
Federated Latent Dirichlet Allocation for
User Preference Mining

Xing Wu1, Yushun Fan1,∗, Jia Zhang2 and Zhenfeng Gao3

1Beijing National Research Center for Information Science and Technology
(BNRist), Department of Automation, Tsinghua University, Beijing, China
2Department of Computer Science, Southern Methodist University, Dallas, TX, USA
3Sangfor Technologies Inc., Shenzhen, China
E-mail: gzf@sangfor.com.cn
∗Corresponding Author

Received 07 May 2022; Accepted 19 June 2023;
Publication 24 October 2023

Abstract

In the field of Web services computing, a recent demand trend is to mine
user preferences based on user requirements when creating Web service
compositions, in order to meet comprehensive and ever evolving user needs.
Machine learning methods such as the latent Dirichlet allocation (LDA) have
been applied for user preference mining. However, training a high-quality
LDA model typically requires large amounts of data. With the prevalence of
government regulations and laws and the enhancement of people’s awareness
of privacy protection, the traditional way of collecting user data on a central
server is no longer applicable. Therefore, it is necessary to design a privacy-
preserving method to train an LDA model without massive collecting or
leaking data. In this paper, we present novel federated LDA techniques
to learn user preferences in the Web service ecosystem. On the basis of
a user-level distributed LDA algorithm, we establish two federated LDA
models in charge of two-layer training scenarios: a centralized synchronous
federated LDA (CSFed-LDA) for synchronous scenarios and a decentralized

Journal of Web Engineering, Vol. 22 4, 639–678.
doi: 10.13052/jwe1540-9589.2244
© 2023 River Publishers

640 X. Wu et al.

asynchronous federated LDA (DAFed-LDA) for asynchronous ones. In the
former CSFed-LDA model, an importance-based partially homomorphic
encryption (IPHE) technique is developed to protect privacy in an efficient
manner. In the latter DAFed-LDA model, blockchain technology is incor-
porated and a multi-channel-based authority control scheme (MCACS) is
designed to enhance data security. Extensive experiments over a real-world
dataset ProgrammableWeb.com have demonstrated the model performance,
security assurance and training speed of our approach.

Keywords: Web service composition, user preference mining, federated
learning, LDA, homomorphic encryption, blockchain.

1 Introduction

With the wide adoption of service-oriented architecture (SOA) and cloud
computing [1], the number of Web services published on the Internet has
exhibited a rapid growth in recent years [3, 27, 46]. However, individual Web
services may not be able to fully meet users’ complex functional needs [8].
Therefore, Web service composition (i.e., mashup or workflow), especially
customized service composition according to users’ specific requirements,
plays a key role in the field of Web services computing [9,17,31,36]. In order
to make effective and efficient service composition for users, the first and
paramount prerequisite is to mine user preferences.

ProgrammableWeb.com1 represents by far the largest online repository of
Web services, consisting of more than 24,400 services as of May 2022. Each
service carries metadata such as name, tags and description that elaborates its
functionality and features. These Web services can be exploited by third-party
service composition developers to create mashups. Let us consider a user
mashup request as, “Search where the local exhibition is.” None of existing
mashups can meet the compound demand. If mining historical requirements
can extract the user’s preferences of arts and mapping, then we can pick
up an art service “ArtFacts” and a mapping service “Google Maps” from
ProgrammableWeb.com and compose them into a new mashup, e.g., named
“ArtNearBy.” In the field of Web services computing, the latent Dirichlet allo-
cation (LDA) [10] probability model has become a popular topic model for
user preference mining in recent years [23,47]. In a typical scenario, LDA can

1https://www.programmableweb.com

https://www.programmableweb.com

Federated Latent Dirichlet Allocation for User Preference Mining 641

be used to extract the potential preferences from user requirements, based on
which service match-making can be performed between users and services,
and the resulted services become candidates for service composition [40].
In order for LDA to accurately mine user preferences, though, large quantities
of data (e.g., prior user requirements) have to be collected to train a model.
As a result, users’ raw requirements and latent preferences bear the risk of
being leaked during the process.

With the prevalence of government regulations and laws on privacy
protection such as GDPR,2 protecting privacy has become a basic criterion
nowadays in machine learning and Web services computing. As a result, it
is becoming increasingly more difficult to accurately mine user preferences
in the traditional manner. On the one hand, the traditional way of collecting
data and feeding data to train models at a central server violates the current
regulations and laws. On the other hand, developers cannot attend more
optimized models as they are restricted to exchange users’ data with other
developers. Such “isolated data islands” formed due to the strict regulations
hold back further development of Web service composition. Recently, fed-
erated learning (FL) [43] appears as a possible solution for alleviating these
problems, and thus receives high attention.

Since the emergence of the original Google’s paper [21], a number of
researchers have been trying to break through the “isolated data islands.” In
particular, a collection of machine learning methods have investigated the
implementation of federated learning [11, 33]. The basic idea of FL is to
keep users’ raw data at their local sides, while only transmitting the privacy-
preserving intermediate data to a central server for global aggregation and
training an optimized global model. Since LDA plays a key role in user
preference mining and is considered as one fundamental technique in many
Web services computing works [6, 16], we believe studying LDA under FL
will be valid and will be a groundbreaking endeavor.

Our intended federated LDA optimization significantly differs from the
distributed LDA training by Newman et al. [25] in three features. First,
the basic principle in FL is to enhance privacy protection. Both users’
privacy (users’ raw requirements and latent preferences) and model’s pri-
vacy (the trained model parameters) must be well protected. Second, commu-
nication among multiple developers has to be well planned, because they may
reside on different networks with different bandwidths. Third, the partition of
the data among different developers is usually heterogeneous. On the one

2https://eur-lex.europa.eu/legal-content/EN/TXT

https://eur-lex.europa.eu/legal-content/EN/TXT

642 X. Wu et al.

hand, the distribution of dataset sizes may be unbalanced. For example, some
developers may receive more user requirements than others. On the other
hand, the data types may be different among developers. For example,
some developers may only receive user requirements under specific domain.
Therefore, it is necessary to discuss the effect of data heterogeneity on FL.

As to privacy protection, differential privacy (DP) [15] and homomorphic
encryption (HE) [4,28] are the two most commonly used types of techniques
in FL. The former DP technique perturbs the original data by delicately
injecting noise, so as to ensure a certain level of privacy protection. However,
this method usually has to sacrifice model performance for privacy protection.
The latter HE technique allows users’ private data to be encrypted, so that
they become invisible to the central server during the process of data trans-
mission and aggregation. Afterwards, the aggregated data can be decrypted at
developers’ sites with private keys. Although HE could ensure decent model
performance, the encrypting and decrypting processes are based on large
integer calculation and thus can easily result in a computational bottleneck.

With the rise of Bitcoin [24], in recent years the blockchain technique [35]
has become another choice in FL to replace the central server as the medium
of intermediate data [5, 48]. Instead of incorporating an untrustworthy data
collector, blockchain is applied as the data medium. Developers participating
in FL can take the role of miner (in public chains such as Ethereum3), or
peer (in permissioned chains such as Hyperledger Fabric4). In this way, the
authority control mechanism of blockchain can be utilized to enhance data
security.

In this research, we have explored LDA training conducted under a
federated learning setting, to mine user preferences in a Web service
ecosystem in favor of privacy and security. On the basis of a user-level
distributed LDA model, two implementation prototypes are constructed to
cover different training scenarios. At synchronous scenarios, we propose a
centralized synchronous federated latent Dirichlet allocation (CSFed-LDA)
model. A centralized computing server takes the role of a synchronous
clock signal controller and an intermediate data aggregator. Each devel-
oper only has to send encrypted data to the central server. Considering the
ubiquitous phenomenon where the computation time is often inconsistent
among developers, we propose another decentralized asynchronous federated

3https://www.ethereum.org
4https://hyperledger.org/projects/fabric

https://www.ethereum.org
https://hyperledger.org/projects/fabric

Federated Latent Dirichlet Allocation for User Preference Mining 643

latent Dirichlet allocation (DAFed-LDA). It is a decentralized federated
learning prototype based on blockchain technology to mine user preferences
in an asynchronous training manner. Since the network connections may
be slow and expensive for some developers, which may result in higher
communication cost [21], we have designed multi-step training strategies to
reduce the communication cost.

In summary, the major contributions of this paper are three-fold.

(1) As one of the pioneering researches on federated LDA, we have inves-
tigated user preference mining in the field of Web services computing
under federated learning setting. To the best of our knowledge, these
are the first FL-based LDA implementation prototypes, i.e., CSFed-LDA
and DAFed-LDA, towards different training scenarios.

(2) We have extended and optimized existing techniques and put forward
CSFed-LDA and DAFed-LDA. In the former technique, we propose an
innovative importance-based partially homomorphic encryption (IPHE)
technique to solve the computational bottleneck problem existing in the
original HE. In the latter technique, blockchain technology is incorpo-
rated to replace the role of central server in a traditional FL structure, and
based on the basic framework of Hyperledger Fabric (HF), an innovative
multi-channel access control scheme (MCACS) is developed to further
enhance data security.

(3) Over the real-world dataset ProgrammableWeb.com, we conducted
extensive experiments to evaluate the model performance, security, and
training speed under various settings. The experimental results have
proven the effectiveness of our techniques.

Although our research is conducted on the user preference mining area.
Our LDA algorithms can also be easily implemented to other service comput-
ing areas like service representation and service recommendation. Our overall
federated learning framework and the ideas behind it can also be applied to
more machine learning algorithms.

The remainder of this paper is organized as follows. Section 2 briefly
explains how to apply some basic techniques to build the foundation of our
technique. Section 3 discusses the related work. Section 4 formulates our
research problems. A user-level distributed LDA framework is introduced in
Section 5. Our CSFed-LDA and DAFed-LDA models are described in Sec-
tions 6 and 7, respectively. Experimental results and analyses are presented in
Section 8. Section 9 summarizes this paper and puts forward our future work.

644 X. Wu et al.

2 Preliminaries

In this section, we explain how we apply some basic techniques to build
the foundation for this research: LDA, federated learning, homomorphic
encryption, and blockchain.

2.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is an implicit topic analysis model over
collections of discrete text documents, based on machine learning and statis-
tics [10]. Treating a collection of user requirements as text corpora, the main
idea of applying LDA for user preference mining is that, the occurrence of
a word in a specific user requirement is determined by the latent preference
distribution of the user. Thus, a three-tier “user-preference-word” structure is
formed. In order to extract the latent relationships using the LDA model, we
have to infer the posterior distributions, including user-preference distribution
and preference-word distribution.

2.2 Federated Learning

Federated learning (FL) is a distributed machine learning method where
data owners collaboratively train a model, in which process users’ raw
data are locally retained and only the privacy-protected intermediate data
are exchanged with each other. Taking into account the difference of data
distribution in the feature and sample space, FL can be classified into three
categories: horizontal FL, vertical FL, and federated transfer learning [43].
In the context of user preference mining, the same word appearing in different
user requirements is always considered to reflect the same preference (e.g.,
the word “exhibition” is always related to preference “art”). This assumption
means users’ raw requirements distributed on each developer’s site all share
the same feature space. In this sense, our research to investigate federated
LDA can be categorized as a horizontal FL research.

2.3 Homomorphic Encryption Application

Homomorphic encryption (HE) allows private data to be encrypted before it
is released to the central server. Any third-party can aggregate the encrypted
data without decrypting it in advance. For any two elements m1,m2 ∈ R
(R denotes the plaintext space as a ring), we can establish the following two

Federated Latent Dirichlet Allocation for User Preference Mining 645

equations for fully HE [4]:

D(E(m1) + E(m2)) = m1 +m2 (1)

D(E(m1)× E(m2)) = m1 ×m2 (2)

where E is the encryption algorithm, D is the decryption algorithm, + and ×
denote the normal addition and multiplication, respectively.

Note that the ciphertext–ciphertext multiplication is not needed in this
paper. Therefore, HE applied in our research is additively HE [28] and mainly
consists of the following five functions:

• KeyGen → (pk, sk): Generate public key pk and secret key sk.
• Enc(m, pk) → c: Encrypt plaintext m to ciphertext c with public

key pk.
• Dec(c, sk) → m: Decrypt ciphertext c to plaintext m with secret key sk.
• Add(c1, c2, pk) → ca: Add ciphertexts c1 and c2 with pk to calculate

the ciphertext of plaintext addition ca.
• DecAdd(ca, sk) → ma: Decrypt ca with sk to get the addition of

plaintexts ma.

2.4 Blockchain

A typical public blockchain system usually consists of multiple nodes that
do not fully trust each other (e.g., Bitcoin and Ethereum) [14]. These nodes
maintain a set of shared, global states and perform transactions to modify
these states.

Permissioned blockchain (also called consortium blockchain) allows only
authorized organizations to be involved in a blockchain system. That means
the nodes can trust each other, so that resource-consuming consensus algo-
rithms (e.g., proof-of-work [24]) are not needed. Therefore, compared with
public blochchain, permissioned blockchain requires fewer resources and is
able to reach smaller transaction latency and higher throughput. One of the
typical permissioned blockchains is Hyperledger Fabric (HF), which supports
fine-grained authority control.

Based on the typical assumption of honesty in horizontal FL, the devel-
opers participating in FL can form a consortium. Naturally, permissioned
blockchain is more suitable in our research. Thus, HF is selected as the
underlying blockchain structure of our DAFed-LDA model.

646 X. Wu et al.

3 Related Work

Our work is related to two categorizes of literature: LDA in user preference
mining and federated learning.

3.1 LDA in User Preference Mining

Latent Dirichlet allocation (LDA) [10] is one of the most widely adopted
topic models in the area of user preference mining. [22] proposes a prob-
abilistic service discovery approach, using the LDA probabilistic model to
extract potential preferences between services and user requirements, and to
perform service matching based on these potential preferences. As a kind
of temporal LDA, DPDQ [47] is developed to extract user preferences and
mine their changing patterns over time. [45] proposes SR-LDA, incorporating
users’ perceptions into service profiles to form comprehensive service repre-
sentations. [25] proposes a distributed and parallel LDA training prototype.
WrapLDA [12] and LightLDA [44] both optimize the distributed scheme and
improve the performance in large-scale distributed applications.

Those works either collect data and train models in a central server, or
implement distributed LDA in the absence of a privacy protection mecha-
nism. Both ways are becoming inappropriate nowadays with the prevalence
of government regulations and laws on privacy protection (e.g., GDPR).
Different from them, we have investigated LDA training under a federated
learning setting. In our models, both users’ privacy and model’s privacy are
protected.

3.2 Federated Learning

From the inception of Google’s paper [21], federated learning (FL), as a pos-
sible solution for training collaborative machine learning model while taking
privacy protection into consideration, has attracted significant momentum in
recent years. The goal is to design a secure and efficient privacy-preserving
technique, while maintaining the accuracy of the algorithm.

Differential privacy (DP) [15] is a popular privacy-preserving technique,
which perturbs the original data by delicately injecting noise. [42] proposes
a secure multiparty computation protocol HybridAlpha, which combines DP
with functional encryption. [37] designs a hybrid mechanism that works for
both categorical and numerical data. [29] develops a private convolutional
deep belief network (pCDBN) to perturb the energy-based objective functions
of traditional CDBNs, rather than their results. However, DP-based methods
lead to a decrease in model accuracy because of the noise injected.

Federated Latent Dirichlet Allocation for User Preference Mining 647

Homomorphic encryption (HE) [4, 28] is another popular privacy-
preserving technique, which encrypts original data before data is sent to the
central server. FedMF [11] employs distributed machine learning and HE
schemes to implement secure matrix factorization. [24] combines HE and
Bayesian neural networks to protect both users’ privacy and model’s privacy.
However, HE-based methods bring extra encryption computation cost and
result in the decline of efficiency. In this paper, to reduce computation
cost, we propose importance-based partial homomorphic encryption (IPHE)
to identify and encrypt data which has the most critical impact on model
performance.

Some research works also consider incorporating blockchain into FL.
The key strategy is to use blockchain to replace the centralized aggregator.
In blockFL [20], updated data will be aggregated into a block after a round of
PoW consensus. [32] designs an FL aggregator BAFFLE and deploys it under
the framework of Ethereum. In these works, high communication cost during
the consensus process becomes the bottleneck hindering the development of
FL. To the best of our knowledge, we are the first to incorporate permissioned
blockchain into FL, and we propose a multi-channel-based authority control
scheme (MCACS) to realize fine-grained management of data and enhance
data security.

While various machine learning algorithms, such as neural networks [21]
and matrix factorization [11], have been combined with FL, LDA is still
under-investigated in FL. The most related work is LDP-FedLDA [39], which
applies local differential privacy to protect privacy in the research of federated
LDA. Compared with that work, the strength of our models is that model
performance is not sacrificed.

4 Problem Formulation

In this section, we first define two important roles related to user preference
mining, namely, users and developers. Afterwards, we formulate the prob-
lems of federated learning including federated modeling subjects, training
scenarios and privacy protecting objectives.

Users: Users are the producers of data. In order to obtain customized Web
service compositions to meet their business needs, users put forward require-
ment description documents to developers, which constitute the original
corpus for LDA training. In this paper, we suppose that there are a total of
M users, corresponding to M user requirements.

648 X. Wu et al.

Developers: (Service composition) developers receive user requirements and
mine user preferences based on these requirements. Different users may put
forward requirements to different developers. Suppose that there are P devel-
opers, then all the users’ data are partitioned into P parts [M1,M2, . . . ,MP],
each part being kept by a developer independently.

Federated modeling subjects: Due to the restrictions of privacy protection
laws and regulations, developers cannot directly exchange each other’s orig-
inal data. Therefore, they mutually hope to train a federated LDA model
collaboratively. Unlike regular federated learning, such as Google’s user
research, which happens at a large number of end users’ terminals [21], the
subjects of federated modeling in our research are software/mashup develop-
ers collaborating in a software project. Thus, federated learning carried out in
our context is similar to that among enterprises [13, 30].

Training scenarios: This paper considers two types of training scenario:
synchronous and asynchronous training. Firstly, we propose CSFed-LDA
aimed at the synchronous training scenario, which is typically considered
in the classical federated learning and user preference mining area. One
step further, we consider a ubiquitous phenomenon that the training speeds
are inconsistent among developers, because of unbalanced dataset sizes,
computation powers and so on. If a synchronous training strategy is adopted
under this scenario, the developer with the slowest training speed will become
the bottleneck due to the barrel effect. To address such an issue, we propose
DAFed-LDA to perform asynchronous LDA training. Note that both two
models are technical expansions of the user-level distributed LDA.

Privacy protecting objectives: Drawing on the typical assumption in hor-
izontal federated learning research [11, 21], we make an assumption that
both the server incorporated in CSFed-LDA and the developers are honest-
but-curious. On the premise of this assumption, the attacker (could be the
server or developer) may attack for users’ privacy [30] and model’s pri-
vacy [41] while honestly performing federated training operations. We thus
make mathematical definitions to these two kinds of privacy and introduce
corresponding threat models as follows.

Definition 1 (users’ privacy): If the probability that the attacker reconstructs
at least τ users’ raw information satisfies the following formula, then we say
the privacy protecting mechanism satisfies users’ privacy (τ , ϵ)-UP:

Pr(r ≥ τ) ≤ e−ϵ (3)

where r is the proportion of correctly reconstruction information.

Federated Latent Dirichlet Allocation for User Preference Mining 649

The threat model that leads to users’ privacy disclosure is reconstruction
attack. The smaller τ and the larger ϵ, the stronger the level of users’ privacy
protection represented by (τ , ϵ)-UP.

Definition 2 (model’s privacy): If the model performance of the real
model Performance(Mr) and that of the attacker’s inversed model
Performance(Min) satisfy the following formula, then we say the privacy
protecting mechanism satisfies model’s privacy (η)-MP:

Performance(Mr) ≥ eηPerformance(Min). (4)

The threat model that leads to model privacy disclosure is model inversion
attack. One consequence is that the attacker can inverse a similar model with-
out contributing data. η represents the gap between the inversed model and the
real model. A high η means the attacker could not inverse an effective model,
so that model’s privacy can be well protected. Note that since perplexity is
used to evaluate model performance in this paper, which is a negative index,
the formula (4) can be adjusted to formula (5).

Perplexity(Min) ≥ eηPerplexity(Mr) (5)

In CSFed-LDA, the server may launch both reconstruction attack and
model inversion attack. In DAFed-LDA, we do not have to guard against
attacks from the server, since blockchain is incorporated to replace the server
as the data medium. However, some developers may still use the immediate
data on blockchain to attack for users’ privacy and model’s privacy. In this
paper, the technique to protect users’ privacy is the user-level distributed
LDA. As for model’s privacy protection, CSFed-LDA uses IPHE, while
DAFed-LDA relies on MCACS.

5 User-level Distributed LDA Framework

5.1 Overall Framework

As the foundation of federated LDA, we first construct a user-level distributed
LDA framework. The notations related to LDA application are listed in
Table 1.

Gibbs sampling (GS) [18] is used in this paper to train the user-level
distributed LDA. For each preference k, developer p can calculate the local

650 X. Wu et al.

Table 1 Notations and definitions
Identifier Meaning

P Number of developers
M Number of user requirements
L Number of words in each user requirement
K Number of preferences
w M × L user-word vector
V Length of word vocabulary set
z M × L word-preference assignment vector
N V ×K word-preference counting matrix
θ User-preference probability distribution matrix
Φ Preference-word probability distribution matrix
α Hyper parameter θi ≈ Dirichlet(α)

β Hyper parameter Φk ≈ Dirichlet(β)

…

…

…

…

β

Φ
1

K

w

z

N

α

Φ
Σ

K

β

Φ
2

K

w

z

θ
2

N

M
2

α

Φ
Σ

K

K

β

K

w

z

θ
P

N

M
P

α

Φ
Σ

K

N
Σ

 N
1

 N
2 N

P

Φ
P

θ
1

M
1

Figure 1 User-level distributed LDA. At every iteration, each developer renews local θp and
Φp. Then preserve θp at local site, aggregate Np to get N∑, and calculate Φ∑ for the next
iteration until model convergence.

Federated Latent Dirichlet Allocation for User Preference Mining 651

user-preference distribution θkp,i for the ith user:

θkp,i =
Nk

p,i + α∑K
s=1(N

s
p,i + α)

(6)

and preference-word distribution Φk
p,wpij

for the jth word in the ith user
requirement:

Φk
p,wpij

=
Nk

p,wpij
+ β∑V

f=1(N
k
p,f + β)

(7)

where wpij is the jth word in ith user requirement at pth developer, Nk
p,i is

the count of preference k in user requirement i at the pth developer, and Nk
p,f

is the count of the f th word in vocabulary assigned with preference k at the
pth developer.

Note that θp represents users’ latent preferences. It contains users’ private
information and should be preserved at local sites. In contrast, Φ represents
the general latent features of words. It is the optimized objective of user-level
distributed LDA and thus should be globally aggregated. Aggregate Nk

p,f as
Equation (8):

Nk∑
,f =

P∑
p=1

Nk
p,f , f ∈ [1, V] (8)

where Nk∑
,f is the total aggregation of the f th word in vocabulary assigned

with preference k for all developers. The globally updated Φk∑
,wpij

can be
calculated at each developer’s site as follows:

Φk∑
,wpij

=
Nk∑

,wpij
+ β∑V

f=1(N
k∑
,f + β)

. (9)

Exclude zpij and multiply Equation (6) by Equation (7), then the
conditional distribution for GS becomes:

p(zpij = k|·) = θk,¬pijp,i · Φk,¬pij∑
,wpij

=
Nk,¬pij

p,i + α∑K
s=1(N

s,¬pij
p,i + α)

Nk,¬pij∑
,wpij

+ β∑V
f=1(N

k,¬pij∑
,f + β)

(10)

652 X. Wu et al.

where zpij is the preference assigned to wpij ; ¬pij means the current zpij is
not taken into consideration when calculating θ, Φ and N .

After the GS reaches a convergence state, we can obtain the final updated
local user-preference distribution matrix θp and global preference-word
distribution matrix Φ∑. θp is the extracted preferences of historical user
requirements. Based on the trained Φ∑, we can model a new user and extract
new user’s preferences.

Figure 1 depicts the calculation process of user-level distributed LDA.
It is worth noting that the core idea of the user-level distributed LDA
borrows from [25]. Our framework, however, differs from [25]. Firstly,
the global aggregation in Equation (8) could be performed at either server
site or developer site according to a centralized or decentralized setting.
More importantly, our framework could protect users’ privacy well against
reconstruction attack which will be discussed below.

5.2 Analysis of Reconstruction Attack

In this section, we will prove that the user-level distributed LDA can achieve
a high level of user privacy protection. Suppose that the attacker has received
word-preference counting matrix Np from a developer, which gathers a
collection of words [n1 × w1, . . . , nv × wv] from m users, where the jth
word wj appears nj times. The length of the ith user’s requirement is li.

Under the proposed structure, nj and wj j ∈ [1, v] are visible to the
attacker, while li, i ∈ [1,m] are invisible. Utilizing the visible information,
the probability of fully reconstructing the raw requirements of all users for
the attacker is:

p(r = 1) =
1∏v

j=1C
m−1
m+nj−1

(11)

where C is for combination computation, r is the proportion of correctly
reconstructed words. It is a quite small number actually. Assuming v = 20
and ni = 20,∀i ∈ [1, v], even if m = 2, p(r = 1) is still less than 10−9,
corresponding to (1, 20.72)-UP.

Here we discuss the probability of partially reconstructing the raw
requirements one step further. To simplify the calculation, assume the average
length of user’s requirement is l, nj = 1, ∀j ∈ [1, v]. The probability of
correctly reconstructing at least τ words for all users is:

p(r ≥ τ) =

∑ml
j=τml C

j
ml(m− 1)ml−j

mml
. (12)

Federated Latent Dirichlet Allocation for User Preference Mining 653

1 2 3 4 5 6 7 8 9 10

number of users

0

100

200

300

400

ε

τ = 1

τ = 80%

τ = 60%

τ = 50%

τ = 40%

τ = 20%

Figure 2 The changing trend of ϵ as the number of users increases with different τ . The
larger the value of ϵ, the more difficult it is to reconstruct at least τ for all users.

Assume l=20,m=10, then p(r ≥ 20%)=0.0003, p(r≥ 50%) = 5.9
×10−31, corresponding to (0.2, 8.11)-UP and (0.5, 71.38)-UP respectively.
We can draw from Figure 2 that it is even more impossible to reconstruct
raw requirements as the number of users increases. Since the collection of
users is usually large in real scenarios, the real probability of reconstructing
user’s raw requirements is even far less than the above calculation results.
Therefore, we believe users’ privacy can be well protected through our user-
level distributed LDA mechanism.

6 Centralized Synchronous Federated Latent Dirichlet
Allocation

Based on the user-level distributed LDA, the key issue of federated LDA is to
design a privacy-preserving and efficient transmission and aggregation mech-
anism for counting matrix Np to against model inversion attack. Considering
the typical LDA training at synchronous scenarios, We propose a centralized
synchronous federated latent Dirichlet allocation (CSFed-LDA) model as
one solution to tackle this key issue. To protect privacy, we incorporate
homomorphic encryption, based on which we propose importance-based par-
tially homomorphic encryption (IPHE) to further improve training efficiency.
We also adopt a sparse representation of Np and propose a multi-step training
strategy to reduce the communication cost in our model.

654 X. Wu et al.

6.1 Overall Structure and Workflow

The overall structure of our CSFed-LDA is illustrated in Figure 3. It carries a
workflow comprising seven major steps as described below.

1. Key generation: The homomorphic encryption introduced in Section 2 is
based on asymmetric encryption technique [34], where a pair of public
keys pk and secret keys sk is required. Firstly, we generate pk and sk,
which can be carried out by one of the developers (e.g., the developer
with the largest dataset size or the developer who launches federated
learning). pk can be shared among developers including the server, while
sk must be protected against the server.

2. Vocabulary alignment: Different collections of user requirements may
consist of different word vocabularies. Every local vocabulary is aligned
with those of other developers to form a global vocabulary.

3. Parameter initialization: This step initializes the hyper parameters of
LDA, α, β, K, maximum iteration steps and so on. Parameters are kept
consistent between the server and developers.

4. Model initialization: This step assigns a random preference to each word
at every developer’s site as an initial state, and calculates the initial user-
preference distribution θp and word-preference counting matrix Np.
Np is encrypted and then sent to the server.

Honest-but-curious

Server

Initializer

Align vocabulary: V

Initialize parameters: α, β, K

Data Receiver

…

Data Transmiter

Synchronous Clock Controller

Count received

numuber q
q = P q = 0

Data Aggregator

True

False

Input: N
1
, N

2
, … , N

P

Output: N
Σ

Legends

Dataflow between developers

 and server

Dataflow in local GS

Encrpting process

Decrypting process

Cipher data Plain data

User unit Preference unit

Word unit

Clear counter: q

Developer 1

User Preference Word

Local

Gibbs

Sampling

P(z|u) P(w|z)

Global Data
Interface

Local Data

Global Data

 N
1

θ
1

Φ
Σ

…
Developer 2

User Preference Word

Local

Gibbs

Sampling

P(z|u) P(w|z)

Global Data
Interface

Local Data

Global Data

 N
2

θ
2

Φ
Σ

Developer P

User Preference Word

Local

Gibbs

Sampling

P(z|u) P(w|z)

Global Data
Interface

Local Data

Global Data

 N
P

 θ
P

Φ
Σ

 N
1

 N
2

 N
P
 N

Σ

Figure 3 The structure of CSFed-LDA. There are five modules at the server site, initializer
for preparation work, data receiver, synchronous clock controller, data aggregator, and data
transmitter for the global aggregation process.

Federated Latent Dirichlet Allocation for User Preference Mining 655

5. Global aggregation: The process of global data aggregation is performed
at the central server. Four modules are involved within this process. Data
receiver collects the encrypted Np from the participating developers.
Synchronous clock controller counts the total received Np to check
whether all developers have completed local GS and sent the encrypted
data. After receiving all Np, the data aggregator uses public key pk
to calculate the aggregated N∑ without decrypting it. Finally, the data
transmitter transmits N∑ to every developer.

6. Local GS: After receiving N∑, every developer uses sk to decrypt it,
and calculates Φ∑ as defined in Equation (9). θp and Φ∑ are used to
renew the conditional distribution as Equation (10) defines and samples
all the preferences for every word. After completing all sampling, each
developer calculates the local word-preference counting matrix Np,
encrypts it and transmits it to the server.

7. This step repeats step 5 and step 6 until the model converges. Each
developer saves the final updated θp and Φ∑.

Note that steps 1–3 are the preparation work for CSFed-LDA. The module
of initializer in the central server can serve as the intermediary to help with
the process of vocabulary alignment and parameter initialization. Steps 4–7
elaborate the training process, whose details are described in Algorithm 1.

Considering the effect of communication cost and training speed, we
have designed single-step and multi-step training strategies. The single-step
training completes one iteration of local GS at the developer’s site before
aggregating data, and the multi-step training completes multiple iterations of
local GS at the developer’s site before aggregating data. Compared with the
single-step strategy, our multi-step training strategy can significantly reduce
communication cost. The reason is that the immediate parameters need to be
shared after every iteration in the single-step strategy, but in our multi-step
strategy, immediate parameters are only shared once after multi-iterations.
With the set maximum iterations, fewer communications are needed for the
multi-step strategy. The multi-step training strategy can be applied to the
occasions when communication cost is the major cost and faster training
speed is necessary. In the later experiment section, we will further investigate
the effect of the number of steps on model performance and training speed.

6.2 Importance-based Partially Homomorphic Encryption

Before global aggregation, a developer needs to encrypt local Np and send it
to the server. Np is a counting matrix of size V × K. In order to facilitate

656 X. Wu et al.

Algorithm 1: Training process of CSFed-LDA

Input: LDA hyper parameters α β K , local user-word vector {wp} , maximum
iterative number maxIter;

Output: Global preference-word distribution Φ∑ , local user-preference distribution
{θp};

1 initialization;
2 randomly initialize {zp} , count the initial {Np} , encrypt {Np} and send it to the

server;
3 set counter q = 0;
4 for iteration steps = 1,2, . . . , maxIter do
5 global aggregation;
6 while counter q < P do
7 if receiving Np from any developer then
8 q ← q + 1
9 end

10 end
11 N∑ ← aggregate N1, N2, . . . , NP ;
12 transmit N∑ to every developer;
13 q = 0;
14 local sampling;
15 for developer-id p = 1,2, . . . , P do
16 decrypt N∑ and calculate Φ∑;
17 for user-id i = 1,2, . . . , Mp do
18 for word-id j = 1,2, . . . , Li

p do
19 sample a new preference zjp,i for word wj

p,i;
20 end
21 update θp;
22 calculate Np;
23 end
24 encrypt Np and send it to the server;
25 end
26 end
27 return {θp} , Φ∑;

encryption and transmission, the original matrix is replaced by V × K
triplets Tp = {(f, k,Nk

p,f)}. At the developer’s site, {(f, k,Nk
p,f)} will be

encrypted and sent to the server. At the server’s site, similar triplets T∑ =

{(f, k,Nk∑
,f)} are maintained, and the process of aggregating Np is actually

the summation of Nk
p,f with the same f and k from different developers,

where Nk
p,f should be encrypted in advance. The homomorphic encryption

introduced in Section 2 will help attain our objective. In our framework, we
choose Paillier encryption [28] as the encryption and decryption technique.

Federated Latent Dirichlet Allocation for User Preference Mining 657

Note that the Paillier encryption is a probabilistic encryption schema
based on composite residuosity problem, where large integer calculation is
necessary. As a result, homomorphic encryption can easily become the com-
putational bottleneck during CSFed-LDA training. In this paper, we propose
an innovative importance-based partially homomorphic encryption (IPHE)
mechanism to accelerate the encryption and decryption process.

Definition 3. Let δ be a percentage; if we only do Paillier encryption to δ
important data, then we say that δ-IPHE is applied to this FL training process.

We shall identify important data first. Recall the objective of this research
is to mine users’ preferences. Note that for a specific preference, some words
bear high frequency. For example, for a specific preference art, related words
like art and exhibition are considered high-frequency words. The ability to
correctly identify the classification of high-frequency words plays an impor-
tant role in mining users’ preferences. Therefore, high-frequency words are
important data in the scenario of federated LDA.

In our CSFed-LDA model with δ-IPHE, we sort the words by their
frequency in descending order, and do homomorphic encryption to the top
δ words. Since only partial data are encrypted, the communication process is
significantly accelerated. In the later section, theoretical analysis combined
with experimental results will prove that even though only partial parameters
are encrypted, model privacy can still be effectively protected.

6.3 Sparse Representation

Note that Np may be a sparse matrix due to two reasons: (i) the length of
local word vocabulary ≤ V , and (ii) some low-frequency words only appear
few times. For example, if K = 50 and wordf appears five times, then even
the minimum sparsity of wordf can be up to 90%.

To reduce communication time, we incorporate sparse representation as
an extended optimization module of δ-IPHE. The most important δ words
would be encrypted before transmitted to protect model privacy. As for the
remaining 1 − δ unencrypted words, we apply sparse representation and
transmission. That means for the 1 − δ unencrypted words, {(f, k,Nk

p,f)}
will be sent to the server only if Nk

p,f > 0 and only received {(f, k,Nk
p,f)}

will be aggregated, while other unreceived {(f, k,Nk
p,f)} mean Nk

p,f = 0 and
have no influence on aggregation result.

With δ-IPHE and sparse representation, the generative process of trans-
mission data is summarized in Algorithm 2.

658 X. Wu et al.

Algorithm 2: Transmission data generative process

Input: Encryption proportion δ, descending ordered vocabulary, vocabulary length
V , local {Np};

Output: The collection of transmission data {Up};
1 for developer id = 1, 2, . . . , P do
2 for word-index f = 1,2, . . . , V do
3 for preference-id k = 1,2, . . . , K do
4 if f ≤ δV then
5 encrypt Nk

p,f

6 add (f, k,Nk
p,f) to Up

7 end
8 else
9 if Nk

p,f ̸= 0 then
10 add (f, k,Nk

p,f) to Up

11 end
12 end
13 end
14 end
15 end
16 return {Up}

6.4 Analysis of Model Inversion Attack

Suppose that a developer has obtained correct word-preference distribution
φ. Then for a new user with requirement [n1 × w1, . . . nv × wv], the real
user-preference distribution θr is as follows:

θr =
1

L

v∑
j=1

nj · φj (13)

where L is the length of user requirement.
Assume the server has launched model inversion attack. The technique to

protect model’s privacy in our work is δ-IPHE. If we only do homomorphic
encryption to word wf , then the real word-preference distribution for wf

becomes invisible to the server. One strategy is to assign equal preference
κ = [1/k, . . . , 1/k] to wf . Then the inversed user-preference distribution is:

θin =
1

L

∑
j ̸=f

njφj + nfκ

. (14)

Federated Latent Dirichlet Allocation for User Preference Mining 659

We use function f(θr, θin) to calculate the error ζ between the real
distribution and inversed one. f(·) can be the Euclidean metric. Then,

ζ = f(θr, θin) = |θr − θin|2 =
1

L
nf |φf − κ|2 (15)

where | · |2 is 2-norm calculation. Note that we have to determine the encryp-
tion data before training and do encryption before every communication.
|φf − κ|2 is unpredictable before training. However, we can reasonably
assume that the frequency orders in the training dataset and testing dataset
are similar, when both dataset sizes are large enough. Therefore, we can find
the maximum word frequency in the collaborative training dataset without
exchanging raw data using homomorphic encryption. Afterwards, we choose
to encrypt the word with the maximum frequency so as to maximize the
expectation of ζ.

When δ = 1, we encrypt all data and the server is completely unable
to inverse the model. When δ = 0, the server can inverse the real model.
We can adjust δ to make the error ζ big enough, so that the model’s privacy
can be efficiently protected. Since vanilla LDA is an unsupervised machine
learning model, we cannot judge whether the correct word-preference dis-
tribution is obtained. Therefore, the major index to compare two models is
perplexity [10] in the experiments, which will be discussed later. We will
also calculate η defined in Definition 2 based on the real dataset.

7 Decentralized Asynchronous Federated Latent Dirichlet
Allocation

In this section, we propose a decentralized asynchronous federated latent
Dirichlet allocation (DAFed-LDA) model to perform asynchronous LDA
training. Again we adopt the typical assumption of horizontal FL with P hon-
est developers. No central server is needed, since we incorporate blockchain
as the data carrier for transmitting word-preference counting matrix Np, and
Hyperledger Fabric (HF) is selected in our model.

7.1 Blockchain Perspective

From a blockchain perspective, the structure of DAFed-LDA is illustrated in
Figure 4. There are three main types of nodes in HF: (1) the certification
authorization (CA) node is responsible for issuing certificates to developers.
Only trusted developers will be allowed to participate in FL. CA does not

660 X. Wu et al.

Orderer Cluster

Orderer 1 Orderer 2 Orderer 3 …

Consortium Multi-channel Ledgers

⋯ ⋯

CA

Peer 1

Peer 2

Peer P

Ledger 1

Ledger 2

Ledger P

read-write authority only-read authority

Legends

world state ledger block provide certifications

orderer service

Figure 4 The blockchain perspective of DAFed-LDA.

interfere with the training process. (2) The peer node is the key element
in our model. It functions as the proxy to connect developers and ledgers.
All transmission data are stored at ledgers and each peer maintains a copy.
Chaincode defining the basic logic of data transmission is deployed at peers,
through which developers can submit the local updated data and download
other developers’ latest version of data. All participating developers must
deploy at least one peer node so that they can maintain the ledgers and run
chaincode to make read-write operations on ledgers. (3) The orderer node
packages the submitted data into a block and transmits the block to the peer
nodes. It participates in data transmission but has no authority to modify data.
A consensus algorithm (e.g., Raft [26]) runs on the cluster of orderer nodes
in order to ensure consistency of distributed ledgers. Orderer nodes can be
deployed and run at partial or all developers’ sites.

In addition, the channel is one of the core concepts of HF. HF allows
multiple channels to be created. Each channel contains a ledger. In this work,
based on the basic framework of HF, we develop an innovative multi-channel
based authority control scheme (MCACS) to realize fine-grained manage-
ment of data and further enhance data security. The basic idea of MCACS is

Federated Latent Dirichlet Allocation for User Preference Mining 661

to create P channels (corresponding to P ledgers) among P developers. The
ith channel stores the data from the ith developer.

We have developed two ways of implementing read and write authority
control in MCACS.

(1) Data reading authority control based on channel access. In HF, differ-
ent peers join a channel to maintain a distributed ledger. In other words, peers
excluded by a specific channel have no access to the corresponding ledger.
For ease of presentation, we assume that each developer deploys only one
peer and a total of P peers are deployed. The channel-peer access matrix CP
of size P ×P is built. CPij = 1 representing peer j has the access to channel
i. CPii = 1 and CP is a symmetric matrix. Through special filling of CP ,
multiple consortia can be set up to fit complex and diverse FL production
scenarios.

Definition 4. A collection of developers D can set up a consortium when
satisfying the following two conditions:

CPij = 1,∀i, j ∈ D

CPij = 0,∀i ∈ D, j /∈ D

Figure 5 is a case study with five developers. Local word-preference
counting matrix Np are shared within each consortium. Setting up multiple
small consortia is reasonable in real production scenario due to two com-
mercial reasons. First, it may be unfair for developers with large dataset size
to endure those with small one to participate in FL with them. Therefore,
developers with extremely large (or small) dataset size can build an isolated
consortium (e.g., developers 4 and 5 in Figure 5). Second, there may exist

1
1

1

1
1
1
1

1
11

1

Figure 5 A case study with five developers. In this case, we set up three small consortia,
con1−2, con2−3, con4−5.

662 X. Wu et al.

conflicts of interest among some developers, so that they cannot share data
with each other but are willing to participate in FL with third-party develop-
ers. (e.g., developers 1 and 3 in Figure 5, and they both communicate with
developer 2).

(2) Data writing authority control based on endorsement strategy. In HF,
chaincodes have to be instantiated at specific channel before peers can invoke
them. We can specify several peers as endorsement ones when instantiating
chaincodes. Endorsed peers are granted read-write permissions, while others
only have read authority. In MCACS, for a specific channel p, only peer p is
endorsed. Therefore, only developer p has the authority to submit local Np

to ledger p which cannot be falsified by other developers. By configuring the
appropriate parameters, the latest Np waiting for aggregation can be packaged
into a block. Each new block is linked to its predecessor as FL training is
going on. Ledger World State, a Level-DB or Couch-DB based database, is
adopted by HF to record Np in the form of key-value pairs. Other developers
with read authority can obtain Np, by querying the latest key-value from
ledger p to implement global aggregation while completing local GS.

From a blockchain perspective, the process of setting up a consortium is a
five-step workflow: (1) Deploy CA node. (2) Provide legal PKI-based identity
certifications to each developer. (3) Deploy orderer nodes and peer nodes.
(4) Create multiple channels and involve peers as members for each channel.
(5) For each channel, deploy chaincodes at joining peers and select specific
endorsement peer as MCACS requires while instantiating chaincodes.

7.2 Federated LDA Perspective

From a federated LDA perspective, the major steps of DAFed-LDA with
the consortium built include five consecutive steps. (1) Training preparation:
align vocabulary and initiate hyper parameters. (2) Model initialization:
assign random preferences as an initial state, calculate the initial user-
preference distribution θp and word-preference counting matrix Np. Invoke
chaincode and make a transaction proposal to submit the initial Np to ledger
p. Np will be packaged into the zeroth block (genesis block). (3) Global
aggregation: developer p queries the latest N¬p from other ledgers and
aggregates Np with N¬p to calculate N∑. (4) Local GS: use θp and Φ∑
to renew the conditional distribution and perform local GS. After finishing
sampling for every word, submit the updated Np to ledger p. (5) Repeat steps
3 and 4 until the model converges. Each developer saves the final updated θp
and Φ∑. The training detail can be seen in Algorithm 3.

Federated Latent Dirichlet Allocation for User Preference Mining 663

Algorithm 3: Training process of DAFed-LDA

Input: LDA hyper parameters α β K , local user-word vector {wp} , maximum
iterative number maxIter;

Output: Global preference-word distribution Φ∑ , local user-preference distribution
{θp};

1 initialization;
2 randomly initialize {zp} , count the initial {Np} , submit the initial Np to ledger p

and create genesis block for ledger p; for iteration steps = 1,2, . . . , maxIter do
3 for developer-id p = 1,2, . . . , P do
4 global aggregation;
5 query the latest N¬p from other ledgers;
6 N∑ ← aggregate Np, N¬p;
7 sum global Φ∑ with N∑;
8 end
9 local sampling;

10 for user-id i = 1,2, . . . , Mp do
11 for word-id j = 1,2, . . . , Li

p do
12 sample a new preference zjp,i for word wj

p,i;
13 end
14 update θp;
15 calculate Np;
16 end
17 send the latest Np to ledger p;
18 end
19 return {θp} , Φ∑;

There are three major features for DAFed-LDA to be differentiated from
CSFed-LDA.

First, with downloaded N¬p from other developers, each developer
implements global aggregation at a local site, while in CSFed-LDA, the
aggregation process is carried out at the server’s site.

Second, at asynchronous scenarios, the latest N¬p downloaded from
other developers may be lagging calculation results, since training speeds are
inconsistent among developers. For example, at a certain moment, developer
p has completed t iterations, but other developers may only have completed
t − 1 iterations or even fewer. Developer p would not wait but use Np and
lagging N¬p to make global aggregation and then start the next iteration.
With this strategy, computing resources could be fully utilized.

Third, Since no central server is included, we do not have to worry about
the leakage of model privacy to the server. Instead, the threat comes from the

664 X. Wu et al.

developers excluded by the consortium, and we will discuss this threat in the
next section.

Note that sparse representation of transmission data Np and multi-
step training strategy can be similarly applied in DAFed-LDA to reduce
communication cost.

7.3 Analysis of Model Inversion Attack

With MCACS, developers included in the same consortium share parameters
with each other, and they are the builders of the trained model. Only when
other developers excluded by the consortium try to get model parameters does
the model inversion attack occur. However, such an attack cannot obtain any
privacy information in the HF based environment. Therefore, model privacy
can be well protected through our MCACS.

In the experiments of this research which will be discussed in detail
later, we set aside commercial factors and consider all developers are in a
consortium.

8 Experiments and Analysis

In this section, we first explain our experimental settings, and then present
our series of experimental results on model performance, security, and model
training speed.

8.1 Experimental Setting

Dataset: We crawled the metadata of mashups from ProgrammableWeb.com,
which is by far the largest online repository of Web services and their
reported mashups. Each mashup contains metadata such as name, category
and description. In order to make the experimental results more significant,
we added category into the text description, and applied word stemming and
removed stop words. These mashup descriptions were treated and analyzed
as user requirements for our experiments as a typical setting [7, 19, 40].
After the preprocessing process, an overview of our dataset is summarized
in Table 2. About 75% user requirements were split as a training set, which
were assigned to each developer as local training data. We used the other 25%
to validate the trained FL model.

Environment: All the experiments were performed on six computers with
CPU i7-6700, five for simulating developers where up to 20 virtual nodes are

Federated Latent Dirichlet Allocation for User Preference Mining 665

Table 2 Dataset from ProgrammableWeb.com
Total # of user requirements 7936
Length # of word vocabulary 13,155
Average # of words in each user requirement 20.08
Average # of words for each word in vocabulary 12.11
Length # of training set 6000
Length # of test set 1936

simulated, and one for simulating the server in CSFed-LDA. To establish the
HF structure in DAFed-LDA, we deployed a total of three orderer nodes to
run Raft consensus. The HF version is v1.4.

Parameter setting: We set the hyper parameters α = 50/K and β =
0.01 according to the empirical formula [18], and the maximum number of
iterations was set to 1000. Some parameters have a direct effect on model
performance and are important to our research, including the encryption ratio
δ, the number of preferences K and the number of steps. We’ll analysis their
effect on model performance, privacy security and training speed through a
series of experiments.

Evaluation metrics: Perplexity was adopted in our experiments to evaluate
the performance of LDA models. Generally, lower perplexity stands for
better generation performance. For M user requirements, the perplexity is
described as:

perplexity = exp

− 1∑M
i=1 Li

M∑
i=1

∑
w∈Di

ln

(
K∑
k=1

p(w|zk)p(zk|Di)

)
(16)

where Di is the collection of words for the ith user, Li is the number of
documents, w represents the word and zk represents preference k.

Decentralized settings: Some settings were specifically configured for
DAFed-LDA. (1) A random delay was added to every iteration at each
developer’s site to create an asynchronous training environment. (2) As long
as the developer with the fastest training speed had finished the set maximum
number of iterations, the training ended.

Other default settings: If without special instructions, we set the following
configures as default. (1) A total of 20 developers were included in our
experiment, and the training set was randomly split evenly. (2) Every result
was the average of three repeated experiments.

666 X. Wu et al.

8.2 Analysis of Model Performance

We designed a collection of experiments to evaluate the performance of our
framework.

8.2.1 Impact of Federated Learning
Figure 6 shows the performance comparison of traditional-LDA (collect all
developers’ data at a device to perform LDA training) and our CSFed-LDA
and DAFed-LDA, with a given K (K = 10, 20, 30, 40). It can be seen
that the perplexity declines significantly as more developers participate in
the training process. Therefore, it is meaningful to utilize multi-party data
to train the federated model. Another important observation is that CSFed-
LDA performs almost as well as the traditional-LDA, which indicates that
model performance will not be affected with CSFed-LDA. Although DAFed-
LDA shows a slight performance loss, because the results may converge
into sub-optimal values under asynchronous scenarios, it still outperforms
significantly the stand-alone LDA training (training with only one developer’s
data at local site). We can see from Figure 6 that the performance of DAFed-
LDA with 20 developers is almost equal to that of CSFed-LDA with 18
developers.

(a) K = 10 (b) K = 20

(c) K = 30 (d) K = 40

Figure 6 Model performance as the number of developers increases when given different K.

Federated Latent Dirichlet Allocation for User Preference Mining 667

Figure 7 Model performance as K increases.

8.2.2 Impact of K
We designed experiments to identify an optimal number of preferences K.
Figure 7 shows that with K increasing, the perplexity of all three approaches
decreases. It can be found that K = 40 leads to the common points of
inflection on these curves. When K > 40, the perplexity only drops slightly,
but we will have to endure linearly increasing time cost as K increases.
Therefore, the optimized number of preferences based on this dataset is 40,
which is the default setting in the subsequent experiments.

8.2.3 Impact of Data Heterogeneity
We designed experiments to evaluate the effect of data heterogeneity on
the performance of federated learning. In the earlier experiments, the total
training dataset was equally divided among 20 developers. Such an assign-
ment was labeled as scheme (a). In this experiment, we re-partitioned the
training dataset in two new ways as scheme (b) and scheme (c). In scheme
(b), we divided the total training dataset to 20 developers in a non-uniform
manner instead of equal division, so as to investigate the effect of unbalanced
dataset sizes. In scheme (c), we partitioned all the data according to the
original category label information, each developer maintaining one or more
categories. Scheme (c) aimed to investigate the effect of different data types.

Under the three schemes, the model performance results are illustrated
in Table 3. It can be seen that the performance of CSFed-LDA and DAFed-
LDA are almost unaffected by the data heterogeneity. The reason is that the
data had been fully trained at each developer’s site. Even though the data
distribution among developers was heterogeneous, the operation of global
aggregation could almost eliminate the effect of heterogeneity.

668 X. Wu et al.

Table 3 Model performance with different dataset assignment schemes
(a) (b) (c)

CSFed-LDA 941.36 940.07 941.71
DAFed-LDA 959.37 961.32 960.03

Figure 8 Model performance as the number of steps increases with multi-step strategy.

8.2.4 Impact of Multi-steps
We further designed experiments to study the multi-step training strategy and
analyzed the effect of the number of steps on the performance of federated
learning. Figure 8 shows that model performance may be affected by the
multi-step strategy. This shows that it is a strategy to sacrifice performance
for training speed. Taking a further analysis, when steps = 5, perplexity
increases by 3.5% for CSFed-LDA compared with that in single-step training,
and increases by 6.5% for DAFed-LDA. This implies that the multi-step
strategy has a stronger impact on DAFed-LDA. Compared with the results
in Figure 6(d), it can be seen that the performance of CSFed-LDA when
steps = 8 is close to that in single-step training with 12 developers. For
DAFed-LDA, the closest point appears when steps = 4. As a result, if the
multi-step strategy is chosen to reduce communication cost so as to accelerate
training process, the loss of model performance should be taken into account
as well.

8.3 Analysis of Security

We designed a series of experiments to investigate the relationship between
the δ value contained in δ-IPHE and the protection level of model’s privacy.

Although δ-IPHE could prevent δ important data from being leaked to
the central server, the other 1 − δ non-encrypted data still bear the risk of

Federated Latent Dirichlet Allocation for User Preference Mining 669

Figure 9 The performance of inversed model as δ increases in UPHE and IPHE. The larger
perplexity of inversed model means the better protection of model privacy.

being leaked. Based on these data, the untrustworthy server can inverse a new
model, resulting in the leakage of model’s privacy. As a contrast, we proposed
δ-UPHE in this experiment, where δ unimportant data were encrypted.

Figure 9 shows the performance of an inversed model using the non-
encrypted 1−δ data with IPHE and UPHE, respectively. The larger perplexity
of the inversed model represents the worse performance of an inversed model,
which means the better protection of model privacy. Note that there exists
a long-form of IPHE in Figure 9, which represents the large gap between
the two inversed models in IPHE and UPHE with the same δ. The server
could not inverse a well performing model with low perplexity under the
protection of IPHE, while the server could do it under UPHE. Therefore,
IPHE protects model privacy far better than UPHE with the same δ. As δ
increases, more data are encrypted, and the ability to protect model privacy is
enhanced. However, the enhancement for UPHE is not obvious. For example,
when δ increases to 0.5% from 0, the perplexity for UPHE only increases
by 1.17%, corresponding to (0.01)-MP. At this occasion, the inversed model
still has good performance. By contrast, the perplexity increases up by 203%
with IPHE when δ = 0.5%, corresponding to (1.11)-MP. This inversed model
has lost its functionality completely. Two conclusions can be drawn from the
results. First, the important data have a more significant impact on the model
performance. In LDA, high-frequency words can reflect users’ preferences
better than low-frequency words. Second, even a small δ can protect model
privacy well in IPHE. Thus, in our model, we select δ to be 0.5% and δ-IPHE
could reach model privacy (1.11)-MP.

670 X. Wu et al.

8.4 Analysis of Training Speed

Furthermore, we designed experiments to investigate the training speed of
CSFed-LDA and DAFed-LDA. Because the entire training cycle is long,
we used the average time consumption of each iteration to describe the
training speed. The average time consumption mainly comprises local GS
time, communication time and encryption time. Table 4 records the time
consumption of traditional-LDA, CSFed-LDA and DAFed-LDA. δ was 0.5%
in IPHE and the number of steps was 4 in the multi-step strategy.

As to local GS time, since traditional-LDA has to sample every word for
the entire dataset, the average time consumption of each iteration is long.
By contrast, CSFed-LDA and DAFed-LDA both show higher efficiency in
Table 4. The reason is that they inherit the advantage of distributed LDA and
accelerate the training process through parallel training.

As to encryption time (including decryption time), Table 4 shows that
the encryption time is the training bottleneck of CSFed-LDA with original
homomorphic encryption (HE). And our approach uses IPHE to optimize the
process. As analyzed in Section 6.3, model privacy can be well protected with
δ = 0.5%. Under this setting, the encryption time drops by more than 95%.

As to communication time, since the encrypted cipher data consume
more storage space, CSFed-LDA has to bear the transmission time of large-
capacity cipher data during communication. The communication time for
DAFed-LDA consists of the time to operate blockchain, including submitting
and downloading the block. As shown in Table 4, such time is significantly
reduced under a permissioned blockchain structure.

Finally, we studied the effect of a multi-step strategy, where the data were
encrypted and transmitted after multiple iterations. The time consumption
for encryption and communication was allocated to each iteration. As shown
in Table 4, as the number of steps increases, the average time consumption

Table 4 Average time consumption of each iteration
Setting Running Time (Seconds)

Multi-step Encryption Methods Local GS Encryption Communication Total

Traditional-LDA \ \ 139.31 \ \ 139.91

CSFed-LDA

False HE

6.91

1374.21 4.57 1385.69

False IPHE 7.03 1.61 15.55

True HE 343.56 1.14 351.61

True IPHE 1.76 0.40 9.07

DAFed-LDA
False \ \ 3.24 10.15

True \ \ 0.81 7.72

Federated Latent Dirichlet Allocation for User Preference Mining 671

drops. In the conditions when network connection is limited, the advantage
of multi-step strategy will be further reflected.

9 Conclusions and Future Work

In this paper, we have investigated LDA training under an FL setting to mine
user preferences in the service ecosystem. This is a new secure way to utilize
multi-party data to train an optimized federated model. On the basis of a
user-level distributed LDA framework, we present two federated LDA imple-
mentation techniques and prototypes towards different training scenarios:
CSFed-LDA for synchronous scenarios and DAFed-LDA for asynchronous
scenarios. We have proved that our models are secure against reconstruction
attack and model inversion attack. Extensive experiments also show the
advantages of our models as to model performance and training speed while
protecting privacy.

Our future work will focus on the following two aspects. First, we aim to
build a federated mashup recommendation system based on the extracted user
preferences to create and recommend Web service compositions for users.
Second, we plan to extend our federated learning prototypes to other machine
learning algorithms, so as to solve more Web services computing problems
[2, 38] in a secure way.

Acknowledgements

This research has been partially supported by the National Natural Sci-
ence Foundation of China (No.62173199). Yushun Fan is the corresponding
author.

References

[1] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and
cloud computing: new wine or just new bottles? Proceedings of the
VLDB Endowment, 2010.

[2] Shereen H Ali, Rana A El-Atier, Khaled M Abo-Al-Ez, and Ahmed I
Saleh. A gen-fuzzy based strategy (gfbs) for web service classification.
Wireless Personal Communications, 113:1917–1953, 2020.

[3] Vasilios Andrikopoulos, Salima Benbernou, and Michael P Papazoglou.
On the Evolution of Services. IEEE Transactions on Software Engineer-
ing, 38(3):609–628, 2012.

672 X. Wu et al.

[4] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen,
Angela Jäschke, Christian A Reuter, and Martin Strand. A guide to fully
homomorphic encryption. Cryptology ePrint Archive, 2015.

[5] Sampathkumar Arumugam, Shishir Kumar Shandilya, and Nebojsa
Bacanin. Federated learning-based privacy preservation with blockchain
assistance in iot 5G heterogeneous networks. Journal of Web Engineer-
ing, pages 1323–1346, 2022.

[6] B. Bai, Y. Fan, W. Tan, and J. Zhang. SR-LDA: Mining effective
representations for generating service ecosystem knowledge maps. In
Proceedings of IEEE International Conference on Services Computing
(SCC), pages 124–131, 2017.

[7] B. Bai, Y. Fan, W. Tan, and J. Zhang. Dltsr: A deep learning framework
for recommendations of long-tail web services. IEEE Transactions on
Services Computing, 13(1):73–85, 2020.

[8] Kailash Chander Bhardwaj and RK Sharma. Machine learning in effi-
cient and effective web service discovery. Journal of Web Engineering,
pages 196–214, 2015.

[9] M. Blake and Y. Wei. Service-oriented computing and cloud computing:
Challenges and opportunities. IEEE Internet Computing, 14(06):72–75,
2010.

[10] David M Blei, Andrew Y Ng, Michael I Jordan, and John Lafferty.
Latent Dirichlet Allocation. J. Mach. Learn. Res, 3:993–1022, 2003.

[11] D. Chai, L. Wang, K. Chen, and Q. Yang. Secure federated matrix
factorization. IEEE Intelligent Systems, 2020.

[12] Jianfei Chen, Kaiwei Li, Jun Zhu, and Wenguang Chen. Warplda: a
cache efficient o(1) algorithm for latent dirichlet allocation. Proceedings
of the Vldb Endowment, 9(10):744–755, 2016.

[13] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dim-
itrios Papadopoulos, and Qiang Yang. Secureboost: A lossless federated
learning framework. IEEE Intelligent Systems, 2021.

[14] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang.
Untangling blockchain: A data processing view of blockchain sys-
tems. IEEE Transactions on Knowledge and Data Engineering, 30(7):
1366–1385, 2018.

[15] Cynthia Dwork. Differential privacy: A survey of results. In Interna-
tional conference on theory and applications of models of computation,
pages 1–19. Springer, 2008.

Federated Latent Dirichlet Allocation for User Preference Mining 673

[16] Z. Gao, Y. Fan, C. Wu, W. Tan, J. Zhang, Y. Ni, B. Bai, and
S. Chen. SeCo-LDA: Mining service co-occurrence topics for com-
position recommendation. IEEE Transactions on Services Computing,
12(3):446–459, 2019.

[17] Zhenfeng Gao, Yushun Fan, Xiu Li, Liang Gu, Cheng Wu, and Jia
Zhang. Discovery and analysis about the evolution of service compo-
sition patterns. Journal of Web Engineering, 18(7):579–626, 2019.

[18] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings
of the National Academy of Sciences, 101(Supplement 1):5228–5235,
2004.

[19] Y. Hao, Y. Fan, W. Tan, and J. Zhang. Service recommendation based on
targeted reconstruction of service descriptions. In Proceedings of IEEE
International Conference on Web Services (ICWS), pages 285–292,
2017.

[20] H. Kim, J. Park, M. Bennis, and S. Kim. Blockchained on-device
federated learning. IEEE Communications Letters, 24(6):1279–1283,
2020.

[21] Jakub Konen, H. Brendan Mcmahan, Daniel Ramage, and Peter
Richtárik. Federated optimization: Distributed machine learning for
on-device intelligence. 2016.

[22] C. Li, R. Zhang, J. Huai, X. Guo, and H. Sun. A probabilistic approach
for web service discovery. In Proceedings of IEEE International Con-
ference on Services Computing (SCC), pages 49–56, 2013.

[23] X. Liu and I. Fulia. Incorporating user, topic, and service related
latent factors into web service recommendation. In IEEE International
Conference on Web Services (ICWS), pages 185–192, 2015.

[24] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Cryptography Mailing list at https://metzdowd.com, 03 2009.

[25] David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling.
Distributed algorithms for topic models. Journal of Machine Learning
Research, 10(12):1801–1828, 2009.

[26] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of USENIX Annual Technical
Conference, pages 305–319, 2014.

[27] Abdelaziz Ouadah, Allel Hadjali, Fahima Nader, and Karim Benouaret.
Sefap: an efficient approach for ranking skyline web services. Journal
of Ambient Intelligence and Humanized Computing, 10:709–725, 2019.

674 X. Wu et al.

[28] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, Advances in Cryptology,
pages 223–238, 1999.

[29] Nhat Hai Phan, Xintao Wu, and Dejing Dou. Preserving differen-
tial privacy in convolutional deep belief networks. Machine Learning,
106(9-10):1681–1704, 2017.

[30] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE
Transactions on Information Forensics and Security, 13(5):1333–1345,
2018.

[31] Jin Qi, Bin Xu, Yu Xue, Kun Wang, and Yanfei Sun. Knowledge based
differential evolution for cloud computing service composition. Journal
of Ambient Intelligence and Humanized Computing, 9:565–574, 2018.

[32] Paritosh Ramanan and Kiyoshi Nakayama. Baffle : Blockchain based
aggregator free federated learning. 2019.

[33] F. Sattler, S. Wiedemann, K. R. Müller, and W. Samek. Robust
and communication-efficient federated learning from non-i.i.d. data.
IEEE Transactions on Neural Networks and Learning Systems, 31(9):
3400–3413, 2020.

[34] Gustavus J. Simmons. Symmetric and asymmetric encryption. Acm
Computing Surveys, 11(4):305–330, 1979.

[35] CB Sivaparthipan, Bala Anand Muthu, G Fathima, Priyan Malarvizhi
Kumar, Mamoun Alazab, and Vicente Garcı́a Dı́az. Blockchain assisted
disease identification of covid-19 patients with the help of ida-dnn
classifier. Wireless Personal Communications, 126(3):2597–2620, 2022.

[36] Hongbing Wang, Bin Zou, Guibing Guo, Danrong Yang, and Jie Zhang.
Integrating trust with user preference for effective web service com-
position. IEEE Transactions on Services Computing, 10(4):574–588,
2017.

[37] N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and
G. Yu. Collecting and analyzing multidimensional data with local dif-
ferential privacy. In Proceedings of IEEE 35th International Conference
on Data Engineering (ICDE), pages 638–649, 2019.

[38] Ronghan Wang and Junwei Lu. Qos-aware service discovery and
selection management for cloud-edge computing using a hybrid
meta-heuristic algorithm in iot. Wireless Personal Communications,
126(3):2269–2282, 2022.

Federated Latent Dirichlet Allocation for User Preference Mining 675

[39] Yansheng Wang, Yongxin Tong, and Dingyuan Shi. Federated latent
dirichlet allocation: A local differential privacy based framework. In
Proceedings of AAAI, pages 6283–6290, 2020.

[40] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu. Category-aware
api clustering and distributed recommendation for automatic mashup
creation. IEEE Transactions on Services Computing, 8(5):674–687,
2015.

[41] Peichen Xie, Bingzhe Wu, and Guangyu Sun. Bayhenn: Combining
bayesian deep learning and homomorphic encryption for secure dnn
inference. In Proceedings of The 28th International Joint Conference
on Artificial Intelligence (IJCAI), pages 4831–4837, 2019.

[42] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko
Ludwig. Hybridalpha: An efficient approach for privacy-preserving fed-
erated learning. In Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, pages 13–23, 2019.

[43] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM Transactions on
Intelligent Systems and Technology, 10(2):1–19, 2019.

[44] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jinliang Wei, Xun Zheng,
Eric Po Xing, Tie-Yan Liu, and Wei-Ying Ma. Lightlda: Big topic mod-
els on modest computer clusters. In Proceedings of the International
Conference on World Wide Web (WWW), page 1351–1361, 2015.

[45] J. Zhang, Y. Fan, J. Zhang, and B. Bai. Learning to build accurate ser-
vice representations and visualization. IEEE Transactions on Services
Computing, 2020.

[46] Jia Zhang. A mobile agent-based tool supporting web services testing.
Wireless Personal Communications, 56:147–172, 2011.

[47] Y. Zhang, Y. Qian, and Y. Wang. A recommendation algorithm based
on dynamic user preference and service quality. In IEEE International
Conference on Web Services (ICWS), pages 91–98, 2018.

[48] Y. Zhao, J. Zhao, L. Jiang, R. Tan, D. Niyato, Z. Li, L. Lyu, and Y. Liu.
Privacy-preserving blockchain-based federated learning for iot devices.
IEEE Internet of Things Journal, 2020.

676 X. Wu et al.

Biographies

Xing Wu received his BS degree in control theory and application from
Tsinghua University, China, in 2017. He is currently working toward a Ph.D.
degree in the Department of Automation, Tsinghua University. His research
interests include services computing, service recommendation, federated
learning and blockchain.

Yushun Fan received his Ph.D. degree in control theory and application from
Tsinghua University, China, in 1990. He is currently a professor with the
Department of Automation, Director of the System Integration Institute, and
Director of the Networking Manufacturing Laboratory, Tsinghua University.
From September 1993 to 1995, he was a visiting scientist, supported by
Alexander von Humboldt Stiftung, with the Fraunhofer Institute for Produc-
tion System and Design Technology (FHG/IPK), Germany. He has authored
10 books and published more than 300 research papers in journals and
conferences. His research interests include enterprise modeling methods and
optimization analysis, business process re-engineering, workflow manage-
ment, system integration, object-oriented technologies and flexible software
systems, petri nets modeling and analysis, and workshop management and
control.

Federated Latent Dirichlet Allocation for User Preference Mining 677

Jia Zhang received her PhD degree in computer science from the University
of Illinois at Chicago. She is currently the Cruse C. and Marjorie F. Cala-
han Centennial Chair in Engineering, Professor of Department of Computer
Science at Southern Methodist University. Her research interests emphasize
the application of machine learning and information retrieval methods to
tackle data science infrastructure problems, with a recent focus on scientific
workflows, provenance mining, software discovery, knowledge graphs, and
their interdisciplinary applications. Dr. Zhang has co-authored one textbook
“Services Computing” and has published over 170 refereed journal papers,
book chapters, and conference papers. Dr. Zhang has served as an associated
editor of the IEEE TSC since 2008. She served as Program Committee Chair
for IEEE SCC (2020), ICWS (2019), CLOUD (2018), and BigData Congress
(2017). She is a senior member of the IEEE.

Zhenfeng Gao received his PhD degree in control theory and application
in 2018 from Tsinghua University, China. He is currently working as a
postdoctor at the Graduated school at shenzhen, Tsinghua University as well
as the postdoctoral research center at Sangfor Technologies Inc. His research
interests include services computing, service recommendation, big data and
blockchain technology.

	Introduction
	Preliminaries
	Latent Dirichlet Allocation
	Federated Learning
	Homomorphic Encryption Application
	Blockchain

	Related Work
	LDA in User Preference Mining
	Federated Learning

	Problem Formulation
	User-level Distributed LDA Framework
	Overall Framework
	Analysis of Reconstruction Attack

	Centralized Synchronous Federated Latent Dirichlet Allocation
	Overall Structure and Workflow
	Importance-based Partially Homomorphic Encryption
	Sparse Representation
	Analysis of Model Inversion Attack

	Decentralized Asynchronous Federated Latent Dirichlet Allocation
	Blockchain Perspective
	Federated LDA Perspective
	Analysis of Model Inversion Attack

	Experiments and Analysis
	Experimental Setting
	Analysis of Model Performance
	Impact of Federated Learning
	Impact of K
	Impact of Data Heterogeneity
	Impact of Multi-steps

	Analysis of Security
	Analysis of Training Speed

	Conclusions and Future Work

