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Abstract

The Internet of Things (IoT) is more present in our daily lives than ever
before, turning everyday physical objects into smart devices. However, these
devices often need excessive human interaction before reaching their best
performance, making them time-consuming and reducing their usability.
Nowadays, Artificial Intelligence (AI) techniques are being used to process
data and to find ways to automate different behaviours. However, achieving
learning models capable of handling any situation is a challenging task,
worsened by time training restrictions. This paper proposes a Federated
Learning solution to manage different IoT environments and provide accurate
predictions, based on the user’s preferences. To improve the coexistence
between devices and users, this approach makes use of other users’ previous
behaviours in similar environments, and proposes predictions for newcomers
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to the federation. Also, for existing participants, it provides a closer per-
sonalization, immediate availability and prevents most manual interactions.
The approach has been tested with synthetic and real data and identifies the
actions to be performed with 94% accuracy on regular users.

Keywords: Federated learning, mobile devices, context-aware, IoT.

1 Introduction

There are currently 12 billion connected IoT devices [15] and nearly 4 billion
smartphones around the world [21]. These devices come equipped with
complex sensors, computing, and communication capabilities. The amount
of information handled by end devices opens up endless possibilities when it
comes to how IoT can improve our lives [23].

More and more users are using IoT devices in their daily lives, and
concepts such as Smart-Home [2], Health-care [23], or Smart-cities [3] are
emerging. These specialized devices often need configuration and human
interaction to achieve their most optimal performance. However, with the
growing number of devices [15], it is becoming more difficult to manage
them properly without investing a lot of time. In addition, when a user adds
new devices, the effort increases accordingly, which may reduce the perceived
benefits of the IoT.

AI, Deep Learning (DL) and Federated Learning (FL) techniques
emerged in order to analyze different information and to make predictions
in order to automate or reduce the effort of users doing different tasks [19].
Hence, these techniques could be used to reduce the effort required to
use the IoT. In addition, several paradigms, such as Edge and Mist Com-
puting (EC, MC) bring computing resources closer to the user. They are
able to execute these techniques on these resources in order to reduce the
response time, increase the privacy and, thus, provide a good quality of
service [10]. Specifically, FL tries to exploit the characteristics of distributed
computing.

Some solutions to get this personalized behavior are based on large
recommender systems leading to heavy architectures [5, 12], making them
hard to deploy in cost-effective devices with lower specifications (edge nodes
or smart devices), usually present in this kind of environments. Others define
behaviors based on rule sets [12], but they are limited, do not cover all
possible cases, and do not adapt dynamically to new situations. A truly smart
environment should be able to adapt its behaviour to the user independently
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if it is a known or a new user. Finally, most of the proposed solutions
exploiting the characteristics of edge/mist devices [13, 14, 29] study the
statistical heterogeneity of user data, but do not attempt to find a personalized
and context-aware solution for each user.For instance, these solutions try
to identify the most common configuration or behaviour of an IoT device
according to previous interactions, but they are not usually aware of the
context nor the preferences of the specific user interacting with it. Approaches
are needed to deal with any user and environment, providing context-aware
predictions, but without heavy deployments and long adaptation periods.

This paper proposes a novel solution based on FL where mobile devices
take a more active role for learning the preferences of their owners and
adapting the behavior of already known and new smart environments to
these preferences. To get context-aware and personalized predictions, this
solution proposes the consideration of two models. First, a global model
with the knowledge generated in the federation and which provides predic-
tions to new users and/or new environments. Second, a personalized model
which adjusts to the needs of a particular user for already known environ-
ments. Both models can be retrained to meet the needs of the federation
and the users. This approach allows fast personalization and deployments,
offers predictions in every environment the user visits and manages multiple
environments.

The rest of the document is structured as follows. Section 2 presents
the motivations of this work. Section 3 explains the proposal, divided into
Data Model and Architecture. Section 4 presents a two-phase validation,
evaluating the approach with synthetic and real data and providing a brief
comparison. Section 5 presents some related works. Finally, concluding
remarks are given in Section 6.

2 Motivation

IoT devices make people’s lives easier by automating a wide variety of
tasks. Nowadays, it is easy to find devices such as light bulbs, TVs or
wearables in any workplace or home environment. Managing one device
is a simple task after the initial configuration. However, when the number
of devices is increased, the device management becomes more difficult and
time-consuming. Specially, when the interactions among them have also to
be managed.

If we analyze most IoT devices, their functionality is based on running
specific, direct and not very complex commands, which are usually linked to
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a user’s patterns repeated over time and with minimal variations. Thus if we
know the actions to be performed, we can automate them. In short, we need
a system to make decisions in place of users.

Normally, the behavior is device and environment-dependent and can be
reproduced for similar devices in similar environments. We call environment
to the set of different IoT devices and the circumstances/context around them
(e.g. time, place, mode, patterns, etc.). Common examples are workplaces or
home. People usually move through different environments, and automation
should persist in all of them, always adapted to the user’s preferences.

To better understand this problem, an example is proposed below: Sup-
pose a user named John, a technology enthusiast who commonly interacts
with IoT devices. John wakes up every morning at the same time, turns on
the lights and gets ready for work. After finishing, he turns off all devices
and goes to his office. During working hours, he prefers a specific light and
temperature, as well as background music to help him concentrate. When
he arrives home, he wants his devices to recognize his arrival, turn on the
lights, and tune the TV to his favorite channel. John has tried programming
his devices to trigger at specific times but his schedule is flexible and do
not achieve the desired behavior. He usually sleeps late, but recently has
more work than usual and decides to go to sleep earlier, so he must turn
off the TV and lights manually. Changes in his schedule required him to set
up multiple configurations and manual changes, which makes John wonder if
the deployment of smart devices is worth it.

As shown, approaches that learn from user behavior and contextual infor-
mation are needed to automate actions without requiring users to reconfigure
their devices every time their context change. The availability should be
immediate from the model’s acquisition, so it would not be reasonable to offer
a model which requires long adaptation periods. Recommendation systems
offer a partial solution to these situations; however, dependence on cloud
services causes high latency, issues in low connectivity situations and privacy
concerns. In this context, MC solutions that can make decisions locally
without sharing sensitive data are desirable.

While avoiding cloud alternatives, it is necessary to solve how to allow
knowledge to travel between different environments, since the system needs
to operate in all of them. Since the beginning of this century, smartphones
have been classified as personal objects that accompanies people in their daily
activities [26]. They are the users’ closest elements. In addition, considering
their computational possibilities, they present a promising option. Therefore,
mobile devices can be the main learning nodes and will act as storage and
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as information vehicles, capable of moving between environments. This
solution would allow John to change environments freely, transfer previously
acquired knowledge to a new environment and use it to make new decisions.

To ensure new users fast deployments and customization tasks, the global
knowledge offered by FL is used in this proposal. FL is a learning technique
that allows devices to collaboratively learn a shared prediction model by
keeping all training data on them, sharing only gradients or weights, instead
of raw data. It enables smarter models, low latency, lower power consumption
and ability to use the model immediately, while improving privacy [17].

Dealing with a mobile environment means dealing with Non-IID [30],
unbalanced and massively distributed data, problems that do not occur in cen-
tralized environments. Each user has different preferences, actions, favorite
devices, etc. This nature has a high impact on traditional ML models [11,20]
and is one of the reasons to use FL and the Federated Averaging (FedAvg)
algorithm, a generalization of FedSGD [24]. FedAvg exchanges the updated
weights without sharing personal data, and performs an average among the
participants to obtain a generalized model [17].

Usually in FL, once the global model is complete, it is provided to users
by transferring weights and retrained to perform the personalization. Hybrid
models provide a middle ground between generalization and personalization.
Although it could be a good approach for existing users, for new users
the model could be biased and too general for their preferences. Therefore,
changing the behavior of this hybrid model to get more personalized pre-
dictions for each new user could require a higher effort than having both
a general model for the unknown behavior and a local one for the more
personalized behavior [6].

Therefore, we present a solution with a double model. The global model
has the federation’s knowledge and will evolve with it. The strength of this
model is its ability to offer predictions to new users and those who encounter
new environments. The local model has the knowledge of the individual user.
It provides the highest possible degree of personalization to provide effective
predictions. This way, any kind of user can deal with any kind of environment.

By keeping two independent models, the user is always allowed to have
a copy of the global model, which is sensitive to changes in the federation,
without affecting personalization on the local model.

Thanks to this approach, devices will receive commands and automat-
ically react based on each user preferences, making them focus only on
exceptional situations that do not follow a usual behavior pattern, greatly
reducing the user’s manual actions.
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3 Proactive Context-Aware IoT Environments

The aim of this proposal is to achieve proactive IoT environments, adapted to
the user context and needs. To achieve this goal, mobile devices computing
capabilities are exploited through FL, as companion devices that can interact
in the user’s different environments, reducing the dependency on the cloud.
FL is applied by using complementary models to address different situa-
tions: a global model collaboratively trained which generalizes the federation
behavior; while another model of similar features is in charge of carrying
out the personalization of user behaviors. The first model allows new users
to have a starting point for decision making while the second model has
personalization as its objective.

In order to detail the architecture of the proposal, this section is divided
into two: first, a data model analysis to deal with IoT environments, user
preferences and context; and second, the required architecture with a dual
learning model.

3.1 Data Model

The following are the operations to be performed by the models and the data
groups required to develop them. Also, an example of the tuples extracted
during data collection according to these functions is shown in Table 1.

• Environment: It is used to identify IoT devices within the same envi-
ronment and then generalize that behavior to new scenarios where the
environment, or even the user himself, is different.

• Device type: It is specified to distinguish behaviors between different
devices (e.g. actions performed on a TV from those on a light bulb).

• Device ID: It complements the above attribute since there may be several
devices of the same type in one environment, and is used to discern them.

• Connection type: It is necessary to know the communication protocol
used by the devices to add them to the environment and to send actions.

Table 1 Example tuples extracted during data collection
Env. Device Type Device ID Conn. Type Action Time Arrival Prob.
Home Air conditioner AC1 WiFi 24◦C 2019-10-14

15:07:51
False 95%

Home SMARTTV TV1 WiFi Tele5 2019-10-14
22:00:03

True 80%

Office SPEAKER S2 BLE On 2019-10-20
09:05:10

True 75%
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It does not affect decision making but it is needed to allow effective
action forwarding to the devices in the future.

• Action: It specifies the direct command to be executed on the IoT device
and is the target variable for predictions.

• Time: The model must be able to understand the temporal aspect of
events and identify patterns based on them. For now, the identified
behaviors are those related to hours of the day (e.g. 8:00, 15:00) and
weekdays (workdays, weekends, free days), but can be extended to long
term patterns such as seasons of the year.

• Arrival: It indicates the user presence and can be implemented through
mobile device location, being transparent to him. This information is
useful to control time patterns, where a prediction must be performed but
the user is not in the environment. It must be evaluated if the execution
of the action makes sense when the user is not present.

• Probability: The reliability level is associated with the final predictions.
It will be used later to finally decide on the action to be taken.

From a data perspective, we call usual environments (UE) to those statisti-
cally predominant in the user’s dataset. Similarly, new environments (NE) are
those with insufficient or no data. After a previous analysis of possible user
behaviors, we identified 3 different situations: (1) The user is in his UE and
requests predictions for an already known environment; (2) The user requests
predictions after changing to a NE where devices or interactions are different;
(3) It is a new user with no previous information.

3.2 Architecture

The main learning approach consists of neural networks (NNs) selected given
FL’s ease [20]. The presented solution is based on standard FL and FedAvg,
adapted to use a dual model. A global model that is in charge of performing
all the usual FL tasks (GM in Figure 1). Its goal is to create a global model
from the knowledge of the federated users, then downloaded to the user’s
device and used as a global knowledge base. And a local model with similar
characteristics to the previous one (LM in Figure 1), created on the device
itself, that is in charge of training only with user data and without interference
from external models (as in FL) to achieve a personalized behavior.

On the one hand, the global model is the one built from the knowledge
of the entire network of users. Initially, each user has an empty model
that is initialized by a set of parameters defined in the server (e.g. epochs,
learning rate, etc), providing greater control of the server over the federation.
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Figure 1 FL with a double local model architecture. Global model (GM) runs FL as usual
by taking GM Fed models as participants while Local model (LM) does the personalization.

Then, it is trained for several epochs, and the NN weights are serialized
into an update package and sent to the server. This process occurs with
all connected devices, and the server aggregates all packages to create the
global model. This process is repeated until the set rounds or until the desired
accuracy is obtained. At the end of the process, the user obtains this global
model to provide a starting point for predictions.

This method allows devices to make predictions based on the general
federated behavior. It is especially useful in situations where new users join
the federation. Since there is no previous information about them, they do
not have a personalized model to request predictions from. However, this
global model allows predictions to be made, in exchange for a small penalty
in the accuracy of the predictions. As for the aggregations carried out in
the server, with FedAvg, each of the NN weights will be determined by the
result of averaging the weights of NNs located in each device (McMahan
et al. [17]).

In addition, some models are usually unable to learn in one round, leading
to a negative impact on the global model from low-quality weights. To solve
this problem in the implemented algorithm, those models are not aggregated
and are given additional rounds to improve. This is used to prevent poisoning
the global model and as a preventive measure against malicious users.

On the other hand, the local model is the one isolated in the device, i.e.
this model will not be affected by the actions performed in the federation,
and starts its learning from a clean model. It trains with device local data, in
the same way that the downloaded global model does. However, this model
does not share its weights with any server and remains independent of the
federated environment. This model objective is to obtain the highest degree
of personalization (skew) possible from device usage. The main benefit of this
model lies in situations where the user is in one of his UEs to make accurate
predictions adjusted to his preferences.
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In short, the global model serves as a source of general knowledge,
basically, the actions that would be taken by the federation in a similar
situation. Eventually, the global model will be replaced by the personalized
one, which best knows the particular user behavior. Both models compete to
offer the best predictions; if one cannot give a sufficiently accurate prediction,
the model’s prediction with the highest reliability index for that situation will
be chosen.

4 Validation

The validation of this work is divided into two phases: First, the approach is
validated using synthetically generated data, in order to choose the best model
configuration; Second, the approach is validated with real users to check its
performance in real scenarios, as well as its impact on users’ mobile devices.
Then, our proposal is evaluated through an experimental comparison with
two related works. This Section ends with a validation discussion.

4.1 Phase 1: Synthetic Data

4.1.1 Data generation
To measure the performance of our approach, a large amount of datasets
are needed. At the moment of developing this work, there are no available
datasets with the contextual characteristics to fulfill our needs. Therefore, we
need to generate our own data. Synthetic data was generated with TheONE
Simulator [1]. This tool aims to simulate message routing between nodes
using Delay-Tolerant Networking routing algorithms. However, although its
objective is different, it has been chosen because it can simulate move-
ment patterns. The relevant patterns for this work are those simulating
the movements of a person in his day-to-day life through different places.
By modifying its core, this tool allowed us to simulate interactions with IoT
devices in different environments.

A set of different scenarios were defined following the directions pre-
sented in Section 3.1, the details are: 4 different environments per user,
each environment has a maximum of 10 devices, and 10 different actions.
Additional context has been provided by specifying different work, leisure
and sleep schedules over the day. Finally, human movement is implemented
by TheONE. The main goal is to simulate scenarios similar to the one given in
Section 2. For the sake of completion, 165 user datasets have been generated,
being No-IID and unbalanced, up to a maximum of 1.500 tuples each.
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4.1.2 Set-up
After an exhaustive data processing, each dataset has a total of 64 columns,
generated from the source data by One-Hot Encoding, 54 of them will be
taken as input features for NNs. Since we are dealing with a classification
problem, the output data are 10 classes. To find the best configuration for our
models, different tests were performed, following a specific process. First, we
tested different neural network definitions, changing the depth and complex-
ity of the hidden layers, including variations in the number of layers, nodes,
and usage of techniques like Batch Normalization (BN) or Dropout (DO).
The 4 most satisfactory configurations are shown in Figure 3(a) description.
All layers have ReLu activation function, except for the output one that has a
Softmax. Iterations are epochs = 5 and n rounds = 50.

Once the best NN configuration has been found and, being aware there are
local models unable of learn from their users (i.e. outliers), 3 different quality
filters have been tested to prevent GM poisoning: the None filter which allows
any LM to be aggregated, followed by Low and High filters, which restrict
aggregations to models with accuracies greater than 65% and 75% respec-
tively. Additionally, SGD and ADAM optimizers have also been tested, since
they are essential elements in FL. Their details are a learning rate of 0.015,
and, specifically for SGD, a momentum = 0.9 and a decay = lr

n rounds .
Finally, the 3 different situations defined at the end of Section 3.1 were

tested. The goal is to give additional context to the obtained accuracies and
show the real potential of this approach.

4.1.3 Results
The tested configurations have been evaluated under a standard evaluation
(SE), where 50% of randomly taken data has been reserved for tests, regard-
less of the situation. Figure 2(a) shows how C1 (Configuration 1) performs
better in the GM, being more stable with a superior convergence. In contrast,
C4 (Configuration 4) poorly performs in GM in the long term, but shows
promising results for personalization. From now on, C1 and C4 will be the
focus of our study.

In terms of filters, Figure 2(b) shows little difference between the different
filters. Nevertheless, a higher filter is slightly better and benefits the GM not
only in accuracy, but also in security, as stated in 3.2.

To improve performance, SGD and ADAM optimizers have been com-
pared, as ADAM often performs better than SGD. Taking the highest filter as
basis, Figure 3(a) shows configurations 1 and 4 with ADAM, both performing
better than their versions with SGD, in Figure 2(b). Finally, the best possible
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Figure 2 Models performance on synthetic data: (a) Shows GM and LM accuracies for the
selected configurations, based on SGD: C1 (2 hidden layers * 54 nodes), C2 (3 hidden layers
* 108 nodes), C3 (2 hidden layers * 54 nodes, BN, DO), and C4 (3 hidden layers * 108 nodes,
BN, DO). (b) Shows GM accuracy: All clients aggregated, Low and High requirements filter
(65% and 75% min. accuracy).
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Figure 3 Definitive models: Phase 1 (a) shows GM accuracy and the average accuracy from
165 LMs using Adam optimizer, the 2 best NN configurations and the High filter; Phase 2 (b)
GM accuracy for each filter, and the accuracy of 6 LMs from real users. Configuration 1 from
Section 4.1 is being applied.

model is the one made with configuration 1, Adam optimizer and High
filter (C1 in Figure 3(a)), providing a final accuracy of 75% and 94% in
GM and LM.

These accuracies are just an overview and do not show the full potential
of the models, since they were obtained by randomly selecting 50% of the
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Table 2 Detailed accuracies per model configuration, according to the different situations.
LM accuracies are the average of all LMs in the federation

UE NE NU
GM LM GM LM GM LM

SGD
C1 0.72 0.84 0.82 0.46 0.86 –
C4 0.85 0.96 0.94 0.41 0.87 –

ADAM
C1 0.88 0.96 0.95 0.57 0.95 –
C4 0.80 0.96 0.95 0.42 0.93 –

samples for each dataset. Therefore, Table 2 presents the 3 possible situations
of the case study and the behaviour of each model. First, UE situations
are where the LM shines, showing how good it predicts user’s behaviour
with an accuracy of 96%. As expected, the GM cannot reach such levels of
accuracy for a well known user, since it is made to generalize for the entire
federation. Second, NE situations are where most of the competition between
GM and LM takes place. Since the test was performed using complete new
environments, the LM cannot give acceptable predictions at first, so the GM
will be used until the LM is sufficiently trained and the NE becomes another
UE. Finally, the last situation is NU, which is monopolized by the GM since
new users do not have a LM yet. The outcome will be similar to NE, where
the GM takes the lead in the first steps.

4.2 Phase 2: Real Data

4.2.1 Scenario
A case study has been proposed with situations similar to the example given
in Section 2. A set of real users who regularly interact with IoT devices
have been selected. Notable differences between them are work and leisure
schedules (hours and weekdays), device type preferences, usage, environment
changes and occasional patterns. They have been provided with an Android
app to specify the device, performed action, and environment. This app only
serves as an information-gathering tool and does not perform any real action
with IoT devices.

The system has been implemented with TensorFlow1 (TF). However,
since TFLite only performs inference on Android, clients have been
implemented with the DeepLearning4j library.2 Apart from validating the
previous obtained results, the aim is to study device computational and

1https://www.tensorflow.org/
2https://deeplearning4j.org/

https://www.tensorflow.org/
https://deeplearning4j.org/
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battery consumption. This phase uses the best configuration from phase 1:
Configuration 1, Adam optimizer and High filter.

4.2.2 Set-up
During data gathering, users had all possible options within the following
limits: 4 environments, 5 different device types, 12 devices, 2 connection
modes, and 10 actions in total. This phase lasted 3 weeks. In total, there are 6
users and 1,313 tuples. For the testing phase, 50% of the data obtained from
each user were randomly taken and used to request predictions from the two
models. The monitoring of mobile devices has been carried out with Android
Profiler [7] and Battery Historian [8].

4.2.3 Results
The progress of both GM and the personalized LMs have been monitored.
In Figure 3(b) we can see the differences between LMs: Some models are
able to learn quickly the behavior of their users, reaching accuracy rates up to
94%. However, there are some models that do not learn properly. The main
cause are users with no apparent behavioral patterns or who interact with IoT
devices in an occasional and random way, cases already considered in the data
collection phase and classified as outliers. As for the GM, performed tests
show a general accuracy of 83% when the best filter is active (Figure 3(b)).

Like Section 4.1, accuracies are divided according to the different situa-
tions to be faced by models. Starting with UE, the GM has an accuracy of 85%
while the LM has an accuracy of 94%, showing the control of the LM when
it comes to already known situations. For NE situations, GM and LM show
83% and 73% accuracy, proving how difficult it is to provide a prediction in
new situations where the LM has not yet acquired the necessary knowledge,
and it is why the GM is needed in the meantime. Moreover, it is an example
of the competition between them. Finally, in NU situations the GM keeps its
accuracy up to 83%, as stated before.

Apart from the system’s performance, we are particularly interested in the
impact this learning process has on mobile devices. Data obtained are listed
below. The Android Profiler report shows a CPU usage of 19% and a RAM
usage of 130 MB on average. As for network usage, each update package
is 25 KB in size, sent in 10 rounds (250 KB data sent and 250 KB data
received), for a total of 0.52 MB of network traffic taking network headers
into account, and bandwidth highest peak of 110 KB/s. The execution time
has an average duration of 11 sec. Regarding the battery impact, we obtained
results of 0.04% usage of device’s battery, classified by Battery Historian as
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a low-level cost. As for the inference cost (i.e. a prediction), we consider it
insignificant as it is so small that it is not even recorded in the history.

4.3 Related Works Comparison

The proposed approach has been compared with two different related works.
The testing methodology is a standard evaluation with synthetic data like in
Section 4.1. This validation will not dive into the situation comparison.

First, the approach in [18] presents a centralized solution to study air
quality. Since they detected different behaviors, the architecture is composed
by a general model to provide generic predictions and two specific models,
for summer and winter behaviours. A similar architecture has been recreated
with slight changes to fit our case study. The generic model provides an
accuracy of 78%, having slightly better performance than our option, due
to the centralised training. For the specific models, the users have been split
according to their work schedule, resulting in two models: one for users who
work in the morning and one in the evening. The model for mornings provides
an accuracy of 92% since most behaviours are similar, while the model for
evenings provides only a 76%, since evening works are more heterogeneous.
Both models are outperformed by the presented approach (FL-Dual) thanks to
its personalized approach, which performs even better in specific situations.

Second, the approach in [27] focuses on human activity recognition
and uses the standard architecture of FL with a deeper NN (3NN) and a
convolutional NN (CNN), very different configurations compared with those
tested in this paper. Results show the 3NN provides 68% and 85% in GM and
LM, while the CNN approach provides 67% and 87%. Both approaches are
far from the 73% and 96% obtained with our FL-Dual model. The differences
lie in the use of a local model that is never independent of the global one, and
in the use of NNs that do not fit with the presented domain and case study.

4.4 Validation Discussion

This section presents a brief analysis after synthetic and real data tests. In
phase 1, synthetic data provides better results in general terms, specially in
already known environments. In NE, LM’s performance is low, as the model
does not yet have sufficient knowledge of the new situation, hence the need
for the GM. The performance will increase with subsequent actions in this
environment, until it becomes a UE and the LM replaces the GM. Also, the
GM provides an exceptional accuracy on NE and NU, which would be hard
to maintain in real scenarios due to the wide range of users’ preferences.
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Figure 4 Accuracy comparison between the different approaches. LM acc. is the mean of
the average of every model.

In phase 2 the models were tested with real data, and shows how the
accuracies are softened to a more realistic degree. However, there is an
exception to this rule, the LM in NE situations, where its accuracy increased
to 73%. The reason for the increase in accuracy is that in real environments,
users tend to use the same type of devices, as they feel more familiar with
them.

Finally, there is a small percentage of cases where models do not give an
accurate prediction, caused by situations where it is difficult to provide one.
For example, loudspeakers, if a user listens to pop and rock music with the
same frequency and at the same time.

5 Related Work

There are plenty of statistical heterogeneity works [13, 14, 29] who study the
impact of No-IID data and propose new algorithms like SCAFFOLD, but
they usually are not focused on achieving a personalized behavior. In [28],
FL is used to improve the quality of GBoard word suggestions, making them
closer to users’ habits, and it is a constructive example of its applications in
production environments. In [16], an intermediate approach between single
global model and local models is proposed, by suggesting a user clustering
to group similar users. Transfer Learning can also be used to learn some or
all parameters in the global model and re-learn them in local models [25], but
those models cannot be re-trained for too long to avoid knowledge forgetting.
FedPer is proposed in [4] to mitigate statistical heterogeneity in federated
scenarios. It presents a NN architecture where the base layers are trained
centrally with FedAvg and the top (or personalized) layers are trained locally
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and independently. However, this approach might not throw good results
with small networks like the ones presented in this paper. Hanzely et al. [9]
propose a formulation for a trade-off between the global model and the local
ones. To solve it, the author develops a new variant of gradient descent called
Loopless Local Gradient Descent under the claim that standard FedAvg might
be too aggressive. In addition, FL techniques to mitigate device heterogeneity
issues in IoT environments are discussed in [27]. In this work, a framework
named PerFit is developed that, through a globally shared model, advocates
for improving device integration while preserving data privacy.

Cook et al. [5] propose an architecture based on a hierarchy of rational
agents that cooperate to meet the goals of the environment. Unfortunately,
the architecture is designed to work on fixed environments. Also, Kabir
et al. [12] proposes another architecture for different areas at home. This
architecture provides services according to users’ choices using machine
learning (ML) techniques. However, there is no discussion of the possibility
of detecting other environments automatically or how to handle situations
that occur with different people. In addition, Think Home [22] is presented
as a deployable solution on inexpensive hardware such as Arduino boards,
whose main objectives are to minimize energy consumption and ensure user
comfort. This is achieved by developing intelligent control strategies and
representing the knowledge of the home through ontologies. However, this
work does not address the possibility of automating behaviors or making
predictions in changing environments. Nascimiento et al. [18] also proposed
an architecture that uses a ML model to analyze a dataset or interact with an
environment, and also monitors changes in the context. The comparison of a
general model for all contexts with a context-specific system is particularly
interesting. However, they are only based on analyzing one feature, so this
system would have to be modified for contexts where more than one feature
is involved.

6 Discussion and Conclusions

The increasing number of IoT devices and smart environments will make this
paradigm difficult for users to manage due to the high number of interactions
and configuration that they require. This will result in users spending too
much time on devices’ management and the final benefits of this paradigm
will be reduced. Users need tools reducing the workload and the interaction
level with their devices. In this paper, a dual model to predict interactions with
IoT devices in different environments, based on users preferences, has been
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proposed. This proposal makes use of contextual information and previous
actions of federated users and has a low impact on mobile devices.

During the development of this work, the following key aspects have
been identified: (1) Intelligent environments can be very different and het-
erogeneous, which makes developing a multipurpose and effective model for
any context a challenging task. Besides, interoperability is crucial to allow
easy management of any IoT device using a mobile device; (2) Context
and properties of environments shape their fingerprint. Each environment is
defined by the devices in them and how they are used, assisting the model
in its task of environment identification; (3) The more contextual properties
and information to be analyzed, the more appropriate the behavior will be,
and more similar environments can be identified. A better understanding of
context leads to smarter models and better predictions.

In future works, we plan to apply the proposed approach in social envi-
ronments, where different users need to be taken into account and conflicts of
interests need to be addressed.
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