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Abstract

The recent outbreak of the COVID-19 coronavirus pandemic has necessi-
tated the development of web-based, non-contact edge analytics solutions.
Non-contact sensors serve as the interface between web servers and edge
analytics through web engineering technology. The need for an edge device
classification model that can identify COVID-19 patients based on early
symptoms has become evident. In particular a non-contact implementation
of such a classification model is required to efficiently prevent viral infec-
tion and minimize cross-infection. In this work, we investigate the use of
diverse non-contact biosensors (e.g., remote photoplethysmography, radar,
and infrared sensors) for reducing effective physical contact with patients and
for measuring their biometric data and vital signs. We further explain a clas-
sification method for suspected COVID-19 infection based on the measured
vital signs and symptoms. The results of this study can be applied in patient
classification by mobile-based edge computing applications. The correlation
between symptoms comprising cough, sore throat, fever, headache, myalgia,
and arthralgia are analyzed in the model. We implement a machine learning
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classification model using vital signs for performance evaluation, and propose
an ensemble model realized by fine-tuning the high-performing classification
models. The proposed ensemble model successfully distinguishes suspected
patients with an accuracy, area under curve, and F1 scores of 94.4%, 98.4%,
and 94.4%, respectively.

Keywords: Edge computing, COVID-19 classification, non-contact bio-
sensor, artificial intelligence, machine learning.

1 Introduction

After its first emergence in mainland China in December 2019 and rapid
spread around the world, COVID-19 was declared a pandemic by the World
Health Organization (WHO) on March 11, 2020 [1]. The global escalation of
the number of critically ill patients due to the rapid spread of the virus resulted
in shortages of both medical supplies and staff [2]. Owing to the severity of
the COVID-19 pandemic, the development of classification methods at the
detection stage, especially on edge devices, is required to rapidly identify
infected patients based on their vital signs and early symptoms.

Edge computing enables computation to be performed at the edge of a
network rather than relying solely on the cloud for data processing. In this
context, the edge refers to computing and networking on the path between
the data source and cloud data center. Although placing computing tasks at
the edge rather than the cloud improves data processing efficiency, network
bandwidth limitations can result in data transmission bottlenecks as the
amount of data generated at the edge and data processing speed increase.
It is therefore more effective to process the majority of the data generated
in the Internet of Things (IoT) at the network edge than to transmit it to the
cloud [3, 4]. Instead of relying solely on cloud-based servers for classifying
and processing suspected COVID-19 cases, analysis tasks can be performed
on edge devices such as smartphones, sensors, or IoT devices that interact
with the system.

Non-contact-based vital sign measurement techniques such as camera-
based remote photoplethysmography (r-PPG) and the use of radar and
infrared (IR) sensors can be used to measure and analyze vital signs on edge
devices such as smartphones. These technologies enable the measurement of
parameters such as the heart rate (HR), heart rate variability (HRV), breathing
rate (BR), oxygen saturation (SPO2), and body temperature.
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In this paper, we describe the use of edge computing and non-contact
sensors for vital sign measurements. We developed and evaluated the perfor-
mance of a COVID-19 suspect classification method for the rapid identifi-
cation of infected patients based on the statistical correlation between early
symptoms and non-contact biometric vital signs. The results of this study
enable suspected infected individuals to be easily classified without physical
contact through mobile-based edge computing applications.

This paper is organized as follows. Section 2 describes the development
of the classification model comprising (i) non-contact biosensors, (ii) infected
patient classification criteria, (iii) detailed process of the classification model,
(iv) dataset for model learning, (v) evaluation of the classification model,
and (vi) performance test of the classification model. Section 3 concludes the
paper with a summary and suggestions for future work.

2 Materials and Methods

2.1 Non-contact Biosensors

r-PPG allows non-contact monitoring of blood volume pulses using a com-
mercial camera. Photoplethysmography (PPG), which was first demonstrated
in the 1930s [4], is a non-invasive biophotonic measurement technique that
enables real-time monitoring of various vital signals such as the pulse, BR,
and blood oxygenation. The working principle of PPG is based on detecting
changes in the light absorption of skin due to changes in blood volume during
the cardiac cycle. The scattering of light inside skin illuminated by a light
source causes diffuse reflection, which changes the color of the scattered
light according to the blood volume. In r-PPG, the change in the amount of
blood in the skin is measured as an RGB signal, which allows for non-contact
measurement of the pulse rate [5]. r-PPG is a non-invasive and non-contact
technique that enables the HR to be measured facilely simply by capturing a
facial image using an imaging device [6].

In a recent study, the transient respiration rate was successfully estimated
by analyzing the frequency domain properties of r-PPG signals. The mea-
surement of the respiration rate by estimating pseudo-r-PPG signals from
the breathing pattern has also been reported [8]. A camera-based r-PPG
signal provides a PPG-like signal and a novel approach for non-invasive BP
measurements [9].

BP measurement using a single sensor is based on the morphological
properties of the blood volume dynamics obtained from PPG measurements
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at a specific site [10, 11]. Because the working principles of PPG and
camera-based r-PPG are similar, the successful estimation of BP from finger
clip PPG signals suggests the possibility of non-contact BP measurement
via r-PPG, as was confirmed in recent PPG, r-PPG, and BP correlation
studies [12—18]. Camera-based rPPG for vital sign measurement can be
readily implemented in smartphones owing to their widespread availability
and recent technological advancements. Currently, multinational companies
such as Google and Samsung provide services for health monitoring based on
the BP, HR, BR, heart rate variability (HRV), and stress levels through their
respective smartphone platforms Google Fit and Samsung Health.

Radar, which is widely used in industrial and military applications,
has recently been applied for vital sign analysis, particularly in low-power
and biocompatible ultra-wideband (UWB) applications. Diverse human vital
signs such as the HR, HRV, BR, and BP can be monitored using radar
technology [19-23]. Commercial radar sensors for measuring human vital
signs comprise a 60—64 GHz millimeter wave sensor with a 130° azimuthal
field of view (FoV) and 130° elevation FoV.

Measuring the body temperature in public places has become a daily
routine because the presence of fever is one of the most important factors in
diagnosing COVID-19. Most current body temperature measurement meth-
ods involve thermal imaging cameras based on infrared rays. Several methods
have been implemented to prevent technical errors in body temperature mea-
surements when facial masks are worn. The first method involves determining
if the individuals are wearing facial masks while their body temperatures are
measured. The second method involves recognizing the facial area to prevent
high-temperature objects from being identified as fever [24]. Additionally, a
face recognition program has been used to determine whether a mask was
used and whether the mask was worn correctly within the facial recognition
range [29].

2.2 Criteria for Classifying Suspected Infection Using Vital
Signs and Symptoms

Among the patients’ vital signs, the body temperature, HR, and BR can be
used to classify patients with mild and severe COVID-19.

The Korean Society of Critical Care Medicine (KSCCM), Korean Society
of Infectious Diseases, Korean Academy of Tuberculosis and Respiratory
Diseases, and Korean Society for Antimicrobial Therapy have developed
guidelines for patients with severe COVID-19. The modified early warning
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Table 1 Modified early warning score (MEWS)

Value
Parameter 3 2 1 0 1 2 3
Pulse <40 41-50 51-100 101-110 111-130 >131
Systolic BP <70 71-80  81-100 101-199 >200
Respiration rate <8 9-14 15-20 21-29 >30
Temperature <350 31.5-36.0 36.1-37.4 >37.5
CNS level Alert (A) Reactingto Reactingto  Unresponsive

voice (V) pain (P) L)

Source: Diagnosis Guideline of Severe COVID-19 Patients, Korean Society of Critical Care Medicine
(KSCCM), (v.1.1, 2020.03.01).

score (MEWS, Table 1) is used to classify patients as low (lower than 4),
moderate (score of 5 or 6), and high risk (higher than 7), and a diagnostic
guideline was devised for each group [26]. Oxygen saturation (SpO2) and
oxygen application criteria were added to the National EWS (NEWS) [27].

According to the clinical characteristics of COVID-19 patients, 2% of
the patients exhibited body temperatures below 37.3°C, 20% of the patients
temperatures between 37.3 and 38.0°C, 44% of the patients temperatures
between 38.1 and 39.0°C, and 34% of patients temperatures above 39.0°C.
The BR was less than 24/min for 29% of the entire sample of COVID-
19 patients [28]. The BR in COVID-19 acute respiratory distress syndrome
(ARDS) was reported to be 26/min [29]. In healthy individuals, the BR
interval shows a predictable and consistent nonlinear shortening as the
HR increases [30]. Changes in the HR and BR are therefore characteristic
symptoms of COVID-19 [28-31].

Fever is also associated with the BR. Elevated temperatures in a patient
can cause shortening of the BR interval. For instance, it was shown in a
study that the HR increased from 66.5/min to 84/min as the body temperature
increased to 38.4°C. This shows that a 1°C increase in body temperature
causes the heart rate to increase by 8.5/min [32].

The guidelines of the Korea Centers for Disease Control and Prevention
recommend that individuals who have body temperatures exceeding 37.5°C
and BR below 12/min or above 25/min be subjected to detailed exami-
nation. More specific guidelines recommend that COVID-19 screening be
performed on individuals in the age group of 6-11 years with HR outside
the range of 75-118, individuals in the age group of 12-59 years with HR
outside the range of 60—100, individuals with respiratory disease and SpO2
< 88%, and individuals without respiratory disease with SpO2 below 95%.
The COVID-19 classification process is as follows (Figure 1).



602 T-H. Hwang and K. Y. Lee

PPG Feature Classification e
He Exixaciigi Algyrifhod ’V Cbnson

HRYV
Radar Sensor | -
BR (BR, HR)
Temp Z 375
SpO2
vy Radar Sensor > HR Z 100
Body Temp Active Fall “: %li_“u "
== +19C=s70) — T - — RIS
= b e
e Lxx] (5p02) BR<12
e BR 225 = 5
52 Bloi Pressure 952 $p02 K rhice
" = . s L -
omcniieio HRY BBZ SpO2 ? -
£ _,| Symptom %
IR Sensor "
Body Temp [ Normal ][ Abnormal l

Figure 1 COVID-19 classification process.

Various machine learning (ML) models have been or can be used to clas-
sify suspected COVID-19 cases [33]. Decision tree is a supervised learning
algorithm that creates a tree-like model of decisions and their potential conse-
quences. It is a simple and interpretable model that performs well with small
datasets. A support vector machine (SVM) is a model that finds the boundary,
known as the decision boundary, that best separates the current data. The data
points closest to this boundary are called the support vectors. The SVM learns
by maximizing the margin, which is the distance between the support vectors
and decision boundary. Random forest is an ensemble learning method that
combines multiple decision trees and selects subsets of features and data
points for each decision tree to reduce overfitting and improve generalization.
The final prediction is obtained by voting or averaging. It is a powerful
and effective model for handling complex datasets. Logistic regression is a
linear model used for binary classification based on modeling the relationship
between independent variables and the probability of a binary outcome using
the logistic function. It is a simple yet effective model widely used in many
domains. Naive Bayes is a probabilistic machine learning model based on
Bayes’ theorem, which classifies the given data into predefined categories
based on prior information. It is widely used in various fields such as text
classification, spam filtering, sentiment analysis, document classification, and
medical diagnosis. It is known for its simplicity, effectiveness, and fast learn-
ing and prediction speeds [34]. The k-nearest algorithm is a non-parametric
lazy-learning algorithm that classifies data points based on their proximity
to other data points. The class label is determined by majority voting among
the k-nearest neighbors. It is a simple and intuitive model that performs well
with small datasets [35]. Gradient boosting is an ensemble learning method
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Figure 2 COVID-19 classification ensemble model implementation.

that combines multiple weak prediction models (typically, decision trees)
to create strong predictive models. The model is improved iteratively by
minimizing the loss function using the gradient descent method [36].

2.3 Implementation

Among the various vital signs, the body temperature is often used in the
classification of COVID-19 suspects. To perform a comparison with the
previous classification model, we implemented a ML COVID-19 suspect
classification model that utilizes symptoms such as high fever, body pain,
runny nose, difficulty in breathing, nasal congestion and sore throat [37].

The COVID-19 suspect classification model was constructed using
numerous ML algorithms comprising a gradient boosting classifier, logistic
regression, random forest classifier, KNN classifier, decision tree classifier,
SVM, and naive Bayes, utilizing body temperature, HR, and BR as features.
The performance of each classification algorithm was evaluated and the
model with the highest performance was selected and further fine-tuned for
implementation in the ensemble algorithm (Figure 2).

2.4 Data Analysis and Pre-processing

Open-source COVID-19 prediction data from GitHub and PhysioNET were
collected to construct the classification model. The data consist of the vital
signs and viral symptoms of 1260 patients and 1239 non-patients of various
nationalities, age, and genders. The vital signs used in the classification
model comprise the HR, BR, and body temperature of non-COVID-19
patients [38, 39].

The raw data were first binarized into 0 and 1 depending on the absence
or presence of each viral symptom of COVID-19 infection. The processed
data were then used to determine the correlation between each symptom
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Figure 3 Correlation between COVID-19 infection and symptoms.

and COVID-19 infection using the classification model. The symptoms used
comprise fever, body pain, runny nose, breathing difficulty, nasal congestion,
and sore throat. In particular, breathing difficulty, body pain, and fever have
the highest correlation to COVID-19 infection with an average coefficient of
approximately 0.4 (Figure 3).

2.5 Evaluation Metrics

To evaluate the model, four metrics comprising the accuracy, precision, recall,
and F1 score were considered in this study [40]. The terms true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) are used in the
following definitions: given a dataset consisting of (TP + TN + FP + FN)
data points, the accuracy is the ratio of the total number of correct predictions
(TP + TN) by the classifier to the total number of data points. The precision
is the ratio of the true positive samples to the sum of the true positive and
false positive samples. The recall is the ratio of true positive samples to the
sum of true positive and false negative samples. The F1 score is the harmonic
mean of the recall and precision values. These definitions can be written as
follows (Equations (1)—(4)):

TP + TN
Accuracy = ™1 TN——'—l— P+ TN 0.0 < Accuracy < 1.0 (1)
TP
Pl"eCiSiOIl = TP——FFP (2)
TP
Recall = ——— (3

TP +FN
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Precision x Recall
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The receiver operating characteristic (ROC) curve illustrates the relation-
ship between the false positive rate (FPR) and true positive rate (TPR). In
contrast, the FPR is the ratio of false positives (FP) to the sum of false
positives and true negatives (TN). It indicates the proportion of negative
cases mistakenly classified as positive out of all the negative cases. The
horizontal and vertical axes of the ROC curve correspond to the FPR and
TPR, respectively. The area under the ROC curve (AUROC) is commonly
referred to as the area under the curve (AUC). Because the curve takes values
between 0 and 1, the AUC is always between 0 (worst) and 1 (best).

The Kappa coefficient is a statistical measure that indicates the level of
agreement between two or more observers evaluating the same phenomenon.
It considers both the observed agreement and the agreement expected by
chance. Cohen’s kappa coefficient K ranges from —1 to 1, where 1 indicates
perfect agreement and O indicates agreement equivalent to chance. When
there is no agreement among the evaluators, K < 0. A classifier with a higher
K value is considered to perform better [41]. Kappa is defined as Kappa =
(observed agreement — expected agreement)/(1 — expected agreement), i.e.,
Equation (5):

- Pr(a) — Pr(e)
1 —Pr(e)

The Matthews correlation coefficient (MCC) is an evaluation metric
introduced by Matthews used to measure the quality of binary (two-class)
classification tasks. This metric provides more reliable results than the
accuracy metric, particularly for imbalanced datasets [42]. It takes values
between —1 and +1 where +1 indicates perfect predictions, —1 completely
incorrect predictions, and 0 random predictions, i.e., no classification value.
MCC performs well even for imbalanced class distributions, and is a more
reliable evaluation metric than accuracy in such datasets [43]. The MCC is
defined as

(&)

N TP x TN — FP x FN R
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

2.6 Results

To achieve accurate COVID-19 suspect modeling, the performances of var-
ious ML-based classification models comprising the gradient boosting clas-
sifier, logistic regression, random forest classifier, KNN classifier, decision



606 T-H. Hwang and K. Y. Lee

Table 2 Performance evaluation of different ML models

Model Accuracy AUC  Recall  Prec. F1 Kappa MCC TT (Sec)
lightgbm  Light Gradient Boosting 0.9508  0.9872 0.9546 0.9490 0.9515 0.9016 09022  0.119
Machine
gbc Gradient Boosting 0.9480 0.9845 0.9546 0.9436 0.9487 0.8959 0.8967  0.283
Classifier
Ir Logistic Regression 0.9468  0.9789 0.9524 0.9437 0.9476 0.8936 0.8943  0.703
of Random Forest Classifier ~ 0.9457  0.9772 0.9467 0.9461 09461 0.8913 0.8920  0.557
knn K Neighbors Classifier 0.9434 09698 0.9456 0.9430 0.9440 0.8868 0.8874  0.134
ada Ada Boost Classifier 0.9417  0.9810 0.9422 0.9429 0.9421 0.8833 0.8842  0.172
et Extra Trees Classifier 0.9354  0.9571 0.9240 0.9470 0.9348 0.8708 0.8719 0.514
dt Decision Tree Classifier 0.9274  0.9438 0.9183 0.9366 0.9270 0.8547 0.8555  0.024
ridge Ridge Classifier 09131  0.0000 0.9173 09117 09140 0.8262 0.8272  0.019
lda Linear Discriminant 09125 09713 09173 0.9107 09135 0.8250 0.8260  0.056
Analysis
svm SVM - Linear Kernel 0.9103  0.0000 0.9096 0.9196 0.9085 0.8206 0.8299  0.039
nb Naive Bayes 0.7576  0.8347 0.8641 0.7185 0.7834 0.5141 0.5275  0.022
qda Quadratic Discriminant 0.5306  0.5297 0.6298 0.5742 0.5100 0.0593 0.0916  0.042
Analysis

Table 3 Results of tuning using the tune_model() function
Accuracy AUC  Recall Prec. F1 Kappa MCC
0.9429 09814 09770 09140 0.9444 0.8858 0.8878
0.9543 0.9803 0.9655 0.9438 0.9545 0.9086 0.9088
0.9029 09734 09432 0.8737 0.9071 0.8056 0.8082
0.8971 0.9722 09091 0.8889 0.8989 0.7943 0.7945
0.9486 09832 09773 0.9247 09503 0.8971 0.8986
0.9200  0.9559 0.9205 0.9205 0.9205 0.8400 0.8400
09314 09830 09318 0.9318 09318 0.8629 0.8629
0.9429 0.9865 09318 0.9535 0.9425 0.8857 0.8860
0.9486 0.9906 09432 0.9540 0.9486 0.8971 0.8972
09540  0.9904 0.9655 0.9438 0.9545 0.9080 0.9083
Mean 0.9343 09797 09465 0.9429 09353 0.8685 0.8692
SD 0.0198 0.0098 0.0227 0.0255 0.0191 0.0396  0.0395

O 0 N AN L W~ O

tree classifier, SVM, and naive Bayes were compared and evaluated. Each
classification model was cross-validated using the compare model function,
and the average values of the training results sorted according to the F1 score
analyzed (Table 2).

Five classification models selected from Table 2 were further tuned using
the tune model function. The default fold change value was set at 10 (Table 3).



Web-based Non-contact Edge Computing Solution 607

Accuracy  AUC  Recall  Prec F1 Kappa  MEC 1o

09485 09863 09310 09643 05474 0SITI 08976
09314 04785 09540 09121 09326 08629 083
09513 00833 09425 00647 09535 09086  (0.9088
09371 0SES5 09310 09419 09364 0873 08M3
09314 09784 09651 09012 05326 08630 08650
09429 09881 09415 09419 05419 08557 08857
00657 00341 09535 0O76 09647 08314 04316
09600 00825 09651 09500 09595 05200 09201
09486 09858 09535 09425 09480 08I71 08972
9 09253 09812 09419 09101 09157 08506 04511
Mean 09445 09848 09840 09410 05442 08891 08895 iy dsidation SO

S0 00126 00046 00117 00241 00120 00252 0.0249 - macro-average ROC curve, AUC = 0.98
an

s

Ture Positive Rate
o

o

T R R R TR

ROC of class 0, MIC » 058

an 02 [T v

o4 06
False Positive Rate

Figure 4 Performance evaluation and ROC curve for the ensemble model.

An ensemble model was created by blending the top five high-
performance classification models to improve the model performance.
The ensemble model achieved an accuracy of 94.4%, AUC score of 98.4%,
and F1 score of 94.4% (Figure 4). These performance metrics are comparable
to those obtained in a previous study by Soui et al. [44], who reported an
accuracy of 95.5%, AUC score of 96.8%, and F1 score of 95.5%.

3 Conclusion and Future Work

In conclusion, we have presented a classification model for suspected
COVID-19 infections that correlates the disease infection status of individ-
uals to their vital signs, body temperature, HR, and BR. The ensemble model
created using the open-source patient dataset successfully distinguished
COVID-19 patients with an accuracy of 94.4% and AUC of 98.4%.

The aim of this study is to prevent re-infection by COVID-19 and rapidly
classify suspected COVID-19 patients using non-contact biosensors and
biometric measurement technology via ML classification model algorithms.

In addition, we confirmed that various non-contact vital sign measure-
ment techniques comprising r-PPG, radar, and IR sensors are suitable for the
COVID-19 suspect classification model. We believe that the classification
model based on non-contact biosensor data can be actively used to prevent
the spread of COVID-19 during the initial screening of suspected patients.
Moreover, this non-contact classification method will aid in reducing the
economic, social, and medical burdens caused by the rapid increase in the
number of infected patients.

A limitation of the current study is that vital signs are not used in the sus-
pect classification model. Therefore, we plan to enhance the performance and
accuracy of the proposed COVID-19 suspect classification model in a future
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study by using other noncontact vital signs such as the body temperature, HR,
BR, and SpO2.
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