project that implements a socio-technical
approach to behavioural change for energy saving. It develops innovative
tools to make energy consumption data understandable to different type of
users, from residential consumers and school pupils to utility managers,
empowering them to collaborate in order to achieve energy savings and
manage their energy needs in efficient, cost-effective and comfort-preserving
ways [13]. Smart meters and sensors collect energy consumption data and
indoor indicators, such as temperature, humidity, and luminosity. Data are
analyzed to infer the user activity and comfort standards and to provide per-
sonalized energy saving recommendations, based on the user’s profile, habits,
and preferred comfort level. A mobile application lets users explore con-
sumption data under multiple visualizations, the indoor climate and comfort
indicators, and personalized energy saving recommendations. Gamification
is exploited to improve engagement and motivate the users to provide feed-
back about the personalized recommendations and their comfort levels. The

686 P, Fraternali and S. Herrera

AVINGS

Achievements Leaderboard

Impact Comfort

Try to reach your goal! faarm ! fa%‘ WELCOME; CHIARA CONGRATULATIONS! NEW BADGE: 5

flow ADVANCED ENERGY SAVER
YOUR STATUS: 203,100 POINTS

YOUR STATUS: 203,300 POINTS

Edit Goal YOUR BADGES
M @ @ ﬁ Achievements Savings
{ W Q ’ Tips Consumption
by device ‘ Savings YOUR PAST ACTIONS
Goal
E Weekly Log-In 200 points

Consumpnon in
Check your energy consumption!

28.14 kW 00 By reviewing your energy consumption
) points you can make sure you are meeting your.

— — < o o |
(a) 0] ©

Figure 20 enCOMPASS Views representing the patterns (a) Goal Selection and Progress,
(b) Gamified User Profile, and (c) Achievement notification.

gamification elements are divided into three thematic areas: learning, saving
and profiling. The energy saving area encourages users to establish a saving
goal at the beginning of every month. Figure 20a shows the realization of the
Goal Selection and Progress pattern. A battery metaphor represents the goal
indicator value, i.e., the amount of energy already consumed in the month,
and the distance between the current value and the goal target. Users that
reach the saving goal receive points proportional to the reduction goal. An
Achievements page, shown in Figure 20b, realizes the Gamified User Profile
pattern and lets the user check their progress in the thematic areas and browse
their action history. In-app notifications and mobile alerts are regularly sent to
notify users about the important events in the platform. Figure 20c shows the
implementation of the Achievement Notification pattern in the Home page
of the app. The enCOMPASS client application implements all the other
patterns introduced in Section 7, applies gamification to a broad spectrum of
actions, and provides a rich set of views, which blend the display of business
and gamification data.

enCOMPASS is currently used by households, schools, and public build-
ings in three sites in Switzerland, Germany and Greece. The first analysis
reveals a 10 to 12 % consumption reduction for the residential consumers
[21]. A complete analysis is planned at the end of the project, to understand

Model Driven Development of Gamified Applications 687

the overall effect of the intervention in households, public buildings and
schools.

8.3 Discussion

Gamification is an excellent case for pattern-based model driven devel-
opment, because: (1) it relies on well-defined functions that apply, with
variations, across all application domains; (2) it requires quick evolution,
to adapt the gamification rules to the users behavior; (3) it intersects all
the tiers of an application and integrates within multiple views of the busi-
ness interface. Expressing gamification patterns in a platform-independent
modeling language, such as IFML, provides several benefits: (1) it allows
developers to focus on the core elements of the gamification (which actions
to gamify, what rules to establish for controlling the execution and rewarding
of actions, how to blend business and gamification views) in a high level
way, deferring lower level, yet fundamental, aspects such as the visualization
of the patterns to the later stage of code generation; (2) it allows design
decisions about gamification to be factored out of the application source code,
facilitating the evolution of the same application and the porting of design
decision from one application to another. These benefits, which are generally
useful for all systems, are essentials for user-centric gamified applications,
where the main objective is engagement and retention. The ability to change
the gamification features quickly allows the fast implementation of such
critical updates as the addition of new engagement stimuli, more effective
visualizations of the user’s progress, and countermeasures to avert undesired
behavior.

8.3.1 Analysis of the case studies
The SmartH20 and enCOMPASS experience demonstrated the usefulness
of an application-agnostic gamification architecture and of model-driven
gamification patterns in several stages of the development and maintenance
process. The principal lessons learned from the application of the proposed
approach can be summarized as follows:

e The use of a formal Domain Model helped align the terminology and
concepts across heterogeneous stakeholders and reason on the nuances
of gamification early in the project. The distinction among actions,
goals, and achievements (either rewards or badges) and the classification
of the different types of progress monitoring deadlines helped framing
the requirements quickly. The Domain Model concepts generalized well

688 P Fraternali and S. Herrera

from the SmartH20 project to the enCOMPASS project, despite the
greater complexity of the latter in terms of collected data, types of users,
gamification rules, and visualization requirements.

e The availability of a “catalog” of front-end patterns helped reduce the
space of the possible interface designs to a manageable size, which in
turn enabled the rapid convergence to an accepted application configura-
tion. Front-end patterns were mocked-up and different assemblies were
discussed during the prototyping phase, speeding up consensus.

e The Gamified Action pattern proved the most useful, as it embodies the
essence of gamification, which is the capture of specific users’ actions
that should be tracked and rewarded. The pattern distinguishes the
application-dependent parts (e.g., the GUI for accomplishing the specific
gamified task) and the application-agnostic parts (the tripartite structure
selection-execution-confirmation and the signaling of the action to the
Gamification Engine). Its use helped regularize the application design
across very different tasks.

e The Goal Selection and Progress pattern proved the most complex
to apply. The high-level nature of the pattern, which speaks in terms
of generic business indicators, baselines and progress visualization,
required a rather intense domain-specific customization to embed it into
the concrete application. This may prompt for the identification of sub-
patterns, adapted to less generic cases (e.g., distinguishing automatically
assigned and self-set goals, periodic and non-periodic goal checking,
different forms of progress prediction and visualization, etc.).

e The adoption of a pattern-based MDE approach shifted most effort to
the presentation customization phase, which had to be realized manually
by implementing ad hoc presentation templates applied to the IFML
patterns during code generation. This is a well-known problem of MDE
in general, which remains the bottleneck also in gamified, pattern-based
applications. We are working on methods to simplify the integration
of handwritten and automatically generated code to alleviate the bur-
den of customizing the visualization of presentation-agnostic design
patterns [2].

As a final remark, we note that the cross-domain nature of model-driven
gamification patterns is further supported by the fact that the design schemes
discussed in Section 7 and employed in SmartH20 and enCOMPASS are the
same employed in a quite distinct gamification project, the technical support

Model Driven Development of Gamified Applications 689

community of WebRatio'?, where the business data, the business views, and
the target users are extremely different.

9 Conclusions and future work

The paper describes a pattern-based model-driven methodology for the
development of gamified applications, which expresses the gamification
concepts within a Domain Model, a run-time architecture and a set of
patterns, to facilitate the integration of gamification into existing or new
applications. The identified patterns embody recurrent features of gamified
application, which are synthesized into IFML models that promote reuse and
customization through Mode-Driven Engineering techniques. The proposed
approach was put to work in two real-world scenarios, showing that the
model-driven encoding of gamification patterns promotes the reuse of design
knowledge independently of the technology domain (web, mobile web and
native mobile) and across applications. Factoring gamification rules out of
the code in a gamification data model enabled the fast (re)configuration
of the gamification engine and eased the adaptation to different scenarios.
In the future, the proposed methodology can be extended to cover other
aspects not addressed by IFML, such as the visualization patterns of the
gamification elements. Presentation-oriented models could be devised to
capture domain-specific specializations of the IFML components, such as
Goal Status or Gamified Action Widget, which incorporate the knowledge on
how to present gamification elements present in IFML patterns in a language-
independent way The Gamification Engine can also be extended by adding
a data analysis component for the automatic detection and correction of
undesired behaviours, such as spamming, or for the automatic adaptation of
rules and points based on the user activity.

Acknowledgements

This work is partially supported by the “enCOMPASS-Collaborative Recom-
mendations and Adaptive Control for Personalised Energy Saving” project
funded by the EU H2020 Programme, grant agreement no. 723059.

https://www.webratio.com/community

https://www.webratio.com/community

690 P Fraternali and S. Herrera

References

[1] Ronita Bardhan, Chaitra Bahuman, Imrankhan Pathan, and Krithi
Ramamritham. Designing a game based persuasive technology to pro-
mote pro-environmental behaviour (peb). In 2015 IEEE Region 10
Humanitarian Technology Conference (R10-HTC), pages 1-8. IEEE,
2015.

[2] Carlo Bernaschina, Emanuele Falzone, Piero Fraternali, and Sergio Luis
Herrera Gonzalez. The virtual developer: Integrating code generation
and manual development with conflict resolution. ACM Trans. Softw.
Eng. Methodol., 28(4):20:1-20:38, September 2019.

[3] Marco Brambilla and Piero Fraternali. Interaction flow modeling lan-
guage: Model-driven Ul engineering of web and mobile apps with
IFML. Morgan Kaufmann, 2014.

[4] Alejandro Calderén, Juan Boubeta-Puig, and Mercedes Ruiz.
Medit4cep-gam: A model- driven approach for user-friendly
gamification design, monitoring and code generation in cep-based
systems. Information and Software Technology, 95:238-264, 2018.

[5] Miquel Casals, Marta Gangolells, Marcel Macarulla, Alba Fuertes, Vin-
cent Vimont, and Luis Miguel Pinho. A serious game enhancing social
tenants’ behavioral change towards energy efficiency. In 2017 Global
Internet of Things Summit (GloTS), pages 1-6. IEEE, 2017.

[6] E. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P Pelliccione,
and R. Spalazzese. Model-driven engineering for mission-critical iot
systems. IEEE Software, 34(1):46-53, Jan 2017.

[7] Mihaly Csikszentmihalyi. Flow and the psychology of discovery and
invention. HarperPerennial, New York, 39, 1997.

[8] Vanessa De Luca and Roberta Castri. The social power game: A smart
application for sharing energy-saving behaviours in the city. FSEA 2014,
27,2014.

[9] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart E. Nacke.
From game design elements to gamefulness: defining ”gamification”. In
Proceedings of the 15th International Academic MindTrek Conference:
Envisioning Future Media Environments, MindTrek 2011, Tampere,
Finland, September 28-30, 2011, pages 9-15, 2011.

[10] Jiirgen Engel, Christian Martin, and Peter Forbrig. A concerted model-
driven and pattern-based framework for developing user interfaces of
interactive ubiquitous applications. In LMIS@ EICS, pages 35-41,
2015.

Model Driven Development of Gamified Applications 691

[11] Piero Fraternali, Giorgia Baroffio, Chiara Pasini, Luca Galli, Isabel
Micheel, Jasminko Novak, and A Rizzoli. Integrating real and digital
games with data analytics for water consumption behavioral change:
a demo. In Proceedings of the 8th International Conference on Utility
and Cloud Computing, pages 408—409. IEEE Press, 2015.

[12] Piero Fraternali, Sara Comai, Alessandro Bozzon, and Giovanni Toffetti
Carughi. Engineering rich internet applications with a model-driven
approach. ACM Transactions on the Web (TWEB), 4(2):7, 2010.

[13] Piero Fraternali, Sergio Herrera, Jasminko Novak, Mark Melenhorst,
Dimitrios Tzovaras, Stelios Krinidis, Andrea Emilio Rizzoli, Cristina
Rottondi, and Francesca Cellina. encompass—an integrative approach
to behavioural change for energy saving. In 2017 Global Internet of
Things Summit (GloTS), pages 1-6. IEEE, 2017.

[14] Brahim Hamid and Jon Perez. Supporting pattern-based dependability
engineering via model-driven development: Approach, tool-support and
empirical validation. Journal of Systems and Software, 122:239-273,
2016.

[15] P. Herzig, K. Jugel, C. Momm, M. Ameling, and A. Schill. Gaml—a
modeling language for gamification. In 2013 IEEE/ACM 6th Interna-
tional Conference on Utility and Cloud Computing, pages 494—499, Dec
2013.

[16] Tad Hirsch. Water wars: designing a civic game about water scarcity.
In Proceedings of the Conference on Designing Interactive Systems,
Aarhus, Denmark, August 16-20, 2010, pages 340-343, 2010.

[17] Bernhard Hoisl, Stefan Sobernig, and Mark Strembeck. Modeling and
enforcing secure object flows in process-driven soas: an integrated
model-driven approach. Software and System Modeling, 13(2):513-548,
2014.

[18] Kai Huotari and Juho Hamari. Defining gamification: a service market-
ing perspective. In International Conference on Media of the Future,
Academic MindTrek ’12, Tampere, Finland, October 3-5, 2012, pages
17-22,2012.

[19] Erik Knol and Peter W De Vries. Enercities-a serious game to stimulate
sustainability and energy conservation: Preliminary results. eLearning
Papers, (25), 2011.

[20] Nora Koch, Matthias Pigerl, Gefei Zhang, and Tatiana Morozova.
Patterns for the model-based development of rias. In International
Conference on Web Engineering, pages 283-291. Springer, 2009.

692 P Fraternali and S. Herrera

[21] Ksenia Koroleva, Mark Melenhorst, Jasminko Novak, Sergio Gonzalez,
Piero Fraternali, and Andrea-Emilio Rizzoli. Designing an integrated
socio-technical behaviour change system for energy saving. Energy
Informatics, 2, 09 2019.

[22] George E. Lee, Yongwen Xu, Robert S Brewer, and Philip M John-
son. Makahiki: An open source game engine for energy education
and conservation. Department of Information and Computer Sciences,
University of Hawaii, Honolulu, Hawaii, 96822:11-07, 2012.

[23] Amir Matallaoui, Philipp Herzig, and Riidiger Zarnekow. Model-driven
serious game development integration of the gamification modeling lan-
guage gaml with unity. In 2015 48th Hawaii International Conference
on System Sciences, pages 643-651. IEEE, 2015.

[24] Luca Morganti, Federica Pallavicini, Elena Cadel, Antonio Candelieri,
Francesco Archetti, and Fabrizia Mantovani. Gaming for earth: Seri-
ous games and gamification to engage consumers in pro-environmental
behaviours for energy efficiency. Energy Research & Social Science,
29:95-102, 2017.

[25] Siobhan O’Donovan, James E. Gain, and Patrick Marais. A case study
in the gamification of a university-level games development course. In
2013 South African Institute for Computer Scientists and Information
Technologists, SAICSIT ’13, East London, South Africa, October 7-9,
2013, pages 242-251, 2013.

[26] OMG. Interaction flow modeling language (IFML), version 1.0.
http://www.omg.org/spec/IFML/1.0/2015.

[27] Melanie Peham, Gert Breitfuss, and Rafael Michalczuk. The ecogator
app: gamification for enhanced energy efficiency in europe. In Pro-
ceedings of the Second International Conference on Technological
Ecosystems for Enhancing Multiculturality, pages 179-183. ACM,
2014.

[28] Wolfgang Pree and Erich Gamma. Design patterns for object-oriented
software development, volume 183. Addison-wesley Reading, MA,
1995.

[29] Frank Radeke, Peter Forbrig, Ahmed Seffah, and Daniel Sinnig. Pim
tool: support for pattern-driven and model-based ui development. In
International Workshop on Task Models and Diagrams for User Inter-
face Design, pages 82-96. Springer, 2006.

[30] AE Rizzoli, A Castelleti, A Cominola, P Fraternali, A Diniz dos Santos,
B Storni, R Wissmann-Alves, M Bertocchi, J Novak, and I Micheal. The

Model Driven Development of Gamified Applications 693

smarth2o project and the role of social computing in promoting efficient
residential water use: a first analysis. 2014.

[31] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling
language reference manual, the. Pearson Higher Education, 2004.

[32] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE
COMPUTER SOCIETY-, 39(2):25, 2006.

[33] Marianna Sigala. The application and impact of gamification funware
on trip planning and experiences: the case of tripadvisor’s funware.
Electronic Markets, 25, 01 2015.

[34] SmartH20 Consorsium. Deliverable 7.2 validation report.
http://smarth20.deib.polimi.it/wp-content/uploads/2017/03/sh20_D7.
2_SES_WP7 _validation_report_v1.1.pdf, 2016.

[35] Jihed Touzi, Fréderick Benaben, Hervé Pingaud, and Jean Pierre Lorré.
A model-driven approach for collaborative service-oriented architecture
design. International journal of production economics, 121(1):5-20,
2009.

[36] UrbanWater. Deliverable 5.6 — game solution for customer
empowerment using water consumption data. http://urbanwater-ict.eu/
wp-content/uploads/2015/12/UrbanWater-D5.6_v.F.pdf, 2015.

[37] Uwe Zdun and Schahram Dustdar. Model-driven and pattern-based inte-
gration of process-driven soa models. International Journal of Business
Process Integration and Management (IJBPIM), 2(2):109-119, 2006.

[38] Oren Zuckerman and Ayelet Gal-Oz. Deconstructing gamification: eval-
uating the effectiveness of continuous measurement, virtual rewards,
and social comparison for promoting physical activity. Personal and
Ubiquitous Computing, 18(7):1705-1719, 2014.

Biographies

Piero Fraternali is Full professor at the Dipartimento di Elettronica e Infor-
mazione, Politecnico di Milano. He received a Laurea Degree in Electrical

http://smarth2o.deib.polimi.it/wp-content/uploads/2017/03/sh2o_D7.2_SES_WP7_validation_report_v1.1.pdf
http://smarth2o.deib.polimi.it/wp-content/uploads/2017/03/sh2o_D7.2_SES_WP7_validation_report_v1.1.pdf
http://urbanwater-ict.eu/wp-content/uploads/2015/12/UrbanWater-D5.6_v.F.pdf
http://urbanwater-ict.eu/wp-content/uploads/2015/12/UrbanWater-D5.6_v.F.pdf

694 P, Fraternali and S. Herrera

Engineering (cum laude) in 1989 and a PhD in Computer Science from the
Politecnico di Milano in 1994. His main research interests concern database
integrity, active databases, software engineering, and methodologies and tools
for WEB application development.

He is author of several articles on International Journals and Confer-
ence Proceedings, and he is also the author, with Stefano Ceri, of the
books: “Designing Database Applications with Objects and Rules: the
IDEA Methodology” (Addison-Wesley, 1997); “Designing data-Intensive
web Applications” (The Morgan-Kaufmann Series in Data Management
Systems, Jim Gray, Series Editor, December 2002). He was the technical
manager of the W3I3 Project “Web-Based Intelligent Information Infrastruc-
tures” (1998-2000). He is co-inventor of WebML (http://www.webml.org) a
model for the conceptual design of Web applications (US Patent 6,591,271,
July 2003) and co-founder of Web Models (http://www.webratio.com), a
start-up of the Politecnico di Milano focused on the commercialization of
an innovative tool suite called WebRatio for the Model-Driven Development
of Web applications. He was Program Chair of the International Conference
on Web Engineering in 2004 and Vice President of the Software Engineering
Track of the WWW conference in 2005.

Sergio Luis Herrera Gonzalez is a Ph.D. student at the Politecnico di
Milano since spring 2018. He attended the Universidad de las Américas —
Puebla, in Mexico, where he received his B.Sc. in Computer Software Engi-
neering in 2003. He went on to purchase an M.Sc. in Computer Science
and Engineering at Politecnico di Milano in 2014. His Ph.D. work centres
on Model-driven engineering and focused on persuasive applications for
sustainability.

	Introduction
	Related Work
	Background: IFML in a Nutshell
	Gamification Concepts and Architecture
	A Gamification Architecture

	Gamification Domain Model
	Gamification Engine
	Gamification Services

	Gamification front-end patterns
	Gamified Login and Home Page
	Gamified Action
	Goal Selection and Progress
	Gamified User Profile
	Leader Board
	Achievement Notification
	Reward Visualization and Redemption

	Case Studies
	The SmartH2O project
	The enCOMPASS project
	Discussion
	Analysis of the case studies

	Conclusions and future work

