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Abstract

This paper proposes a point cloud (PC) visual quality assessment (VQA)
framework that reflects the human visual system (HVS). The proposed
framework compares natural images acquired using a digital camera and
PC images generated via 2D projection in terms of appropriate objective
quality evaluation metrics. Humans primarily consume natural images; thus,
human knowledge is typically formed from natural images. Thus, natural
images can be more reliable reference data than PC data. The proposed
framework performs an image alignment process based on feature matching
and image warping to use the natural images as a reference which enhances
the similarities of the acquired natural and corresponding PC images. The
framework facilitates identifying which objective VQA metrics can be used
to reflect the HVS effectively. We constructed a database of natural images
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and three PC image qualities, and objective and subjective VQAs were con-
ducted. The experimental result demonstrates that the acceptable consistency
among different PC qualities appears in the metrics that compare the global
structural similarity of images. We found that the SSIM, MAD, and GMSD
achieved remarkable Spearman rank-order correlation coefficient scores of
0.882, 0.871, and 0.930, respectively. Thus, the proposed framework can
reflect the HVS by comparing the global structural similarity between PC
and natural reference images.

Keywords: Point cloud, quality evaluation, visual quality assessment.

1 Introduction

In recent years, rich content expression technologies are required to increase
user participation with the development of immersive applications, e.g.,
augmented reality, virtual reality, and car or robot navigation systems. Such
applications provide experiences that stimulate the user’s senses in increas-
ingly realistic ways. The content used for such applications requires capturing
and processing 3D scene and object shape data [1]. One of the most primitive
forms of such data is the point cloud (PC), a set of points in a given coordinate
space [2]. The rapid development of 3D scanning technologies, e.g., the
Microsoft Kinect and FARO Laser Scanner, has made it easier to acquire
PC data [3–5]. Figure 1 shows an example of a PC “bunny,” generated via
surface reconstruction using the zippering method [6–8].

A PC contains a large amount of data, including points, colors, location
information, and attributes. These data often require compression technology
while retaining data quality [10–14]. PC data generation could be subject to
significant error due to inaccuracy in the depth acquisition or 3D reconstruc-
tion techniques when the data are obtained directly from depth sensors or
from image information [15, 16]. Thus, a framework is required to evaluate
various PC processing techniques, e.g., data acquisition, error removal, com-
pression, and streaming, which would provide useful guidelines for PC-based
system design [17]. Accordingly, with the development of PC technologies
to provide users with immersive experiences, research into visual quality
assessment (VQA) of PC data is becoming increasingly important.

VQA has been studied in the image and video processing field. VQA
is generally interpreted as fidelity or similarity to a reference image in
some spaces. One of the purposes of VQA is signal fidelity measurements
that reflect physiological and psychological visual features of the human
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         (a)                    (b) 

Figure 1 Bunny point cloud [9]: (a) raw points, and (b) surface reconstruction.

visual system (HVS), so it is important that VQA exploits the properties
of HVS [18]. A typical point-to-point error evaluation metric is the peak
signal to noise ratio (PSNR); however, this metric is unlikely to reflect HVS
perception accurately [19, 20]. For 2D image VQA, the structural similarity
index (SSIM) was developed to utilize HVS characteristics better [21]. VQA
applications reflecting the HVS are being conducted in various fields, such as
panoramic video, video conferencing, stereoscopic video, video codecs, and
composite image databases [18].

PC quality can be evaluated quantitatively according to geometry errors,
e.g., point-to-point, point-to-plane, and point-to-surface errors between the
target PC data and reference PC data in virtual 3D space [22–24]. However,
points are scattered in 3D space, and there is no clear connection structure;
thus, it isn’t easy to find corresponding reference PC data. Like the PSNR,
geometric-based PC VQA techniques do not reflect the HVS [25–38]. Thus,
an assessment technique that can reflect and verify the HVS is required for
PC data.

Therefore, to reflect the HVS in PC VQA, this paper proposes a VQA
method that utilizes natural images as a reference. Natural images captured by
cameras are ubiquitous in modern society; thus, they significantly affect prior
human knowledge. Such images can serve as reliable references based on
human experiences, whereas PC data are used for reference in conventional
PC VQAs. Thus, the proposed framework includes a database for VQA com-
prising natural images captured by digital cameras and PC images projected
from PC data. Feature-based matching is first performed to warp and align
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the common area of the images to compare the natural and PC image.
The aligned images are then evaluated using objective VQA techniques from
the image and video processing fields. The proposed framework was verified
by observing the consistency among different PC qualities in objective VQA
experiments and the correlation between the results of relevant objective
metrics and subjective VQA techniques.

The remainder of this paper is organized as follows. Section 2 introduces
studies related to the VQA of PCs. Section 3 introduces the proposed PC
VQA method, and Section 4 describes our experimental evaluations and
corresponding results. Finally, the paper is concluded in Section 5.

2 Related Work

Machine-based objective and human-based subjective VQAs can be per-
formed according to the evaluation subject.

An objective assessment can obtain consistent results through experi-
ments using the same test data without being affected by time, space, and
people. Objective assessments are frequently used to facilitate the design
of video communication systems and optimize video processing systems.
Objective VQA techniques can be classified as full-reference (FR), reduced-
reference (RR), and nonreference methods [39]. FR methods require un-
distorted or original images, and RR methods require information derived
from the original images. For objective VQA, the FR method is the most
widely used, and the mean squared error (MSE) and PSNR are the most com-
mon evaluation metrics used in FR methods. However, these point-to-point
evaluation metrics correlate poorly with subjective VQA results [40–45].

As stated previously, the objective quality of a PC can be evaluated based
on geometric-based metrics, i.e., point-to-point, point-to-plane, and point-to-
surface comparisons between the target and reference PC data. Point-to-point
metrics evaluate the average distance between points in the target PC and the
corresponding points in the reference PC. The average distance is obtained
using the root mean square or Hausdorff distance. Point-to-plane metrics
identify corresponding points between the target PC and the reference PC.
Here, normal vectors are taken if available; otherwise, they are estimated
using the nearest neighbor points. Point-to-plane distortion is computed as
the root mean square of the magnitudes of all projected error vectors. The
point-to-surface metrics consider the distance between points in the target
PC and the surface of the reference PC. Note that point-to-surface metrics
require reference PCs with surface reconstruction using 3D mesh, and its
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distortion is obtained like the point-to-plane metric [22]. Another approach
for objective VQA of a PC is projection-based methods, which obtain a set
of projections of the target PC and reference PC. Projection-based methods
also use standard 2D image quality evaluation metrics, e.g., PSNR and SSIM,
to compare the set [46]. Deep learning-based VQA approaches have recently
begun to be studied [47]. Alessandro et al. [48] propose a model for learning
visual metric features to handle high computational complexity caused by
exploiting the objective metrics based on HVS. On the other hand, Rafal
et al. [49] propose a visual metric, based on a visual model for all luminance
conditions, for predicting visibility rather than quality. This approach could
handle a wide range of luminance, unlike current metrics that see narrow
intensity ranges, but there is a limitation that it does not consider color
information.

Humans are the ultimate receivers of visual signals. The VQA of an
image should consider human cognitive performance. Objective quality eval-
uation metrics cannot fully reflect the HVS of a 3D model. Thus, subjective
VQA techniques are frequently used to verify the accuracy of objective
VQA methods. The subjective VQA of an image and video is a combina-
tion of psychophysical responses to color, movement, texture, and context.
These responses are directly evaluated and observed by human evaluators.
A typical subjective quality evaluation method is the mean option score
(MOS), expressed as a single rational number in the range 1–5, where 1
and 5 represent the lowest and highest perceived quality, respectively. ITU-R
BT.500-13 is a well-known subjective VQA protocol [50] that defines several
test methods. These test methods are categorized into single and double
stimulation methods depending on how the evaluated content is presented to
the observer. Such testing methods include the single-stimulus (SS), double-
stimulus continuous quality scale, stimulus-compare, and single-stimulus
continuous quality evaluation techniques. The ITU-R BT.2021 recommen-
dation [51], another assessment protocol extended from ITU-R BT.500-13,
includes the subjective assessment of stereoscopic 3DTV systems. According
to the document, the subjective quality of 3D images was evaluated based on
depth quality and visual comfort in addition to general image assessment
techniques. In that study, the evaluators’ color perception, visual acuity, and
stereoscopic vision were also assessed.

Note that the subjective VQA of a PC is not standardized; however, it
can be performed using existing recommendations, e.g., ITU-R BT.500-13.
A subjective VQA can be performed by comparing the target PC data and the
reference PC data. As shown in Figure 2, various PCs generated according
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    (a)          (b)          (c)          (d) 
Figure 2 Different rendering methods for “longdress” PC [9]: (a) original PC, (b) same PC
with screen resolution multiplied, (c) PC with screen resolution multiplied three times and
larger point size, and (d) PC after screened Poisson surface reconstruction.

to the resolution of the projected image, rendering methods, surface recon-
struction methods, and scaling of the number of points can be evaluated [9].
ISO/IEC JTC1 SC29 WG1 joint photographic experts group introduces sub-
jective VQA results according to the various levels of remaining points on
several PC models [23]. Here, PCs of various quality levels are evaluated on
3D and 2D displays using the projection method. However, such subjective
assessments are complex, expensive, elaborative, and incapable of evaluating
real-time automatic systems. Thus, the goal of PC VQA research is the
design of an objective quality evaluation metric consistent with the results
of subjective human assessments.

3 Proposed PC VQA Framework

Generally, PC VQA evaluates the geometric distortion between the target PC
and the reference PC. Geometric evaluation metrics focus on the difference
in the corresponding data; thus, it is difficult to reflect the HVS in objective
VQA techniques. Thus, this paper proposes an objective VQA method that
uses natural images as a reference. Natural images are ubiquitous in modern
society, which is likely to increase the demand for quality PC data. Thus,
natural images are expected to work well as reference data for PC VQA.

Figure 3 illustrates the proposed PC VQA framework. As shown, PC data
input to the framework are converted to a 2D image via a projection process
in a virtual 3D space. The database comprises pairs of natural images and
projected PC images. Then, objective and subjective VQA techniques use this
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Figure 3 Proposed PC VQA framework.

database to perform their evaluations. The database construction, objective
VQA methods, and subjective VQA methods are described in the following
sections.

3.1 Database

A PC comprises a set of individual 3D points. In addition to having a 3D
(x, y, z) position, i.e., the spatial attribute, each point may also contain sev-
eral other attributes, e.g., color, reflectance, and surface normal information.
The proposed framework evaluates PC data relative to natural images, where
the natural images play the role of an anchor in determining the degree of
PC data quality in both the objective and subjective VQA techniques. The
PC data must be represented as a 2D image with a similar screen view as the
natural image to compare the 3D PC data with a 2D natural image. The target
PC data can be projected into 2D space, resulting in a 2D image, referred to
as a PC image in this paper.

To generate the PC image, the PC data are rotated and scaled in virtual
3D space to fit the rendering boundary. Then, the surface of the PC data is
rendered using one of the surface reconstructions [16]. Note that the virtual
illumination source and camera must be positioned sufficiently distant from
the PC data to illuminate all the PC data uniformly. By controlling the virtual
camera’s parameters, e.g., position, pose, rotation, and viewing angle, a PC
image with a similar screen view as the corresponding natural image can be
obtained.

Note that 2D image quality evaluation metrics, e.g., PSNR and SSIM, are
applied to the obtained PC images.
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The VQA database comprises groups of images that are sets of PC images
and corresponding natural images. The PC images can be produced by the
PC data projection process and have various quality levels depending on the
resolution, number of points, and surface reconstruction method. PC images
of different quality levels may belong to an image group with a corresponding
natural image. Assessment for various PC quality levels can provide useful
guidance in optimizing PC-based systems.

For the composition of the image group, the natural image with a view
similar to the PC images is required. For PC images, freedom of view is
supported by controlling the virtual camera’s parameters. However, there
are limitations related to capturing a natural image with the desired view.
For example, the view and color of a natural image may vary significantly
according to capturing environmental conditions, e.g., location, time, and
weather. Considering such limitations, it is recommended to acquire natural
images together with PC data to match the natural and PC images as closely
as possible. The difference between the generated PC and the natural images
can be moderated through post-processing techniques, e.g., color calibration.

3.2 Objective Quality Assessment

The processing sequence of the framework for objective VQA goes as fol-
lows: (1) generation of PC images from PC data; (2) post-processing by
image alignment process; (3) evaluation in terms of objective VQA metrics.
To this end, first, PC images are created through the projection of PC data
in virtual 3D space. The screen view similarity between the PC image and
the corresponding natural image can be increased by adjusting the virtual
camera’s parameters during the projection process. In the PC image projected
through the virtual camera parameter adjustment it is difficult to accurately
reflect the various camera information of the natural image view. In particular,
the natural image view may include a wider area, e.g., the background, than
the PC image view. The difference in co-located information caused by the
discrepancy between the two images can significantly reduce the accuracy
of the VQA. However, postprocessing techniques, e.g., image alignment
and color calibration, can reduce the differences between images. For post-
processing, the proposed objective PC VQA framework includes an image
alignment process (Figure 3).

The image alignment process, which involves both feature detection and
image warping, attempts to increase the matching accuracy of the region of
interest (ROI) in the PC image and the corresponding region in the natural
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image. First, an ROI in the PC image is set. Here, a feature detection
algorithm, e.g., scale-invariant feature transform (SIFT) and speed-up robust
features (SURF), is employed to increase the detection accuracy of the ROI
and a corresponding region [52, 53]. This algorithm is also applied to the
entire region of the natural image. Then, the corresponding regions of the
two images are determined by matching the features. The corresponding
regions may still have geometric differences; thus, the PC image is warped to
minimize the mean square difference, which can realize well-matched areas.

When the two images are aligned, the proposed framework measures
the quality of the matching images. Image VQA metrics generally interpret
image quality as fidelity or similarity with a “reference” or “perfect” image
in some perceptual space. Modeling the HVS has been considered the most
suitable paradigm to achieve better quality evaluation. A visual signal has dif-
ferent characteristics, e.g., brightness, contrast, frequency components, and
interactions between different signal components. The basic premise is that
the visual system has different sensitivities depending on which aspects of
the signal it perceives. When considering different sensitivities, it is sensible
to calculate the strength of the error between the test and reference signals.
The FR VQA methods are suitable for achieving consistency in quality
evaluations by modeling the salient physiological and visual psychological
characteristics of the HVS or measuring signal fidelity [18]. By reflecting the
characteristics of the FR VQA, the proposed framework evaluates PC data in
virtual space using a natural image captured by a camera, i.e., the reference
image.

Objective VQA metrics reflect human perceptual behavior when compu-
tationally evaluating image quality. The MSE and PSNR are simple fidelity
measures that are widely used. The MSE is the L2 norm of the arithmetic
difference between the reference and test signals, and the PSNR is a transform
of the MSE (PSNR = 10 ∗ log(max 2/MSE ), where max is the maximum
pixel value in the image. These metrics’ simplicity and mathematical con-
venience make them suitable for measuring image quality [54]. However,
the correlation between the fidelity measures and the HVS is low for most
applications. Over the past few decades, VQA research has been conducted to
improve the PSNR. The SSIM is derived by hypothetically considering what
constitutes a loss in a signal structure. It is hypothesized that distortions in an
image come from variations in lighting, e.g., contrast or brightness changes,
are nonstructural distortions. These distortions should be treated differently
from structural distortions that image quality can be captured relative to
three complementary aspects of information loss, i.e., correlation distortion,
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contrast distortion, and luminance distortion [21]. In other words, the SSIM
measures the similarity in luminance, contrast, and structural content. The
multiscale structural similarity (MS-SSIM) and information content weight-
ing structural similarity (IW-SSIM), which are extended from the SSIM, are
estimated on multiple scales and contain a more advanced pooling strategy
of the local SSIM map by considering local information content, respectively
[55, 56]. The feature similarity index (FSIM) considers low-level features,
e.g., phase congruency and gradient magnitude [57]. In this study, PC data
are expressed as a 2D image through projection; thus, the above measures
can be utilized effectively to evaluate quality.

3.3 Subjective Quality Assessment

In most subjective VQA techniques, test subjects observe an original image
as the reference image and a degraded image as the test image. The proposed
framework uses natural images as the reference image and PC images as the
test image to evaluate the quality of a PC image using the MOS. The proposed
subjective VQA is performed as shown in Figure 3. In the subjective VQA
framework, the test configuration is a stage in which the subject, subjective
VQA method, evaluation equipment, and training session are set according
to the purpose and test data. The subjective VQA is performed in the test
environment with the database.

For subjective VQA, several standards that define subjective experimental
conditions for multimedia content, e.g., images and videos, can be applied.
There is currently no specific recommendation for subjective VQA of PC
data. PC data are represented in 3D virtual space; thus, subjective VQA
could be conducted on actual 3D display devices. The ITU-R BT.2021
Recommendation describes the subjective VQA of stereoscopic 3DTV sys-
tems. However, 2D VQA differs from 3D VQA, where depth quality and
visual comfort are considered important factors. The proposed framework
attempts to measure the visual quality of the PC rather than realism in a
3D environment. Thus, to compare the natural reference images and pro-
jected PC images, we employ the subjective assessment methodology of
video quality (SAMVIQ) for 2D images described in the ITU-R BT.1788
Recommendation [58].

SAMVIQ can use both explicit and hidden references, and the image can
be displayed randomly or multiple times. Note that playing and scoring any
sequence in any order is possible. In addition, each sequence can be replayed
and scored again. The maximum viewing time of each sequence is 10–15 s.
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All scenes must be evaluated to complete the experiment. The SAMVIQ
method provides PC images randomly at three different quality levels after
displaying a natural reference image in the proposed framework. The goal
of the subjective VQA is to verify an objective evaluation method consistent
with the subjective evaluation of PC images.

4 Experimental Results of the Database

In this section, we introduce the database prepared to evaluate the proposed
framework experimentally. Then, the experimental results of various objec-
tive VQA metrics are observed to find an evaluation method suitable for PC
VQA using natural images as a reference. Finally, the correlations between
the evaluated objective results and subjective VQA scores are compared
to verify whether the proposed framework reflects the HVS. Note that we
developed custom software to support PC viewing, objective and subjective
VQAs, and PC data projection functionalities for our experiments.

4.1 Database

This study captured PC data and natural image pairs using a FARO scan-
ner and a digital camera to facilitate our experimental evaluation. The PC
images were rendered from the acquired PC data using the 2D projection-
based method. However, due to the surface properties (e.g., low or specular
reflectance), occlusions, and sensor limitations, PC data obtained from
acquisition devices, e.g., FARO scanners, inevitably suffers from noise con-
tamination. The PC data also contains holes and outliers in the resulting
models. In particular, areas without data in the PC image created from PC data
comprising only 3D objects without background information can be identified
easily. These problems seriously affect the generated PC image; thus, the sim-
ilarity between a PC image and a natural image can decrease. Our database
comprises various scenes with and without a background to study how these
issues affect the VQA. In addition, one of three deep learning-based segmen-
tation algorithms, i.e., the boundary-aware salient object detection, U2Net, or
U2Netp algorithms, with the best visual completion is selected and applied
to the natural images to separate the background and target object [59, 60].
As shown in Figure 4, the database contains 10 image groups comprising
5 image groups of the nonsegmented scene and five image groups of the
segmented scene. Each image group contains three types of PC images and
the corresponding natural image. The resolution of the natural and PC images
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is 1920 × 1080 pixels considering a balance between the influence of aliasing
and image alignment complexity.

In this study, the PC images were generated as follows. The quality of
PC data can be affected by the number of points, point size, and surface
reconstruction algorithms. To observe the consistency between the objective
and subjective VQAs, we produced three types of PC data, i.e., (1) PC
data with a texture created using additional camera-captured images (Texture
PC), (2) the original PC data (Original PC), and (3) degraded PC data that
randomly eliminates 70–90% of the number of points (Degraded PC), as
shown in Figure 4.

Note that the projected 2D PC image cannot be structurally identical
to the corresponding natural image; thus, the projected 2D PC images are
aligned via the image alignment process using corresponding natural images
to reduce structural differences. The image alignment process is performed
based on the matching features of two input images. In most experiments,
the image alignment process improves the structural similarity between the
two images. However, in some experiments not included in the database, an
appropriate number of features for image alignment were not detected. In
particular, for the images of a segmented scene, feature matching accuracy
reduced significantly when aligning objects that exhibit repetitive patterns.

In contrast, nonsegmented scene images exhibited high feature-matching
accuracy because many easily detectable features are included in the objects
and background. Each level of PC data quality also slightly affects feature
matching accuracy. The image alignment process was performed for many
PC images, and then the PC images with an appropriate degree of completion
for VQA were selected for the database.

4.2 Objective Quality Evaluation

In our experiments, 10 FR metrics were employed to perform objective VQA
on our database, i.e., PSNR [54], SSIM [21], MS-SSIM [55], FSIM [57],
IWSIM [56], VIF [17], MAD [61], GMSD [62], VSI [63], and NLPD [64].
The 10 FR metrics can be classified as follows. PSNR performs the point-to-
point operation, and FSIM and VSI include the chrominance channels. SSIM,
MS-SSIM, MAD, and GMSD compare the two images’ global structural
similarity or statistical difference, and IW-SSIM, VIF, and NLPD observe
low-level features. This classification helps us understand which aspects the
PC VQA should consider relative to reflecting the HVS. The scores for each
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(a) Nonsegmented scenes 

(b) Segmented scenes 

Figure 4 Database constructed for the proposed framework. Each image group comprises
texture, original, and degraded PC images and the corresponding natural image.
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Table 1 Comparison of FR VQA scores observed on different PC qualities in nonsegmented
scenes
Image PC

Group Quality PSNR↑ SSIM↑ MS-SSIM↑ FSIM↑ IW-SSIM↑ VIF↑ MAD↓ GMSD↓ VSI↑ NLPD↓
1 Tex. 23.768 0.852 0.900 0.498 0.749 0.773 1068.141 0.281 0.870 2.732

Orig. 20.621 0.748 0.816 0.435 0.653 0.789 1200.608 0.304 0.681 2.993

Deg. 20.464 0.686 0.793 0.432 0.634 0.784 1511.303 0.313 0.608 3.101

2 Tex. 16.135 0.711 0.692 0.340 0.399 0.788 1329.691 0.302 0.783 6.149

Orig. 13.915 0.582 0.509 0.301 0.180 0.782 1829.728 0.313 0.746 5.624

Deg. 13.625 0.488 0.451 0.292 0.178 0.782 2199.199 0.322 0.717 4.338

3 Tex. 20.537 0.728 0.732 0.375 0.512 0.835 1261.521 0.298 0.842 4.988

Orig. 20.066 0.675 0.704 0.389 0.509 0.807 1448.856 0.307 0.810 4.691

Deg. 19.316 0.610 0.670 0.371 0.487 0.808 1804.755 0.315 0.794 5.351

4 Tex. 20.831 0.797 0.833 0.439 0.633 0.802 1349.037 0.287 0.726 2.783

Orig. 18.196 0.656 0.718 0.344 0.472 0.804 1619.741 0.306 0.651 3.393

Deg. 17.646 0.550 0.653 0.318 0.402 0.799 1934.721 0.321 0.699 3.494

5 Tex. 24.680 0.834 0.901 0.518 0.756 0.910 1070.609 0.270 0.831 3.036

Orig. 20.680 0.721 0.812 0.441 0.644 0.855 1247.066 0.295 0.810 3.107

Deg. 20.014 0.574 0.718 0.360 0.494 0.857 1747.097 0.309 0.736 3.839

Table 2 Comparison of FR VQA scores observed on different PC qualities in segmented
scenes
Image PC

Group Quality PSNR↑ SSIM↑ MS-SSIM↑ FSIM↑ IW-SSIM↑ VIF↑ MAD↓ GMSD↓ VSI↑ NLPD↓
1 Tex. 19.627 0.685 0.697 0.413 0.331 0.777 1331.674 0.264 0.842 2.427

Orig. 19.223 0.705 0.753 0.434 0.429 0.791 1283.216 0.261 0.836 2.109

Deg. 19.018 0.685 0.745 0.423 0.419 0.785 1401.756 0.266 0.840 2.126

2 Tex. 22.989 0.875 0.923 0.574 0.681 0.838 1286.507 0.198 0.852 1.206

Orig. 24.618 0.886 0.930 0.599 0.717 0.848 1194.368 0.192 0.852 1.186

Deg. 23.668 0.859 0.912 0.545 0.643 0.840 1266.635 0.204 0.838 1.269

3 Tex. 21.202 0.724 0.754 0.401 0.417 0.787 1282.059 0.294 0.722 2.142

Orig. 19.951 0.689 0.711 0.389 0.338 0.783 1342.390 0.286 0.744 2.316

Deg. 19.574 0.663 0.713 0.403 0.365 0.781 1433.090 0.293 0.721 2.300

4 Tex. 20.587 0.711 0.713 0.420 0.368 0.837 1314.905 0.270 0.836 2.332

Orig. 20.603 0.722 0.722 0.425 0.383 0.842 1247.568 0.266 0.845 2.307

Deg. 20.661 0.723 0.735 0.433 0.403 0.835 1237.756 0.261 0.850 2.247

5 Tex. 21.814 0.815 0.856 0.502 0.562 0.798 1497.728 0.244 0.828 1.874

Orig. 22.653 0.803 0.841 0.475 0.454 0.806 1305.927 0.227 0.863 2.012

Deg. 23.597 0.806 0.855 0.484 0.486 0.803 1209.351 0.216 0.863 1.732

PC image type were collected and compared to the corresponding natural
image.

Tables 1 and 2 show all scores obtained for the objective VQA. As shown
in Tables 1 and 2, in most image groups of the nonsegmented scene the
scores are distributed consistently in the order of texture PC, original PC,
and degraded PC. The results demonstrate consistency in the objective VQA
of the three PC image types. However, most image groups exhibit irregular



VQA of Point Clouds Compared to Natural Reference Images 419

score distribution in the segmented scene. For example, most of the original
PC images obtained the highest scores in image groups 1 and 2, and most
degraded PC images obtained the best scores in image groups 4 and 5. The
reasons for these inconsistent results relative to the segmented scene include
the possibility of lower image alignment accuracy compared to the images
of the nonsegmented scene. According to the features of different types of
PC data generated in this study, the texture PC score may be lower than the
original PC score depending on the texture quality or the performance of the
surface reconstruction algorithm. Nevertheless, the degraded PC score should
not be greater than the original PC image score because the degraded PC is
obtained from the original PC by eliminating 70–90% of the points in the PC.
Considering that the results exhibit low consistency in the segmented scene,
and the degraded PC images occasionally achieved higher scores than other
PC images, the scores for the segmented scene are excluded in the following
analyses because the outcomes may confuse the remaining experimental
results.

According to the experimental results of the nonsegmented scene, we can
observe the properties of the various metrics employed in the proposed frame-
work. As shown in the tables, SSIM, MS-SSIM, MAD, and GMSD, which
evaluate the global structural or statistical difference within the luminance
channel between two images, exhibit discernable score differences among the
three PC image types and prove consistency. VIF and NLPD show similar
scores overall and inconsistent trends according to the PC image quality.
Regarding the PSNR results, the scores between the texture PC and original
PC images are discriminative; however, the scores for the original PC images
are similar to those of the degraded PC images. The PSNR results reveal
that the difference in texture impacts the PSNR significantly. The remaining
metrics demonstrated no meaningful change in the scores. Based on these
observations and the characteristics of the 10 FR metrics, the metrics that
measure global structural similarity are considered the application to the
evaluation of PC quality using natural images as a reference. In the following,
the objective and subjective VQA results are discussed to verifying whether
these metrics are valid in the HVS.

4.3 Subjective Quality Evaluation

In our subjective VQA experiments, we recruited 46 participants (undergrad-
uate students aged 20–30 years). All participants had normal or corrected-to-
normal visual acuity and were unfamiliar with video quality assessment and
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distortion. Before the evaluation, the participants were briefed on the subject
and purpose of the experiment. Then, a training session was conducted to
familiarize the participants with the subjective testing. Here, a 75-inch TV
was used to display contents. The subjects were given scoring sheets to enter
their quality scores, and the distance from the display device was determined
autonomously within a range of 1–3 m. We evaluated the subjects’ recorded
ratings in terms of MOS. As Yize et al. [65] validate the subjective and
objective quality assessment of 2D by evaluating the consistency between
objective and subjective quality to evaluate 3D foveated video compression in
virtual reality, this paper also proves our experiments with validation. Hence,
the Pearson linear correlation coefficient (PLCC) and Spearman rank-order
correlation coefficient (SROCC) were used to measure further the correlation
between the MOS results and the correlation between individual objectives
and the VQA metric against MOS [66].

Intersubject consistency experiments were conducted to guarantee the
reliability of the subjective VQA results, as shown in Figure 5. The con-
sistencies were measured twice by randomly dividing the results of the 46
participants into two subgroups. Figure 5 plots the MOS results, showing
subgroups’ average scores regarding PC images as points in the joint MOS–
MOS space. We found that the average scores are adequate to indicate
normality for 26 outcomes. Here, the subjective scores for the texture,

(a)                                (b) 
Figure 5 Scatter plots of MOS from two nonoverlapping, equal-sized groups of subjects.
(a) Intersubject consistency of the subjective quality assessment, SROCC = 0.910. (b) Inter-
subject consistency of the subjective quality assessment, SROCC = 0.950.
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Figure 6 Scatter plots of all objective FR VQA scores vs. MOSs for all the PC images
with the nonsegmented scene. The red curve indicates the best-fitting polynomial function
and subjective VQA scores.
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Table 3 Performance comparison of FR models on the database

Nonsegmented Scene Segmented Scene

Metric PLCC↑ SROCC↑ PLCC↑ SROCC↑
PSNR 0.479 0.614 0.125 0.016

SSIM 0.853 0.882 0.057 0.060

MS-SSIM 0.609 0.687 0.177 0.143

FSIM 0.594 0.635 0.149 0.064

IW-SSIM 0.516 0.576 0.212 0.148

VIF 0.191 0.099 0.077 0.047

MAD 0.854 0.871 0.030 0.120

GMSD 0.861 0.930 0.160 0.084

VSI 0.579 0.590 0.082 0.033

NLPD 0.080 0.282 0.274 0.236

original, and degraded PC images are shown using blue, orange, and green
dots, respectively. For the two experiments illustrated in Figure 5, the
SROCC scores measured using the MOS average are 0.91 and 0.95, respec-
tively, demonstrating reasonably high consistency. The MOS scores for the
degraded PC images are the lowest in Figure 5, similar to the objective
VQA trend observed with the nonsegmented scene. However, the subjec-
tive VQA results do not exhibit much difference in quality between the
texture and original PC images. In addition, the subjects rated the quality
of several original PCs higher than the corresponding texture PCs, which
was analyzed as an effect of the visual satisfaction of texturing. According
to the consistency and similarity of the observation, we have verified the
correlation between the proposed framework and the HVS by comparing both
objectives.

To demonstrate the correlation between the observed MOS and the results
of the 10 FR metrics, Figure 6 plots the average MOS and objective VQA
scores to the corresponding points for all PC images of the nonsegmented
scene. In addition, Table 3 shows the PLCC and SROCC scores for the
correlation between each FR metric and the MOS given in Figure 6. As can
be seen, the SSIM, MAD, and GMSD scores, which demonstrated the highest
consistency, are considered the most appropriate metrics for the proposed PC
VQA framework. The SROCC score of MS-SSIM was lower than the appro-
priate metrics; however, it was the highest among the other FR metrics. The
remaining FR metrics indicate insufficient consistency in evaluating quality.
In particular, the VIF and NLPD scores exhibited very low consistencies.
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The most appropriate metrics compare the overall structural similarity or
statistical differences within the luminance channel of the images. These
metrics benefit PC quality evaluation using natural images as references, even
in the objective VQA results. Thus, the proposed framework has verified that
the global structural similarity between 2D images should be considered to
evaluate PC quality reflecting the HVS. In addition, we found that minimiz-
ing structural limitations, e.g., empty space in PC data is advantageous for
PC VQA.

5 Conclusions

This paper has proposed a PC VQA framework using natural images as a
reference. We constructed a database with three types of PC images and
corresponding natural images to study the consistency of the PC quality
assessment. The developed software produced the PC images using 2D-based
projection, image alignment, and object-background segmentation to enhance
structural similarity with the natural images. The proposed framework utilizes
both natural and PC images; thus, the PC images were evaluated in terms
of various FR metrics in objective VQA. In the objective VQA results, the
proposed framework exhibited high consistency in the evaluation methods
when comparing the global structural similarity of images with more accurate
features, including the background. However, PC images representing 3D
objects without background demonstrated remarkably low similarity to the
natural images. In other words, there is a limitation in that low accuracy of the
image alignment affects inconsistent results; thus, further research is required
to improve the image alignment. In the subjective VQA results obtained from
46 participants, the scores of each metric and the average MOS scores were
compared to confirm how effectively the objective VQA reflected the HVS.
The experimental results exhibited strong consistency and were verified in
the objective VQA, demonstrating a remarkably high correlation with the
subjective VQA. Thus, we believe the proposed framework reflects the HVS
through highly accurate image alignment and structural similarity between
the PC and natural reference images.

Recently, since the emerging high dynamic range (HDR) point cloud [67]
can provide us with a dominantly improved viewing experience, the proposed
framework needs further study from a perceptual and HDR perspective.
The performance of the proposed method could also be further analyzed
by building various databases, including PC data and corresponding natural
images.
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