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Abstract

Ranking plays a crucial role in information retrieval systems, especially in the
context of web search engines. This article presents a new ranking approach
that utilizes semantic vectors and embedding models to enhance the accuracy
of web document ranking, particularly in languages with complex structures
like Persian. The article utilizes two real-world datasets, one obtained through
web crawling to collect a large-scale Persian web corpus, and the other con-
sisting of real user queries and web documents labeled with a relevancy score.
The datasets are used to train embedding models using a combination of static
Word2Vec and dynamic BERT algorithms. The proposed hybrid ranking
formula incorporates these semantic vectors and presents a novel approach
to document ranking called HybridMaxSim. Experiments conducted indicate
that the HybridMaxSim formula is effective in enhancing the precision of
web document ranking up to 0.87 according to the nDCG criterion.
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1 Introduction

Web information retrieval is the process of searching within web document
collections for a special query. Semantic search is a concept to improve
the accuracy of the search process by understanding the searcher’s intent
and decreasing ambiguity. Natural language processing (NLP) techniques
are useful for semantic search [1]. These techniques make it possible to
understand the context of the content. The definition of contextual retrieval is
dependent on surrounding words in text content [2]. Several studies have been
realized for contextual text meaning based on different languages. However,
few works are interested in the Persian language. Ranking web documents
is an important aspect of information retrieval and search engines. It involves
sorting and ordering documents based on certain criteria to provide users with
accurate and relevant results. Understanding the real meaning of the query
can be used to prioritize relevant results. A word with different meanings
may lead to deviation of the query from the searcher’s intent. Recently,
researchers have shown an increased interest in word embedding techniques.
Word embedding is a technique used in natural language processing to
represent words as real-valued vectors that capture semantic relationships
and syntactic similarity. This distributed representation for text is obtained
using language modeling and feature learning techniques, with different
approaches including vectors of co-occurring words or linguistic contexts.
Word embedding has various applications in NLP, enabling computers to
understand and process text-based content more effectively. They provide
a powerful way to represent words numerically, revolutionizing the field of
NLP and contributing to significant advancements in language processing
tasks [3].

The aim of this research is to improve search result rankings by under-
standing the meaning of Persian phrases through semantic embedding.
Different embedding algorithms are investigated, and ultimately Word2Vec
and BERT embeddings are used to train the models on web documents.
Instead of expanding queries using term embedding, the study focuses on
converting queries and documents into embedding vectors and ranking them
based on vector similarities using a proposed hybrid ranking formula. The
paper is organized as follows. In the next section, a comprehensive study
of previous works on word representation and ranking mechanisms are
reviewed. In Section 3, an outline of the methodology used to train the models
with Word2Vec and BERT embeddings is explained. In Section 4, a proposed
ranking approach will be described. Section 5 specifies the experimental
analysis and, finally, the paper is concluded in Section 6.
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2 Previous Work

Previous research has been categorized into three distinct categories. The first
category pertains to word embedding approaches, while the second cate-
gory focuses on related work on Persian word embedding. Lastly, the third
category delves into ranking approaches.

2.1 Word Embedding Approaches

Natural language processing is a subfield of machine learning that is often
used for text processing. The text consists of smaller parts, such as words and
characters. The numerical representation of words and text is a prerequisite
for most machine learning algorithms. Our goal is to use semantic vectors
in information retrieval and ranking. An important purpose is to achieve a
meaningful representation of the query to lead to a deep understanding of
its meaning [4]. Traditional vector methods such as BoW [5], which stands
for Bag of Words, and TF-IDF [6], which stands for term frequency times
the inverse of the document frequency, convert text sentences into numeric
vectors. These models use word frequency but the grammar, meaning, order,
and conceptual connection between words are ignored. In 2003, Benjiou et
al. introduced a model consisting of a neural network with one hidden layer
to predict the next word in the text [7]. This concept was introduced as word
embedding which tried to represent a word in n-dimensional space. In 2013,
Google’s Word2Vec algorithm [8] was introduced by Miklow et al. It contains
two architectures known as the Continuous Bag of Word (CBOW) model to
predict the current word based on the context, and the Skip-gram model to
predict surrounding words of a given current word.

The global vector model, GloVe [9], was proposed in 2014 by Pen-
nington et al. at Stanford University. The GloVe model focuses on word
co-occurrences over the whole corpus. In 2014, the FastText algorithm was
introduced by Facebook which is very similar to the Word2Vec idea. In this
model, instead of using the whole word, part of the word and characters are
considered. Output embedding of each word is a combination of lower-level
embeddings of sub-words and characters.

Contextual embedding assigns each word a representation based on its
context. Word2Vec uses only one weighted layer called word embedding
but a neural network can contain many layers that increase the power and
complexity of the network. One of the limitations of Word2Vec is learn-
ing a fixed embedding for each vocabulary word. The ELMo method was
introduced in 2018 as a new type of deep contextualized word representation
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model with a deep understanding of the syntax and semantics of words [11].
Unlike traditional word embedding, the vector of representing a word in
two sentences is different. ELMo uses next-word prediction in a sequence
of words based on language model. It is based on LSTM [12] architecture
which is a type of RNN (recurrent neural network) [13]. ELMo uses a
bidirectional language model that combines two LSTMs in forward and
backward directions to give a sequence of tokens and predict the probability
of the next word.

In 2018, Devlin et al. introduce a new language representation model
called BERT [14] which is an acronym for bidirectional encoder representa-
tions from transformers. BERT is a pre-train deep bidirectional representation
of unlabeled text in multiple layers and can be fine-tuned with one additional
output layer to create models for important tasks. BERT is based on trans-
formers and is logically similar to ELMo. In fact, BERT is a combination of
bidirectional RNN and deep RNN architecture known as bidirectional deep
RNN. It consists of a pre-training step on unlabeled data and fine-tuning
step using labeled data from the downstream tasks [14]. ALBERT [15],
RoBERTa [16] and DistilBERT [17] were proposed as expanded algorithms
of the BERT algorithm in 2019.

OpenAI released GPT-3 in 2020 which is an acronym for the generative
pre-trained transformer in continuation of GPT-2 and GPT with increasing
the number of parameters and training on larger data. Each layer consists of
two sublayers that include multi-head self-attention mechanism and a fully
connected network [18]. GPT-4 was released in 2023 which is the latest
milestone in OpenAI’s effort in scaling up deep learning [19].

2.2 Related Work on Persian Word Embedding

Despite considerable research interest in word embedding in recent years,
few works have studied these models in the Persian language. The Polyglot
project [19] trained word embedding for more than 100 languages including
Persian using Wikipedia articles. Facebook published pre-trained fastText
vectors for many languages on Wikipedia [20]. In 2018 the impact of the
corpus domain on Persian word representation had been researched [21].
In 2018, Zahedi et al. introduced a comparison between static models that
indicate the outperform of FastText and Word2Vec [22]. In 2020 in the
dynamic embeddings, ParsBERT model was introduced based on BERT
architecture [23]. In 2023, Bostan et al. introduced Persian BERT model and
evaluated with ParsBERT and BERT multilingual language models [24].
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2.3 Ranking Approach

Ranking documents involves sorting them based on their relevance to a query.
Document ranking based on embedding vectors is a technique used to rank
and retrieve documents based on their similarity to a query. Embedding
vectors represent documents and queries in a high-dimensional space, where
the similarity between vectors indicates the relevance of the document to the
query. In 2016, the generative topic modeling was introduced, which is a
combination of word embedding and topic modeling. This model represents
documents as fixed-length feature vectors in a low-dimensional continuous
space under the topics [25]. In 2016, the DESM model was proposed as a dual
embedding model for document ranking based on the Word2Vec algorithm,
which focuses on training words in documents and queries [26]. In 2017,
Dehghani et al. presented a weakly supervised neural model. In this approach,
the output of an unsupervised ranking model, such as BM25, was used as
a weak supervision signal [27]. K-NRM is a kernel-based neural model
for document ranking that utilizes a translation matrix to model word-level
similarities through word embeddings, which was introduced in 2017 [28]. In
2019, a matrix factorization approach was proposed for node embedding in a
network of documents. This approach was inspired by the GloVe algorithm,
which is based on the co-occurrence probability of words [29]. In 2020, a
method called Gaussian embedding of linked documents was introduced,
which focuses on embedding linked documents into a pre-trained semantic
space consisting of a set of pre-trained embedding vectors [30]. A novel
approach aiming to improve document ranking based on semantic similarity
measurement and the factor of association was proposed in 2020. Semantic
similarity focuses on retrieving similar textual documents based on a focused
query, while the association factor emphasizes on constructing a kernel-based
neural model [31].

In 2022, entity embedding based on relations for better document rank-
ing was examined, utilizing a neural network for embedding Wikipedia
documents based on graphs [32]. A machine learning algorithm based on re-
ranking documents was introduced in 2022. The ranking structure involves
encoding queries and documents using the BERT algorithm, and then using
a re-ranking learning model based on TFR to improve results and optimize
ranking performance [33]. Additionally, in 2022, some pre-trained embed-
ding methods were evaluated to identify the best model for document ranking.
The evaluation results indicate better performance of the joint sentence
encoder and SentenceBERT [34].
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3 Custom Embedding Model

The approach of utilizing embedding in information retrieval (IR) entails cre-
ating a compact vector representation for both queries and documents within
the text. This involves transforming queries and documents into embedding
vectors within an n-dimensional space. The ranking process is determined
by the similarity ranking method of these vectors, which will be further
elaborated on in the subsequent section.

Figure 1 shows that this article uses two embedding algorithms to improve
document ranking. The first algorithm, Word2Vec, embeds static vocabulary
and is trained on Persian web documents. The second algorithm, BERT,
embeds sentences and uses the pre-trained ParsBERT model for training, with
a custom fine-tuning process. This article presents a combined approach of
the two models for better document ranking, with detailed explanations for
each part.

3.1 Embedding with Persian Word2Vec Model

Word2Vec is a popular embedding model in natural language processing that
represents words or phrases as dense vectors in a continuous vector space.
It is designed to capture the semantic and syntactic similarities between
words. Developed by Tomas Mikolov et al. at Google, Word2Vec has gained
significant attention for its ability to learn meaningful word representations
from large amounts of text data. The basic idea behind Word2Vec is that
words with similar meanings tend to appear in similar contexts. Therefore,
the model learns word embeddings by training on large textual datasets, pre-
dicting the context or neighboring words of a target word. Word2Vec offers
two primary architectures for learning these embeddings: Continuous Bag of
Words (CBOW) and skip-gram. In the CBOW architecture, the model tries to
predict the target word based on its surrounding context words. The context
words are used as input to the model, and the goal is to predict the target word.
The CBOW model learns by updating the word embeddings in a way that
the predicted target word maximizes the likelihood of the observed context
words. This architecture works well when the target word is influenced by the
neighboring words in its context. The skip-gram architecture, on the other
hand, is the reverse of CBOW. It predicts the context words given a target
word. The skip-gram model takes a target word as input and generates a
probability distribution over the context words. The parameters of the model,
i.e., the word embeddings, are updated to maximize the likelihood of the
observed context words. Skip-gram is known to perform better when applied



Improving Ranking Using Hybrid Custom Embedding Models 803

Figure 1 The proposed framework for hybrid model ranking.

to large datasets and is useful for capturing less frequent words and their
relationships. The output of training Word2Vec is a set of word vectors,
where each word is represented by a high-dimensional vector, typically
with hundreds of dimensions. These vectors capture semantic relationships
between words, with similar words having close vector representations.
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3.1.1 Data gathering
In order to train word embedding vectors, a substantial corpus of sentences is
required. To enhance the accuracy and usefulness of our pre-trained model
at word, phrase, and sentence levels, we have utilized a novel form of
corpus. The website title serves as a concise and precise preview of the
content covered on web pages. Hence, we have employed web page titles
as part of our training process. The corpus used in our study has been
carefully extracted and collected by the Parsijoo search engine, comprising
an extensive collection of 681 million titles.

One important aspect of working with Persian text is the normalization
process. This is because Persian text often contains Arabic characters and
numbers, which need to be converted to their Persian equivalents. In con-
trast, English text is typically already in a standardized format and does
not require this type of normalization. Spacing between words is another
crucial aspect to consider in Persian text. For instance, the name of a
famous Iranian actor, Mohammad Reza Golzar, can be written as one word
or three separate words with spaces in between. This distinction is more
significant in Persian text than in English and can impact text analysis and
ranking. In addition, Persian text tends to be longer and more complex
than English text, making it more difficult to understand and analyze. This
means that we need to take extra care when processing and ranking Persian
text, and we may need to use more sophisticated algorithms to accurately
capture the meaning of the text. Lastly, the position of words in Persian
text is crucial since Persian is a highly inflected language. The position
of words in a sentence can affect their meaning, which is another factor
to consider when ranking Persian text. Persian relies heavily on context to
convey meaning. Understanding the context in which a sentence is used can
help in understanding the intended meaning of the text. We applied several
steps to preprocess the corpus to transform it into a proper format. The first
step involves normalizing the characters and handling invalid characters by
either removing them or converting them to standard characters. Additionally,
Arabic characters are converted into Persian to ensure consistency. After the
initial preprocessing, further steps are taken that include removing punctu-
ations and numbers from the text. Moreover, Persian tokens with less than
three characters are disregarded to maintain focus on meaningful content.
It is important to note that the corpus comprises texts in languages other
than Persian. Consequently, during the model training process, non-Persian
words are incorporated as well, allowing the model to learn from this diverse
linguistic data.
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3.1.2 Methodology
This section focuses on the implementation and training of the Continuous
Bag-of-Words (CBOW) model of the Word2Vec algorithm. We leverage a
large collection of Persian web documents for training the model. The imple-
mentation of the CBOW model for Persian web documents comprises
several steps. The preprocessed documents are tokenized into meaningful
words to form a corpus for training the CBOW model. We leverage the
Python programming language and appropriate libraries, such as Gensim,
for the implementation and training of the CBOW model. This involved
converting words into 100 dimensional vectors to capture their contex-
tual meaning. We set a minimum word frequency of 20, indicating that
any words appearing less frequently were disregarded for the training pro-
cess. To capture local word dependencies, we utilized sliding windows of
length 5.

3.1.3 Training process
The training process involves feeding the CBOW model with input data
consisting of word-context pairs extracted from the preprocessed Persian web
documents. The model is trained using a neural network with a hidden layer,
optimizing the parameters to learn meaningful word embeddings. This allows
for capturing the semantic relationships between words, enabling applications
such as similarity measurement and information retrieval within the Persian
language domain. Our model is trained using the Continuous Bag of Words
(CBOW) structure, where the aim is to predict the target word based on
its surrounding context words. We initially pretrained the model using a
subset of the corpus, gradually adding newer data in subsequent training
steps for continued improvement. In the paper, a set of web documents
is provided as the basis for building an embedding model and generating
semantic word vectors. The collection of documents, comprises a set of indi-
vidual documents. The vocabulary consists of unique terms extracted from
the documents. The next step involves extracting word representations for all
the words in the vocabulary using the Word2Vec model. This process allows
for the creation of numerical vectors that capture the semantic meanings
of the words, enabling further analysis and exploration of the document
collection in proposed ranking formulas. The process starts by inputting a set
of sentences into the model. Then, the training process commences, during
which the model utilizes a dictionary of trained words. In each iteration, the
weights of the words are updated. Once the training is complete, the model is
saved, allowing it to be used for further training with a new set of documents
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Figure 2 An example of training the CBOW model.

in the future. This feature enables the model to be retrained using a more
recent corpus. During each step of the retraining process, the previous model
and the last dictionary of vocabulary are loaded, ensuring that the training
continues seamlessly. In Figure 2, the training process based on the CBOW
model is depicted.

The training begins by traversing the training corpus using a sliding
window technique, which selects input sequences from the text. Within each
input sentence, the middle word is masked, creating a scenario where the
model needs to predict the missing word. This prediction task is performed
by passing the masked sentence through a fully connected dense layer, which
serves as a hidden layer in the CBOW model. The dense layer utilizes the
current weights of words and their corresponding features to generate a
prediction for the missing word. This iterative process continues, updating
the weights of words and their features, until all sentences have been trained
through the sliding window technique.

In this research, a significant volume of web document titles, totaling 54
million, was incorporated into the model at each step. The training process
for each document category spanned approximately 8 hours, resulting in a
total training duration of 100 hours for the extensive dataset of 681 million
documents. Throughout the training, a vast collection of approximately 2
million unique words were obtained. However, to optimize the usefulness of
the vocabulary, words that occurred less than 20 times were eliminated. As a
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Table 1 Training information
Subject Values

Train time 100 hours
Title counts 681 million
Size 75 GB
Word embedding model Word2Vec (CBOW)
Trained words count 329,836
Sliding window size 5
Vector dimension size 100
Minimum word frequency 20
Number of iterations 3

result, the number of trained words was subsequently reduced to 329,836, as
summarized in Table 1.

3.2 Embedding with the Persian BERT Model

This section focuses on the utilization of the BERT algorithm for process-
ing Persian web documents. BERT is a transformer-based model that is
pre-trained on a large corpus of text data to learn contextualized word repre-
sentations. Unlike traditional NLP models that process words in a sequential
manner, BERT incorporates bidirectional training, allowing it to consider the
full context of a word by looking at both the preceding and following words.
During pre-training, BERT is trained on a large amount of text data, often
using unsupervised techniques. The model learns to predict missing words in
a sentence based on the surrounding context, task known as masked language
modeling. Additionally, BERT performs another pre-training task called next
sentence prediction, where it learns to predict whether two sentences appear
consecutively in the original text. BERT embeddings are typically obtained
by fine-tuning the pre-trained BERT model on specific downstream tasks by
adding task-specific layers or classifiers on top of the pre-trained model.

3.2.1 Methodology
In our article, we utilize the pre-trained Pars-BERT [23] embedding model
and fine-tune it for our purpose. The Pars-BERT embedding model is a pre-
trained language model that has been specifically designed for the Persian
language. It utilizes the bidirectional encoder representations from transform-
ers (BERT) architecture and has been trained on a large corpus of Persian text.
By adding multiple layers on top of the pre-trained model, we achieve a better
performance and accuracy.
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3.2.2 Data gathering
The BERT model needs labeled data for fine-tuning, which includes pairs of
queries and documents collected from various websites and labeled by a team
of experts. The first dataset has 200 queries with an average of 15 labeled
documents per query, while the second dataset has 3000 queries with three
labeled documents per query. For the first dataset, the label zero indicates
that the document is irrelevant to the query, while label one indicates that
it is relevant. To increase the accuracy of the model during training for the
second dataset, three types of labels based on the degree of relevance between
the query and document are used, entailment, contradiction, and neutral.
The entailment label is assigned to a document that is completely relevant to
the query in terms of meaning. By contrast, the contradiction label is assigned
to a document that is visually similar to the query but completely different in
meaning. For example, a document with the content “the latest Bugatti car
model” is considered as a contradiction with the query “the latest Cerato
car model”. The neutral label is assigned to a document that has a general
content without any specific direction. For example, a document with the
content “news about cars around the world” is an example of this label. These
datasets are used for the first and second fine-tuning processes, respectively.
The datasets are first preprocessed and normalized. In this process, 70% of
the data is used for training, and 30% of it is randomly divided into two 15%
sets for evaluation and testing purposes.

3.2.3 Fine-tuning
Fine-tuning a pre-trained model requires much less cost compared to training
a model from scratch. By fine-tuning the model towards document classifi-
cation based on the user’s query, the model learns to determine the similarity
between two expressions in the form of a query and a document. In the
beginning, the pre-trained Pars-BERT model is loaded, and then tokenization
is performed for the training, evaluation, and testing sets. Since the labels are
based on determining the similarity between documents and queries, a custom
data access and processing method is created. Then, the dataset is divided into
smaller categories and, after injection into the network, it is shuffled. In each
training epoch, the weights are updated using fixed parameters and added
layers on top of the model. The average cost is calculated during the training
process. The model architecture consists of two fully connected layers for
weighting the hidden layer and using the SoftMax for the output layer. This
model returns two outputs, one for the language mask model and the other
for predicting the next sentence. The output of predicting the next sentence
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in the first layer of the model is passed to the fully connected network. Then,
by passing through the cost function, 1% of the weight of the hidden layer
is randomly forgotten to make it more regularized and reduce the testing
error. This output is then passed to the second layer of the fully connected
network and then through the softMax. The final output of the model indicates
whether the second sentence is related to the first or not. With a given number
of expected class labels, the model training begins. During this process,
some of the pre-trained weights remain unused, while others are randomly
initialized. The pre-trained model head layer is removed, and a classification
head with randomly initialized values is used instead. During training, this
new head is fine-tuned on the sequence of classification tasks, and the pre-
trained model knowledge is transferred to it. The training process continues
for three epochs, and finally, the resulting model with new weights is saved
for future use.

In the second fine-tuning stage, a different structure with a sepa-
rate dataset and format is used. The fine-tuned model from the previous stage
is used as input for this stage. In fact, the output of the first fine-tuning stage
is used as input for the second fine-tuning stage to improve the weights for
both structures, which can be seen in Figure 3.

Figure 3 Custom fine-tuning.
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In this structure, a bidirectional LSTM layer is added at the top of the
model. The input sequence is passed through the LSTM from both directions
simultaneously. After concatenating the outputs, 3% of the weight of the
hidden layer is randomly forgotten. Then it passes through the fully connected
network layers and are activated by the softMax function. At this stage,
training is only applied to the top layers to extract features, but it is also
possible to use the pre-trained model. After extracting the features of the
pre-trained model, the fine-tuning process is performed based on the desired
task to cover new data. Therefore, the model is first removed from the frozen
state.

4 Ranking

The purpose of this research is to enhance the ranking of documents by
leveraging semantic vectors, aiming for higher accuracy while minimizing
the associated costs. To achieve this goal, the study focuses on calculating the
similarity between semantic query and document vectors. The article intro-
duces a novel approach that involves extracting semantic vectors of words and
texts and incorporating them into hybrid ranking formulas. In this approach,
the semantic vectors are represented in a multidimensional space and ranked
accordingly within that space. The ranking process is based on calculating
the cosine of the angle between two vectors, but with the utilization of a
newly proposed structure and relationships specific to the multidimensional
space. Through this innovative methodology, the research aims to achieve
improved document ranking, combining the power of semantic vectors with
the advancements in multidimensional ranking techniques.

This paper focuses on utilizing embedding vectors to improve the rank-
ing of query phrases and documents. We employed two powerful models,
the Persian Word2Vec model and the fine-tuned BERT model, both of
which were trained, in Section 3, to extract high-quality embedding vectors.
We propose a novel combined formula for enhanced document ranking.
By leveraging the power of embedding vectors and incorporating a ranking
formula, this paper aims to enhance the precision and effectiveness of docu-
ment retrieval and ranking systems. According to Figure 4, a set of queries
and labelled web title documents is needed. ALL queries and documents
are collected from various sites such as Digikala and Aparat. This dataset
contains 100 queries, for each query, an average of 10 labelled documents
have been prepared. Labels from 0 to 5 indicate the relevance of the document
to the query. Larger number means higher relevancy.
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Figure 4 Label details of evaluated documents.

4.1 SentenceModel Ranking Formula

Cosine similarity [20] is a measure used to determine the similarity between
two vectors in a multi-dimensional space. It calculates the cosine of the
angle between the vectors, indicating their directional similarity rather than
their magnitude. The cosine similarity ranges from −1 to 1, where a
value approaching 1 signifies high similarity, while a value approaching −1
indicates dissimilarity.

Each query q and document d, consists of a set of different tokens can be
presented as,

q = {t1, t2, . . . , tk}, d = {t1, t2, . . . , tm} (1)

Ranking documents based on embedding vectors of query and document
is called SentenceModel similarity by calculating the average of vectors as
follows,

Similarity = cos(θ) =
e⃗q · e⃗d
|e⃗q||e⃗d|

(2)

4.2 MaxSim Ranking Formula

An alternative approach involves utilizing the semantic vectors of individual
words within each sentence and then evaluating the degree of similarity
between them. This approach is employed in the maxSim [26] ranking
formula, which uses two text segments to define semantic similarity. The seg-
ments used in this study are the query and document contents. First for
each word w in query q, try to identify the word in document d with the
highest semantic similarity, using the cos similarity of vectors. Next, the
same process for each w in d is applied to determine the most similar
words. The importance of a word is determined using the inverse document
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frequency (IDF). The value of ∂ is 0.5. The similarity between q and d is
determined using scoring function, simmaxSim(q.d).

simmaxSim(q.d) = ∂

(∑
w∈{q} (maxSim(w.d) ∗ idf (w))∑

w∈{q} idf (w)

+

∑
w∈{d}(maxSim(w.q) ∗ idf (w))∑

w∈{d} idf (w)

)
(3)

The similarity is calculated for each pair of query and document sep-
arately. Then the documents are sorted and ranked based on obtained
similarities.

4.3 Proposed Hybrid Ranking Formula

Using a hybrid ranking model that combines various models and approaches
provides several benefits. By combining different models and approaches, a
hybrid ranking model leverages the strengths of each component to achieve
better performance. Each model excels in different aspects of ranking, and
combining them leads to more accurate and robust results. The hybrid model
has a more comprehensive and diverse representation of the data, leading to
a better understanding of the ranking task [37].

This paper proposes a hybrid ranking formula that combines Word2Vec
and BERT models to capture both semantic and contextual information,
resulting in more accurate rankings. This hybrid model is more robust to
noise, outliers, or biases present in the data and can handle different types of
data by utilizing specialized models for each data type [38]. The hybrid model
is particularly useful for document ranking, as it leverages the strengths of
both models to produce a comprehensive and diverse representation of the
data [39].

In this stage, a trained Word2Vec model and fine-tuned BERT model is
used to calculate the maximum similarity between the word vector of the first
text and the entire sentence of the second text. This approach is different
from calculating the maximum similarity between individual words from
both texts.

The embedding vector of each token as t is extracted from the trained
Word2Vec model as follows,

e⃗ti = MWord2Vec(ti) (4)
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Also, the embedding vectors of the query and document sentence as si
are extracted from the fine-tuned BERT model as follows:

e⃗si = MBERT(si), where q and d ∈ S (5)

This new approach is called HybridMaxSim which is represented as
follows.

simHybridMaxSim(q.d)

= ∂

(∑
w∈{q} (maxSim(w⃗word2vec · d⃗BERT ) ∗ idf (w))∑

w∈{q} idf (w)

+

∑
w∈{d} (maxSim(w⃗word2vec · q⃗BERT ) ∗ idf (w))∑

w∈{d} idf (w)

)
(6)

The proposed method uses Word2Vec to extract semantic vectors for
words in one text and a fine-tuned BERT model to extract semantic vectors
for sentences in another text. By calculating the similarity between the two
vectors, the keyword can be identified as the word closest to the sentence
vector, indicating its relevance to the topic.

The nDCG [27] criterion is used to evaluate and compare the rating
quality. nDCG is popular method for measuring the quality of search results.
Cumulative gain is the sum of all the relevance scores in a sequence of
retrieval order. Discounted cumulative gain (DCG) discounts the relevance
score by dividing it with the log of the corresponding position. Finally, nDCG
known as normalized discounted cumulative gain is the ratio of the DCG
of the recommended order to the DCG of the ideal order [27]. It considers
the position and the relevance score of the document in the ranked list. In
this relation, which is used for the first n results, rj represents the degree of
relevance of the jth document with the corresponding query as follows,

nDCG@n =

n∑
j=1

2rj − 1

log(1 + j)
(7)

The nDCG takes into account two crucial factors: the relevance of a
document to the query and its position in the ranking. To determine nDCG,
relevance scores are assigned to each document in the dataset, which can
be binary or ordinal, reflecting how well the document matches the user’s
query. The DCG is then calculated for each ranking by summing the rele-
vance scores of the top-ranked documents, with each score discounted by its
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position in the ranking. The nDCG is obtained by dividing the DCG of the
ranking by the ideal DCG, which represents the maximum achievable DCG
for the dataset. To calculate the ideal DCG, the documents in the dataset
are sorted by their relevance scores, and the DCG for this perfect ranking
is calculated. nDCG is utilized to measure how well the document ranking
algorithm performs compared to an ideal ranking based on relevance scores.
A higher nDCG score indicates a more precise ranking.

5 Experimental Results

The paper introduces a new hybrid ranking formula that combines Word2Vec
and BERT models to improve the accuracy of rankings. The method uses
semantic vectors to identify the relevance of keywords to the topic. The rank-
ing is based on the similarity calculation between the embedding vectors in a
high-dimensional space, providing a comprehensive and diverse representa-
tion of the data. The proposed approach improves traditional ranking methods
by avoiding the need to expand queries and documents.

The sentenceModel similarity described in Section 4.1 serves as the
baseline for this evaluation. In sentenceModel similarity, a technique for
measuring sentence similarity, the cosine angle between the semantic vectors
of the query and document is calculated. An approach to extract semantic vec-
tors of the query and document sentence is by utilizing the Word2Vec model,
which deals with word embedding, and calculating the pairwise average
elements of the vectors to obtain a unit vector representing the meaning vector
of the sentence. Alternatively, the BERT model produces a semantic vector
of the input sentence. Therefore, in the first evaluation, ranking is performed
based on semantic vectors of each word and calculating their average using
the Word2Vec model called SentenceW2V. In the second evaluation, the same
process is performed for the BERT model called SentenceBERT. The results
of these two models can be seen in Table 2 which indicates an improvement
in accuracy of the fine-tuned BERT model compared to trained Word2Vec
model. The results indicate that BERT outperforms Word2Vec in terms of
accuracy, with a score of 0.82 compared to 0.75. Another approach for
ranking involves the utilization of the MaxSim formula. This approach takes
into account a broader range of factors, ultimately resulting in a more compre-
hensive and refined ranking system. In MaxSimW2V, the trained Word2Vec
model is used and the word vectors of the query and document are extracted
from it. In MaxSimBERT, document ranking is based on the fine-tuned BERT
model. In this method, it is necessary to extract the semantic vectors of each
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Table 2 Ranking nDCG results
Ranking Formula Model nDCG

SentenceW2V Trained Word2Vec 0.75
MaxSimW2V Trained Word2Vec 0.77
SentenceBERT Fine-tuned BERT 0.82
MaxSimBERT Fine-tuned BERT 0.85
HybridMaxSim Trained Word2Vec + 0.87

Fine-tuned BERT

word separately. The hidden layer semantic vectors are used for this purpose.
The MaxSim ranking approach yielded accuracy rankings of 0.77 and 0.85
for Word2Vec and BERT, respectively. The results of these evaluations are
visible in Table 2.

The innovation of this article lies in the introduction of a novel rela-
tionship called HybridMaxSim. To take advantage of both static embedding
models like Word2Vec and powerful dynamic models like BERT, a hybrid
approach is introduced. This study proposes the HybridMaxSim ranking
formula, which employs a fusion of trained Word2Vec and fine-tuned BERT
models to achieve the highest degree of accuracy in ranking. This approach
involves extracting the semantic vector of the query and document phrase
from the trained Word2Vec model. Instead of computing the maximum
similarity of each word in the first sentence with all the words in the second
sentence, the similarity between each word in the first sentence and the
embedded vector of the second sentence, based on the fine-tuned BERT
model, is utilized. The HybridMaxSim ranking formula is based on a com-
bined utilization of Word2Vec and BERT models, resulting in an accuracy of
0.87. The findings of this investigation indicate that the proposed approach
yields superior accuracy compared to other techniques, as evidenced by the
results presented in Table 2.

The HybridMaxSim approach combines the strengths of both models
and achieves an accuracy improvement of up to 0.87. The evaluation results
show that BERT is more accurate than Word2Vec, but a hybrid approach that
combines the strengths of both models achieves better results.

6 Conclusion

This study aims to enhance document ranking by utilizing custom embedding
models using proposed ranking approach. The results indicate that both
trained Word2Vec and fine-tuned BERT models significantly improve the
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accuracy and effectiveness of ranking. Although fine-tuned BERT outper-
formed trained Word2Vec, a hybrid approach that combined both models
yielded even better results.

The proposed ranking formula integrated static Word2Vec and dynamic
BERT algorithms, which were trained on two real-world datasets obtained
via web crawling and user queries. The hybrid approach increased the nDCG
score of web document ranking by up to 0.87. This technique has the potential
to significantly enhance search engine performance and improve user satis-
faction. Further research can refine the formula and explore its application in
other areas of information retrieval.
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