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Abstract

With the development of mobile communication and network technology,
smart network applications are experiencing explosive growth. These appli-
cations may consume different types of resources extensively, thus calling for
the resource contribution from multiple nodes available in probably different
network domains to meet the service quality requirements. Task decomposi-
tion is to set the functional components in an application in several groups to
form subtasks, which can then be processed in different nodes. This paper
focuses on the models and methods that decompose network applications
composed of interdependent components into subtasks in different granular-
ity. The proposed model characterizes factors that have important effects on
the decomposition, such as dependency level, expected traffic, bandwidth,
transmission delay between components, as well as node resources required
by the components, and a density peak clustering (DPC) -based decompo-
sition algorithm is proposed to achieve the multi-granularity decomposition.
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Simulation results validate the effect of the proposed approach on reducing
the expected execution delay and balancing the computing resource demands
of subtasks.

Keywords: Componentized network application, weighted graph clustering,
density peak clustering, multi-granularity task decomposition.

1 Introduction

With the development of mobile communication and network technology, the
rapid increase in the number of intelligent user terminals and the prolifera-
tion of smart Internet services are making network applications increasingly
resource hungry [1]. At the same time, smart devices, like mobile phones,
workstations, etc. boast the ever-growing computing capability whose com-
puting resources are usually underutilized, while multi-access edge comput-
ing resources are usually overloaded. To improve the capability of computing
service provision ubiquitously in mobile networks, one of the key issues is
how to effectively utilize the fragmented resources distributed in nodes, such
as mobile terminals, IoT devices, in mobile networks. Task decomposition
aims to divide the entire application into different subtasks that can be
processed independently in different nodes, which grants a new dimension
of freedom to enable more flexible utilization of computing resources in the
network.

With the increasing demand on the rapid development and flexible
iteration of applications, the componentized application architecture gets
prevailing, such as microservice, serverless. In this context, task decompo-
sition is going to aggregate functional components in the entire application
into different clusters to form subtasks with the lowest expected overhead
when deployed and executed in a distributed manner. Task decomposition
can facilitate the use of fragmented computing resources in mobile net-
works, to achieve a higher degree of freedom in resource allocation, and
to facilitate load balancing among nodes and network links. The effective
decomposition of tasks can help to achieve the distributed execution of
tasks, thus reducing the overall running time and improving the utilization
of fragmented resources in the network. Thus, task decomposition is of great
significance [2].

The existing research of software-related task decomposition is mainly
based on the functional structure of codes, and different functional parts
are implemented in functions, forming a prerequisite for componentized
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application architecture. The existing approaches for task decomposition
of componentized applications mainly include the ones based on design
structure matrix, hierarchical task network, and graph theory [3]. However,
these approaches usually focus on generating merely one decomposition
scheme, which is not flexible enough to adapt to the heterogeneous computing
resources in cloud-edge-terminal multi-layers of present networks. There
are also some multi-granularity decomposition approaches in other fields,
such as social relation discovery, image segmentation. These approaches are
usually based on the relations between objects and cannot be directly applied
to the scenarios where the properties of objects more than the relations
between objects need consideration, as in the case of multi-granularity task
decomposition of componentized applications.

This paper proposes a multi-granularity task decomposition method based
on the vertex-weight improved density peak clustering (DPC) algorithm.
According to the relationship between functional components, the task is
reasonably decomposed into multi-granularity subtasks, which provides a
reasonable choice for the scheduler to allocate the appropriate subtasks to
the appropriate nodes in the mobile edge network. The main contributions
of this paper are as follows. (1) The model is proposed to characterize the
factors influencing task decomposition of component-based network appli-
cations. The model is mainly based on the relationship between functional
components, such as the total flow of data exchange, bandwidth requirements,
data dependence, etc., to meet the special needs. (2) A weighted graph
clustering algorithm is proposed to decompose network applications into
multiple subtasks with different granularity. Each set will represent a low
latency and dependency decomposition scheme with good performance.

The rest of the paper is organized as follows. Section 2 describes the
related work. Section 3 proposes the system model and some main concepts.
Section 4 presents the proposed approach of task decomposition for com-
ponentized network applications. Evaluation scheme and numeric results are
given in Section 5, and Section 6 concludes the paper.

2 Related Work

2.1 Task Decomposition

Task decomposition has the potential to facilitate task distributed scheduling
in networks. In recent studies, task decomposition mainly serves as an early
step to split a whole task and offload a part of the task onto the edge
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computing node or centre cloud for offloading. In these studies, C. Xia
et al. in [4] adopted quotient space theory and proposed a hierarchical task
decomposition algorithm for data grid resource scheduling. X. Liu et al.
in [5] proposed to cluster and schedule IoT terminals according to the priority
of computing tasks of service. Among them, the highest priority task is
executed in the edge computing node, and the lowest priority task is executed
locally in the terminal. Other tasks are real-time scheduled based on the
task amount, available resources, and other factors in the environment. H. Li
et al. in [6] studied the joint optimization of user computing task offloading
and computing and communication resource allocation under the scenarios
of multi-user and multi-edge computing nodes, aiming at minimizing the
energy consumption of user equipment. A two-stage heuristic optimization
algorithm based on a genetic algorithm is designed to solve the problem. S. E.
Mahmoodi et al. in [7] investigated computing tasks offloading from mobile
terminals to edge and centre cloud. The constraints of computing tasks and
data offloading, such as communication delay, application execution time,
and component priority, are comprehensively considered. Though componen-
tized application architecture was assumed in this paper, the decomposition
of componentized applications was not specially discussed. M. Z. Liu et al.
in [8] proposed a cloud manufacturing task decomposition algorithm based
on sequential task decomposition, gave the relevant definitions of cloud
manufacturing task description model and task constraint structure, and
studied the manufacturing task granularity analysis method, manufacturing
task cohesion measurement method and manufacturing task correlation mea-
surement method. Mohamad Roshanzamir in [9] tried to use GNP algorithm
to save the experience of promising individuals in successive generations
to form a task decomposition scheme. G. Latif et al. in [10] proposed a
simplified routing mechanism along with the formulation and analyses of
a nonlinearly constrained multi-objective optimization model for multi-user
traffic engineering in networking and digital communication domains.

The above research mainly focused on cloud/edge computing task
offloading. However, with the complexity of application growing, the
component-dependency graph would be too complex for guiding the deploy-
ment of functional components distributed in the networks. There are emerg-
ing constraints, such as communication and computing resources demanded,
and satisfaction of special needs between task components of applications,
which should be taken care of when performing task decomposition. If the
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tasks are unproperly decomposed, the resource overhead and the performance
of the deployed applications will be greatly affected. Therefore, it is necessary
to build a new optimization model to decompose and allocate the tasks and
resources of component-based network applications.

In addition, with the improvement of the computing and storage capa-
bility of the mobile terminals and the development of D2D communication
technology, the available resources of the mass terminals in the mobile edge
network have also become an important direction for the task offloading of
network applications [11, 12]. However, the total resource of a single terminal
is still insufficient compared to the resource requirement of some network
applications. In the meanwhile, the resource capacity of different nodes is
also different in the mobile edge networks owning to the heterogeneity of
the nodes. Thus, a multi-level and multi-granularity decomposition scheme is
needed to make the decomposition adaptive to specific resource conditions in
the mobile edge networks.

2.2 Graph Clustering Algorithm

Clustering is an unsupervised learning method of pattern recognition [13],
which means separating samples into several clusters according to the charac-
teristics of the data samples. The similarity of the samples within each cluster
is very high, and the similarity of different samples is very low. For various
types of data, there are many clustering algorithms [14], which can be roughly
divided into five categories: Partition-based clustering, density-based cluster-
ing, and grid-based clustering, partition-based clustering, and model-based
clustering methods. In the past few years, density-based clustering algorithms
have been widely used in many scientific fields because of their simplicity and
ability to detect clusters of different sizes and shapes. Typical density-based
clustering algorithms, like DBSCAN [15], optics [16], DBCLASD [17], and
DENCLUE [18] have attracted much attention. The density peak clustering
(DPC) algorithm is the most recently proposed one [19], which can auto-
matically discover cluster centres and achieve efficient clustering of arbitrary
shape data.

In the related research of improved DPC algorithms, a self-adaptive
distance density peak clustering Algorithm (DADPC) was proposed in [20].
In the paper, a new distance measure, namely density adaptive distance, and
the concept of the weight factor of distance mediation, are introduced, which
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consists of local and global density adaptive distance, the local density and the
shortest distance of each point are calculated by the classical Floyd algorithm
based on density adaptive distance, and the decision graph is drawn to select
the cluster centre. In 2019, Han X. et al. proposed a new hybrid algorithm
by improving the existing Chameleon clustering algorithm and combining
the Chameleon algorithm with the K-medoids algorithm [21]. This method
eliminates the first-stage clustering of the Chameleon algorithm and uses
the K-medoids algorithm to divide original data and uses the second-stage
clustering algorithm of the Chameleon algorithm to merge the clusters. The
idea of a relative degree of similarity, the relative degree of association, and
the relative degree of similarity are introduced in this method, which provides
improved forms for the clustering algorithm. D.S. Sun in [22] proposed an
efficient graph clustering algorithm based on spectral coarsening to deal
with the large time complexity of the traditional spectral algorithm. H. H.
Zhou et al. in [23] proposed a density peak clustering algorithm combining
shared nearest neighbour and shared inverse nearest neighbour. The algorithm
uses the shared nearest neighbour and shared inverse nearest neighbour of
samples to construct a new similarity calculation method; Then, the local
density formula is redefined to avoid the selection of truncation distance;
Finally, the sample point allocation algorithm assigns the remaining sample
points to the corresponding clusters. Z.W. Gu in [24] proposed a method for
automatically selecting cluster centres based on Chebyshev’s inequality. MG-
DPC is implemented on the dataset of load data to realize load classification.
However, the adjustment of truncation distance is not fully considered in the
algorithm of cluster decomposition. At the same time, only the selection of
cluster centre point is considered in the result of task decomposition, which
is a lack of constraints on the scale of multi-granularity task decomposition.

Inspired by the aforementioned research, in this paper, we improve the
DPC algorithm for task decomposition of functional componentized appli-
cations and propose the weighted multi-granularity decomposition (WMG-
DCom) approach to produce multiple decomposition schemes in different
granularities.

3 System Model

3.1 Componentized Network Applications

In this paper, task decomposition is to divide a large number of functional
components of network application into multiple parts, which we refer to
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Figure 1 Task decomposition for componentized network applications.

as subtasks and can be executed in different computing nodes. Figure 1
illustrates the task decomposition of a componentized application. Then, the
set of functional components in each subtask will be deployed in different
network nodes as a whole. In this way, the granularity of resource allocation
is in the granularity of subtasks instead of the task component granularity,
and the complexity of computing resource scheduling can be reduced.

From Figure 1, we can also see the problem of task decomposition for a
componentized network application resemble the graph clustering problem,
so graph clustering algorithms can be used to divide the network application
into subtasks. In the meanwhile, the multi-granularity task decomposition
means the proposed method will decompose an application into different
granularity levels. As shown in Figure 2(a), the coarse-grained level means
that the subtask specifications obtained by task decomposition are relatively
large, but the number of subtasks is relatively small, while the fine-grained
level means that the subtask specifications obtained are relatively small, but
the number of subtasks is large.

However, in the existing research, multi-granularity decomposition is
only carried out for different quantities of granularity, and the granularity of
decomposition is relatively average. However, the granularity requirements in
different resource environments are not fully considered in a single scheme,
and there are constraints. As shown in Figure 2(b), when there is a cloud-
edge-terminal collaborative operation environment, the network tasks with
smaller granularity can be assigned to t edge and terminal for operation, while
the tasks with larger granularity can be carried out in the cloud. Making full
use of resources can effectively improve the operation efficiency of tasks.
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(a)                                  (b) 
Figure 2 Multi-granularity task decomposition.

3.2 Constraints of Task Decomposition

In the process of task decomposition, the dependency between the compo-
nents and business requirements constraints should be considered compre-
hensively. In the following part, we will introduce and discuss the factors
to be considered in the task decomposition, which are roughly set into three
types, i.e., node-specific, relation-specific, and business-specific factors.

(1) Node-specific factors
Computing resources: Different types of components have different require-
ments on the computing capability of server nodes in networks. The compo-
nents or subtasks with higher requirements on computing capability should
be deployed to server nodes with sufficient computing resources.

Storage resources: Different types of components also have different require-
ments on the storage capacity in server nodes in networks. The components
or subtasks with higher requirements on storage should be deployed to server
nodes with sufficient storage resources.

Processing delay: When the data is processed in a node, there is a processing
delay. The higher the calculation of two functional components is, the more
likely the two functional components will be placed in different subtasks,
when deployed in the edge or terminal nodes. For example, in VR games,
in the process of switching between two different scenes, music and videos
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should be processed in different subtasks at the same time as far as possible,
to reduce the processing delay caused by the volume of computational data
and avoid long waiting time. Therefore, the processing delay should also be
considered in the clustering decomposition of functional components.

Task decomposition for applications to be deployed in mobile networks
with many cooperative nodes can take finer granularity to enable the deploy-
ment in these nodes. Otherwise, the application can be deployed in a very
limited number of nodes, so task decomposition can take coarser granularity
to facilitate the rapid deploy the tasks.

(2) Relation-specific factors
Data volume for exchange: The interaction between two components of
an application will produce some amount of communication data, which
demands communication performance. The higher the total amount of data
is, the closer the relationship between the two components will be, and the
two components are more likely to be in the same subtask. For example, in
the intelligent security business, the video capture function component and
the function component of pre-processing the original video will produce a
large amount of data for exchange, and these two function components should
be executed together.

Communication bandwidth: For a digital communication system, generally,
the larger the bandwidth provided by the system, the better the real-time
performance of its service. There are some tasks with low delay and fast
response. For example, MEC is used to realize the purpose of Internet of
things. Basically, IoT devices are connected through different communication
protocols through various wireless technologies (such as 3G, LTE, WiFi,
etc.). Therefore, in the process of information transmission, the bandwidth
requirements are relatively large. Generally, the task elements with large
bandwidth requirements will be placed in the same subtask.

Communication delay: The higher the communication delay is, the more
likely two functional components will be to be classified into the same
subtask. For example, on the Internet of Vehicles, vehicles and roadside
devices are connected through various wireless technologies. Low latency
is a prerequisite for completing various protocol processing, message dis-
tribution, and message processing. Roadside applications need to receive
local information directly from applications on vehicles and roadside sensors,
Analyse them and broadcast warnings (such as accident information, etc.) to
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nearby vehicles with very low delay. In particular, the communication delay
between these functional components needs to be considered.

Data dependency: The application of different components may read and
write a unified data block, and divide the functional components reading,
and writing the same data block into the same subtask, which can reduce
the repeated data transmission in the physical network and reduce the overall
bandwidth cost of the task. For example, in the intelligent security scene,
for the video stream provided by the public camera, the video processing
unit of the public security department will focus on the people in the video,
while the video processing unit of the traffic police department will focus
on the vehicles. If the two functional units are executed independently on
different nodes, they need to transmit two identical video streams to the two
departments. If these two functional units can be classified into the same
subtask and executed in the same node, the video stream data can be reused
to avoid the network transmission of two identical data.

Special needs: In most cases, users would not like their sensitive data and
critical information collected by terminals and uploaded to the data centre
but want them processed in a timely and efficient manner at the edge nodes,
such as computing, encryption, and access control. We call these special
requirements as special needs. And for such cases, the satisfaction of special
needs should be considered.

(3) Business-specific factors
Business-specific factors are originated from the service requirement of the
application. A typical factor is service delay, which measures the expected
time consumed when a request of an application gets served. The service
delay includes processing delay in those functional components and the
communication delay between components for data delivery. Different ser-
vices have different delay tolerance, and the produced decomposition scheme
should satisfy the delay tolerance of the application. Thus, the service delay
can be used as a metric to evaluate the effectiveness of the decomposition
scheme.

3.3 Definitions Used in Algorithm Design

The density peak clustering algorithm [25] is based on two basic assumptions:
(1) The local density of the cluster centre (the peak of density) is greater than
that of its neighbours. (2) The distance between the different cluster centres is
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relatively far. To find the cluster centre which satisfies these two conditions,
the definition of local density is introduced.

Assume a task has J task elements, and task decomposition is to be
performed on it to get several subtasks. Some key variables are defined as
follows.

(1) Correlation coefficient
The correlation coefficient Tij between two functional components (i.e., task
elements) Xi and Xj , and i 6= j ∈ {1, . . . , J}, is defined as in Equation (1)
taking account of the normalized data volume for exchange Dij , data depen-
dence Rij , communication bandwidth demand Sij , and special needs λij
between functional components Xi and Xj .

Tij =
P1Dij+P2Rij+P3Sij

λij
, (1)

Where P1, P 2, P3 are the proportion of data volume for exchange, data
dependence, and communication bandwidth demand. It should be noted that
all the parametersDij ,Rij , and Sij are normalized to the range of [0, 1], while
λij is normalized to (0, 1] and the stronger the special needs are, the smaller
the value of λij will be. If two elements have no interaction, the values of
Dij , Rij , and Sij will be 0, while λij equals 1. We assume there are N pairs
of task elements that interact with each other. Thus, N equals the number of
elements in {Dij |Dij 6= 0, i 6= j ∈ {1, . . . , J}}.

(2) Weight coefficient
The weight coefficient is taken as the reciprocal of the amount of calculation
Ci and the average amount of calculation is normalized to get the weight
coefficient.

Wi =
C

Ci
, (2)

Where C is the average amount of calculation of all task elements, and Ci
is the calculation of task element Xi, Weight coefficient reflects the effects of
components’ properties on decomposition. Intuitively, the smaller the amount
of calculation of task elements, the easier it is to form clusters with other task
elements.

(3) Distance mapping
The factors affecting task decomposition include the calculation of task
elements, as well as the correlation coefficient between task elements. This
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algorithm considers that the weight of task element points affects the weight
of the edge. In order to effectively decompose tasks and form reasonable
clusters, we convert the weight coefficient of task elements and correlation
coefficient between task elements into the distance relationship dij between
task elements Xi and Xj .

dij =
WiWj

Tij
2 (3)

(4) Local density
The local density of task element Xi is

ρi =
∑
j

exp

(
−
d2ij
d2c

)
, (4)

Where dij is the distance between task element Xi and Xj while dc is
the cut-off distance and is usually set manually. The value of dc impacts the
effect of the clustering algorithm. It can’t be too big or too small. If dc is too
large, the local density of each data point will be very large, resulting in low
discrimination. If dc is too small, the density properties of each data point
will be hard to be accurately identified, resulting in improper cluster results.
Empirically, the cut-off distance is set as the minimum.

(5) The minimal relative distance
The minimal relative distance refers to the distance between the task element
Xi and the nearest task element Xj whose local density is greater than that
of Xi. That is to say, Xj is the closest point with larger density compared
with Xi. The relative distance δi can be represented as

δi = min
j:ρj>ρi

(dij). (5)

If task element Xi∗ has the largest local density among all task elements,
the minimal relative distance δi of Xi∗ is defined as the distance from Xi∗ to
the farthest point, which can be expressed as Equation (4).

δi = max
j

(di∗j). (6)

That is to say,

δi =


min
j:ρj>ρi

(dij), i 6= i∗

max
j

(dij), i = i∗
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Let H denote the set {(Xj , Xi)|∀i ∈ J/{i∗}, j = argminj:ρj>ρi(dij)}.
As there are J tasks elements, there are J − 1 tuples in the set H .

(6) Gini coefficient
The Gini coefficient of the data set G can be defined as

G = 1−
n∑
i=1

(γi
Z

)2
, (7)

Where γi = ρiδi, and Z is calculated as the summation of γi, i.e., Z =∑n
i=1 (γi). Gini coefficient can be used to characterize data impurity. The

less impure the data is, the less the uncertainty of the data distribution will
be, and the more like the task elements are set in the proper clusters. In the
adaptive DPC algorithm, an adaptive method based on the minimization of
the Gini coefficient is proposed to adaptively select the cut-off distance.

4 Multi-Granularity Task Decomposition Approach

This section presents an improved DPC algorithm by enhancing the accuracy
of clustering through self-adaptation and similarity calculation and then
introduces the multi-granularity task decomposition algorithm based on the
improved DPC algorithm.

4.1 An Improved Density Peak Clustering Algorithm with
Adaptive Cut-off Distance

In the improved DPC algorithm, an adaptive mechanism for cut-off distance
selection based on minimizing the Gini coefficient is introduced. The Gini
coefficient is used to measure the data impurity.

In the selection of optimized cut-off distance, d∗c corresponds to the
minimum value of the Gini coefficient. The optimized cut-off distance is used
as the parameter for the next iteration of clustering process, instead of a fixed
cut-off distance. In this way, the improved DPC can avoid subjectivity in the
manual selection of cut-off distance and achieve the goal of self-adaptation.

The specific steps are as follows:

Step 1: According to the data volume for exchange, data dependency,
communication bandwidth, and special needs, calculate the correlation
coefficient Tij between task elements Xi and Xj , i 6= j ∈ {1, . . . , J}.
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Step 2: Get the weight coefficient Wi according to Equation (2) with the
calculation Ci.
Step 3: The distances of N task-element pairs are calculated according
to Equation (3), and are sorted in ascending order. The ordered sequence
of distances is denoted as ordD.
Step 4: Take the minimum distance as the cut-off distance, and calculate
the local density and the minimal relative distance of each task element.
Step 5: Get the initial Gini coefficient G according to Equation (7) with
a default dc.
Step 6: Increase dc to obtain a new Gini coefficient G′ and the
corresponding sequences of {γi} according to γi = ρiδi.
Step 7: Take the scheme under the minimum value of Gini coefficient
G∗ to obtain the appropriate cut-off distance d∗c .
Step 8: Get the local density ρi and the minimal relative distance δi when
the cut-off distance is d∗c .
Step 9: Get set H according to the local density ρi and the minimal
relative distance δi.
Step 10: Select Nq task elements to form the set Q = {Xs} correspond-
ing to the Nq largest elements in {γi} as the cluster centres.
Step 11: For each Xs ∈ Q, get the set of tuples K = {(Xj , Xi) ∈
H|Xj = Xs, Xi /∈ Q}, and all the second elements of the tuples in K
form a set Γ. Iteratively pop out an element Xt from Γ, and get all the
tuples (Xj , Xi) ∈ {H/K,Xj = Xt, Xi /∈ Q}, push all the Xi into Γ,
repeat until Γ is empty. Put all the manipulated Xi, Xj in Set ΦXs for
each iteration.
Step 12: Get clustering results ϕ = {ΦXs , Xs ∈ Q}.

The improved DPC algorithm is summarized in Algorithm 1.

4.2 Proposed multi-granularity task decomposition algorithm

The constraint relationship of each task element is mapped into a distance
relation in space. The local density ρ and relative distance δ are calculated
by the distance relationship between each task element. Then use γi = ρiδi
to select the sampling point of the task element. The centre sets and the
centre cluster of the task elements are determined by Algorithm 1. Due
to the different number of computing nodes in the existing network envi-
ronment, each subtask calculated at the edge node must meet the carrying
capacity of the node. We assume that the carrying capacity of each edge
node is Cmax. Therefore, in the task decomposition, we should consider
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Algorithm 1 The improved DPC algorithm

Input: Ci, Dij , Rij, Sij, and λij , i, j ∈ {1, . . . , J}, Nq
Output: ϕ
1: Calculate Tij and N according to Equation (1)
2: Calculate Wi according to Equation (2) and dij according to Equation (3)
3: i = 1;G = 1;
4: while i = N \\Calculate the minimum value of Gini coefficient G∗

5: Determine dc = ordD(i);
6: Calculate ρi and δi according to Equations (4) and (5);
7: Calculate Gini coefficients G′;
8: if G′ < G then
9: G = G′; d∗c = dc;
10: end if
11: i = i+ 1;
12: end while
13: find the minimal Gini coefficient G∗ = G;
14: find the cut-off distance dc∗ with Gini coefficient G∗;
15: Calculate ρi and δi
16: Calculate γi and H;
17: Find the Nq largest elements in {γi} to form the set Q = {Xs};
18: forXs ∈ Q
19: K = {(Xj , Xi) ∈ H|Xj = Xs, Xi /∈ Q};
20: Γ = {Xi|(Xs, Xi) ∈ K};
21: while Γ 6= ∅
22: pop out Xt ∈ Γ,
23: get all the tuples (Xj , Xi) ∈ {H/K,Xj = Xt, Xi /∈ Q} put all Xi in Γ
24: put Xs, Xt, Xi in set ΦXs

25: end while
26: ϕ = {ΦXs , Xs ∈ Q};
27: end for

return ϕ.

the multi-granularity task decomposition algorithm suitable for the network
environment which will be described in detail next.

The specific steps are as follows:

Step 1: According to the total data amount in interaction, data depen-
dence, communication demand and special needs, calculate the correla-
tion coefficient T between task elements.
Step 2: Get the weight coefficient Wi according to Equation (2) with the
calculation Ci.
Step 3: Calculate the distances dij ofN pairs of task elements according
to Equation (3).
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Algorithm 2 Weighted Multi-granularity decomposition

Input: Ci, Dij , Rij, Sij, and λij , i, j ∈ {1, . . . , J}, Nq, Cmax
Output: ϕ
1: Calculate Tij and N according to Equation (1);
2: Calculate Wi according to Equation (2)
3: Calculate dij according to Equation (3);
4: Find dc∗ with Gini coefficient G∗ according to Algorithm 1;
5: Calculate ρi and δi;
6: Calculate γi and H;
7: Find Nq largest elements in {γi} to form the set Q = {X1, . . . , Xs, . . . , XNq};
8: get ϕ = {ΦXs , Xs ∈ Q} by Algorithm 1, and ϕ′ = ∅
9: for ΦXs ∈ ϕ
10: τ2 ← {Xi ∈ ΦXs |(Xs, Xi) ∈ H}
11: while τ2 6= ∅ and CεXs

≤ Cmax
12: τ1 ← τ2, τ2 ← ∅
13: while τ1 6= ∅ and CεXs

≤ Cmax
14: find Xi = argminXi∈τ1{CXi}
15: if CεXs

+ CXi ≤ Cmax
16: CεXs

+ = CXi

17: εXs ← Xi
18: τ2 ← τ2 ∪ {Xt ∈ ΦXs |(Xi, Xt) ∈ H}
19: εXs ← Xi
20: Delete Xi from τ1
21: ε0 ← ΦXs/εXs , ϕ′ ← ϕ′ ∪ {εXs}
22: ϕ′ ← ϕ′ ∪ {ε0}; \\ϕ′ = {ε0, εXs |Xs ∈ Q}
23: end if
24: end while
25: end while
26: end for

return ϕ′.

Step 4: Calculate ρi, δi at the appropriate cut-off distance dc∗ according
to Algorithm 1.
Step 5: Get set H according to the local density ρi and the minimal
relative distance δi.
Step 6: Select Nq task elements to form the set Q = {X1, . . .,
Xs, . . . , XNq} corresponding to the Nq largest elements in {γi} as the
cluster centres, where Nq is the number of expected edge nodes.
Step 7: For each Xs ∈ Q, put Xs in set εXs , get the set of tuples K =
{(Xj , Xi) ∈ H|Xj = Xs, Xi /∈ Q}, and all the second elements of the
tuples in K form a set Γ. Iteratively pop out an element Xt from Γ, and
get all the tuples (Xj , Xi) ∈ {H/K,Xj = Xt, Xi /∈ Q}, push all the
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Xj into Γ, repeat until Γ is empty. Put all the manipulated Xi, Xj in Set
ΦXs . Get ϕ = {ΦXs , Xs ∈ Q} and let ϕ′ = ∅
Step 8: For each subtask ΦXs ∈ ϕ, decide whether all the task elements
in the subtask satisfy the computing resource limit, and select a proper
subset of task elements from ΦXs to form εXs and other task elements
are grouped to set ε0 which represents a special subtask that will be
processed in the central cloud. To select the proper subset of tasks, we
iteratively check whether adding a task element Xi ∈ ΦXs will break
the resource limit. εXs will accept Xi if not break the resource limit,
and we delete the task element Xi from ΦXs ; otherwise, the iteration
with regard to ΦXs is finished. If ΦXs is not empty, put Xp ∈ ΦXs/εXs
into set ε0, and put εXs into the set ϕ′.
Step 9: Get clustering results ϕ′, which is in fact the set {ε0, εXs |
Xs ∈ Q}.

The overall procedure of the proposed multi-granularity task decomposi-
tion algorithm is summarized in Algorithm 2.

From the above process details, we can see that the proposed WMG-
Dcom borrows the concepts of local density and correlation distance in
IDPC-Dcom to select the task centre point and cluster, while in the clus-
tering process, WMG-Dcom additionally considers the computing resource
consumption of subtasks and selects appropriate small-scale clusters to meet
the resource utilization of computing nodes.

5 Simulation and Comparison

5.1 Evaluation Scheme Description

The algorithm proposed in this paper is evaluated in the cases where a series
of CDGs with 9 components whose parameters, such as normalized total
traffic of exchanged data, data dependency, bandwidth requirements, special
needs between components, and the calculation of each task elements are
generated in predefined reasonable ranges randomly for each simulation.
Table 1 shows the range of each parameter in the experiment. Shown in
Table 2 is an instance of the 9-elements case. An expected overall cost indica-
tor that averaged the four factors is used to measure the general performance.
We assume that there are 1–3 edge nodes in the existing network environment,
that is, the task can be divided into 2–4 subtasks, which are placed in the edge
node and cloud space respectively for computing.
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Table 1 Key parameters and the values in the simulation
Parameter Range
D [0,1]
R [0,1]
S [0,1]
λ (0,1]
Ci (0,5000]
Nq [0,n]
Cmax 3000

In order to verify the effectiveness of the algorithm, this paper takes
the IDPC-Dcom algorithm as the comparison scheme and compares all task
elements fully decomposition (Fully Dcom) approach in which each compo-
nent is treated as a subtask, as the baseline. These approaches are evaluated
against the chosen metrics, such as the total volume of data, data dependency,
bandwidth requirement, the satisfaction of special requirements, transmission
waiting time, and the maximum size of computational data of subtasks. In this
case, the decomposition scheme with a lower expected total cost has better
performance.

In the sequel, an exemplary 9-element case is used as an illustration of
task decomposition for componentized network applications.

5.2 Illustration of the Proposed Task Decomposition Approach

The illustrative procedures are given as follows.

Step 1: According to the relationship between task elements, the positions
of functional components in the CDG of the whole task (application) are
exported, as shown in Figure 3.

Step 2: Form the decision diagram by deriving the appropriate cut-off dis-
tance through the adaptive constraint distance dc, get the constraint density
and the minimal relative distance.

Step 3: The number of clusters is 2, the data centre is selected automatically
according to ordγ , and a proper cluster centre is verified by the graph
clustering algorithm.

The decomposition schemes with 2 subtasks are shown in Figure 4.
The limitation of the IDPC-Dcom algorithm is that it can only divide

equally according to the distance relationship, which may lead to that the
divided subtasks can not meet the resource carrying capacity of the edge node
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Table 2 The data of an exemplary 9-element application
(a) Data of individual functional components

Ca The Amount of Calculation Weight Coefficient

1 1000 0.476190476

2 900 0.428571429

3 1100 0.523809524

4 2000 0.952380952

5 5000 2.380952381

6 1400 0.666666667

7 2500 1.19047619

8 3000 1.428571429

9 2000 0.952380952

(b) Data of relation between two components

Total Volume Data Bandwidth Satisfaction of Correlation

Ca Cb of Data Dependency Requirement Special Needs Coefficient

1 2 0.1 0.025 0.25 0.4 0.75

1 3 0.133 0.025 0.3 0.5 0.917

1 4 0 0.0025 0 1 0.003

1 5 1 0 1 0.4 5

1 6 0 0.00025 0 1 0.00025

1 7 0 0.00025 0 1 0.00025

1 8 0 0.00025 0 1 0.00025

1 9 0 0.00025 0 1 0.00025

2 3 0 1 0 0.5 2

2 4 0.333 0 0.5 0.5 1.667

2 5 0 0.00025 0 1 0.00025

2 6 0 0.00025 0 1 0.00025

2 7 0 0.00025 0 1 0.00025

2 8 0 0.00025 0 1 0.00025

2 9 0 0.00025 0 1 0.00025

3 4 0.3 0 0.5 0.5 1.6

3 5 0 0.00025 0 1 0.00025

3 6 0 0.00025 0 1 0.00025

3 7 0 0.00025 0 1 0.00025

3 8 0 0.00025 0 1 0.00025

3 9 0 0.00025 0 1 0.00025

4 6 0.167 0.0025 0.25 0.5 0.838

4 7 0 0.00025 0 1 0.00025

4 8 0 0.00025 0 1 0.00025

4 9 0 0.00025 0 1 0.00025

5 6 0.233 0.0025 0.2 0.5 0.872

5 7 0.267 0.0025 0.2 0.5 0.938

5 8 0.2 0.0025 0.2 0.5 0.805

5 9 0 0.00025 0 1 0.00025

6 7 0 0.00025 0 1 0.00025

6 8 0 0.00025 0 1 0.00025

6 9 0.667 0.0025 1 0.1 16.692

7 8 0 0.875 0 0.5 1.75

7 9 0.3 0.0025 0.25 0.5 1.105

8 9 0.3 0.0025 0.25 0.5 1.005
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Figure 3 The CDG of the whole task.

(a)                             (b) 

Figure 4 Tasks decomposition schemes with 2 subtasks, (a) The decision graph, (b) The
result of task decomposition.

 

    (a)                                  (b) 

Figure 5 Tasks decomposition results in different granularity (a) 3 subtasks of manually
selected task centre, (b) 4 subtasks of manually selected task centre.

so that they can not be calculated at the edge node. The result with 3 and 4
subtasks is shown in Figure 5.

In WMG-DCOM algorithm, we select an appropriate number of task
centre points according to the resource carrying capacity and number of
network edge nodes, and reasonably divide the subtasks according to the
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(a) 

(b) 

(c) 

Figure 6 Tasks decomposition results by WMG-Dcom, (a) 2 subtasks (b) 3 subtasks (c) 4
subtasks.

calculation amount of task elements. The divided subtasks form a small-scale
cluster, and the undivided task elements form a large-scale cluster. The results
are as shown in Figure 6.

5.3 Numeric Results and Analyses on More Cases

By comparing the total volume of data for exchange between subtasks, data
dependency, bandwidth requirements, satisfaction of special needs, trans-
mission time, and the resource utilization of edge nodes, the subtasks are
clustered. The numerical results are in Table 3.

Through the table, we can find that WMG-Dcom algorithm has higher
advantages than the IDPC-Dcom algorithm in clustering comprehensive data,
and the effect of clustering optimization is more obvious. Figure 7 presents
the comparison more intuitively.
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(a) 

Figure 7 Continued
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(b) 
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Figure 7 Performance comparison (a) radar chart on individual indicators, (b) on a compre-
hensive indicator of sub-task optimization degree.

After taking the Fully Decomposed data as the standard for measurement
and normalizing other parameters, it can be seen from the radar chart that the
algorithm proposed in this paper has a good performance in the optimization
of resource allocation and load balancing.

From the above results, we can see that the proposed WMG-Dcom
approach in this paper is better than the IDPC-Dcom algorithm-based
decomposition approach in terms of generating multi-granularity decom-
position schemes, showing obvious advantages in the effectiveness of task
decomposition in a specific network environment.

6 Conclusion

This paper investigates task decomposition for componentized network appli-
cations in mobile edge networks. It summarized the factors impacting task
decomposition, and then proposed the weighted multi-granularity decompo-
sition (WMG-Dcom) approach to decompose the task of the whole network
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application into multi-granularity subtasks. The schemes in multiple gran-
ularities are to gain task scheduler a new dimension of freedom to choose
the proper granularity of decomposed tasks for resource scheduling to be
adaptive to the diverse computing condition in mobile edge networks and
reduce the complexity of task scheduling. Numeric results demonstrate the
effectiveness of the proposed WMG-Dcom in deriving multi-granularity
decomposition schemes with expected overall execution cost reduced in each
granularity.

Acknowledgement

The work is funded by Beijing University of Posts and Telecommunications-
China Mobile Research Institute Joint Innovation Centre.

References

[1] J.X. Liu, Z.H. Xia, “An approach of web service organization using
Bayesian network learning”, Journal of Web Engineering, Vol. 16,
No. 3&4 (2017) 252–276

[2] X. Larrucea, I. Santamaria, C. Ebert, et al., “Microservices,” IEEE
Software, vol. 35, pp. 96–100, June 2018.

[3] S.P. Yi, Z.Z. Tan, Z.L. Guo, P.H. Wen, J. Zhou, et al., “Optimization of
manufacturing task decomposition mode in cloud manufacturing service
platform,” Computer integrated manufacturing system, vol. 8, pp. 2201–
2212, January 2015.

[4] C.Z. Xia and S.L. Song, “Resource scheduling algorithm for hierarchical
data grid based on quotient space,” Journal of communications, vol. 6,
pp. 146–155, June 2013.

[5] X. Liu, J. Yu, J. Wang, et al., “Resource Allocation with Edge Comput-
ing in IoT Networks via Machine Learning,” IEEE Internet of Things
Journal, vol. 7, pp. 3415–3426, April 2020.

[6] H. Li, H. Xu, C. Zhou, et al., “Joint Optimization Strategy of Com-
putation Offloading and Resource Allocation in Multi-Access Edge
Computing Environment,” IEEE Transactions on Vehicular Technology,
vol. 69, pp. 10214–10226, June 2020.

[7] S. E. Mahmoodi, K. Subbalakshmi, and R. N. Uma, “Spectrum-Aware
Mobile Computing: Convergence of Cloud Computing and Cognitive
Networking,”. Springer International Publishing, 2019.



840 Ziliang Wang et al.

[8] M.Z. Liu, Q. Wang, et al., “Task decomposition method of cloud man-
ufacturing based on Hierarchical Task Network”, China Mechanical
Engineering, vol. 28, pp. 924–930, 2017.

[9] Mohamad Roshanzamir, Maziar Palhang, et al., “Efficiency improve-
ment of genetic network programming by tasks decomposition in
different types of environments”, Genetic Programming and Evolvable
Machines, 2021: 1–38.

[10] G. Latif, N. Saravanakumar, J. Alghazo, et al., “Scheduling and
resources allocation in network traffic using multi-objective multi-user
joint traffic engineering,” Wireless Networks, vol. 26, pp. 5951–5963,
November 2020.

[11] P. Balakrishnan and C.K. Tham, “Energy-efficient mapping and schedul-
ing of task interaction graphs for code offloading in mobile cloud
computing,” 2013 IEEE/ACM 6th International Conference on Utility
and Cloud Computing, vol. 23, pp. 34–41, December 2013.

[12] W. Zhang, Y. Wen, D. Wu, et al., “Collaborative task execution in
mobile cloud computing under a stochastic wireless channel,” IEEE
Transactions on Wireless Communications, vol. 14, pp. 81–93, January
2015.

[13] J. Han, J. Pei, M.Kamber, et al., “Data mining: Concepts and Tech-
niques”, Elsevier, New York, 2011, pp. 228–321.

[14] Y Li, W.J Zhou, H.K Wang. “F-DPC: Fuzzy Neighborhood-based
Density Peak Algorithm”, IEEE Access, 2020.

[15] T.N. Tran, K. Drab, M. Daszykowski, et al., “Revised DBSCAN algo-
rithm to cluster data with dense adjacent clusters,” Chemometrics and
Intelligent Laboratory Systems, vol. 120, pp. 92–96, January 2013.

[16] M. Ankerst, M.M. Breunig, H. Kriegel, J. Sander, et al., “Optics: order-
ing points to identify the clustering structure,” Proc ACM Sigmod Rec,
vol. 28, pp. 49–60, June 1999.

[17] X.W. Xu, M. Ester, H.P. Kriegel, J. Sander, et al., “A distribution-based
clustering algorithm for mining in large spatial databases,” Proceedings
of the Fourteenth International Conference on Data Engineering, vol. 10,
pp. 324–331, February 1998.

[18] W. Wang, J. Yang, R. Muntz, et al., “STING: a statistical informa-
tion grid approach to spatial data mining,” VLDB ’97: Proceedings of
the 23rd International Conference on Very Large Data Bases, Athens,
pp. 186–195, August 1997.



Multi-granularity Decomposition of Componentized Network Applications 841

[19] S. L’Yi, B. Ko, D.H. Shin, et al., “XCluSim: a visual analytics tool
for interactively comparing multiple clustering results of bioinformatics
data,” BMC Bioinformatics, vol. S11–S5, August 2015.

[20] T. Li, H.W. Ge, S.Z. Su, et al., “Density Peaks Clustering Based on
Density Adaptive Distance,” Microcomputer, vol. 6, pp. 1347–1352,
June 2017.

[21] X.X. Han, “Analysis of Chameleon Algorithm based on K-medoids,”
Modern Trade Industry, vol. 34, pp. 195–196, November 2019.

[22] D.S. Sun, Fast graph clustering in large-scale systems based on spectral
coarsening, International Journal of Modern Physics B, 2021, 35(09).

[23] H.H. Zhou, Z. Zhang, Q. Zhang, et al., “Density peak clustering
combining shared nearest neighbour and shared inverse nearest neigh-
bour”, Journal of China West Normal University, ISSN 1673-5072, CN
51-1699/N, October 2021.

[24] Z.W. Gu, P. Li, X. Lang, et al., “A Multi-Granularity Density Peak Clus-
tering Algorithm Based on Variational Mode Decomposition”, Chinese
Journal of Electronics, Vol. 30, No. 4, July 2021.

[25] Z.H. Lv, L. Qiao, A.K. Singh, et al., “Advanced Machine Learn-
ing on Cognitive Computing for Human Behavior Analysis,” IEEE
Transactions on Computational Social Systems, vol. 10, pp. 1–9, July
2020.

Biographies

Ziliang Wang received his Bachelor of Engineering degree from Beijing
University of Posts and telecommunications in 2017. He is currently studying
for a master’s degree in network management centre, School of computer
science, Beijing University of Posts and telecommunications.



842 Ziliang Wang et al.

 

Fanqin Zhou, received his Ph.D. degree in automation from the Beijing Uni-
versity of Posts and Telecommunications (BUPT), China, in 2019. He is cur-
rently a Postdoctoral Fellow with the State Key Laboratory of Networking
and Switching Technology in BUPT. His current research interests include
network slicing and resource management of mobile edge networks.

 

Lei Feng, received his B.Eng. and Ph.D. degrees in Communication and
Information Systems from Beijing University of Posts and Telecommuni-
cations (BUPT) in 2009 and 2015. He is an Associate Professor at present
in State Key Laboratory of Networking and Switching Technology, BUPT.
His research interests are resources management in wireless network and
smart grid.



Multi-granularity Decomposition of Componentized Network Applications 843

Wenjing Li, is currently a professor at BUPT and serves as a director in the
Key Laboratory of Network Management Research Centre. Meanwhile, she
is the leader of TC7/WG1 in the China Communications Standards Asso-
ciation (CCSA). Her research interests are intelligent network management,
knowledge-driven management and control of B5G/6G networks. Prof. Li is
hosting the China first 6G research project, and published more than 120
papers in prestigious journals (e.g., IEEE Transactions, IEEE IoT-J) and
conferences (e.g. INFOCOM, ICC, PODC).

 

Tingting Zhang, received the Master of computer applications degree from
University of Chinese Academy of Sciences in 2011. She is currently working
in China Mobile Research Institution as a Technical Director. Her current
research interests include network virtualization, cloud computing, edge
computing, ubiquitous computing and etc.



844 Ziliang Wang et al.

 

Sheng Wang, received the Master of Engineering degree from Beijing
institute of technology in 2010. He is currently working in China Mobile
Research Institution as a Technical Director. His current research interests
include NFV/SDN, ubiquitous computing, heterogeneous computing and
cloud-network convergence, etc.

 

Ying Li, received the Master of Engineering degree from Beijing University
of Posts and Telecommunications in 2017. She is currently working in China
Mobile Research Institution as a project manager.


	Introduction
	Related Work
	Task Decomposition
	Graph Clustering Algorithm

	System Model
	Componentized Network Applications
	Constraints of Task Decomposition
	Definitions Used in Algorithm Design

	Multi-Granularity Task Decomposition Approach
	An Improved Density Peak Clustering Algorithm with Adaptive Cut-off Distance
	Proposed multi-granularity task decomposition algorithm

	Simulation and Comparison
	Evaluation Scheme Description
	Illustration of the Proposed Task Decomposition Approach
	Numeric Results and Analyses on More Cases

	Conclusion

