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Abstract

Edge computing technology has gained popularity due to its ability to process
data near the source or collection device, benefiting from low bandwidth
utilization and enhanced security. Edge devices are typically equipped with
multiple devices that employ asymmetric multi-cores for efficient data pro-
cessing. To ensure optimal performance, it is crucial to carefully assign tasks
to the appropriate cores in asymmetric multi-core processors. However, the
current Linux scheduler needs to consider the capabilities of individual cores
when assigning tasks. Consequently, high-priority tasks may be assigned to
energy-efficient cores, while low-priority tasks end up on high-performance
cores. This sub-optimal task assignment negatively impacts the overall sys-
tem performance. To address this issue, a new algorithm has been proposed.
This algorithm considers both the core’s capabilities and the task’s priority.
However, due to the asymmetric nature of the cores, prior knowledge of each
core’s speed is necessary. The algorithm fetches the priorities of the tasks
and classifies them into high, medium, and low-priority categories. High-
priority tasks are scheduled on high-performance cores, while medium and
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low-priority tasks are allocated to energy-efficient cores. The proposed algo-
rithm demonstrates superior performance for high-priority tasks compared
to the existing Linux task scheduling algorithm. It significantly improves
task scheduling time by up to 16%, thereby enhancing the system’s overall
efficiency.

Keywords: Asymmetric multi-core processors; completely fair scheduler;
edge computing; scheduling.

1 Introduction

As the personal computer era continues to witness a growing number of daily-
generated applications, end-users are increasingly demanding faster and more
capable systems to accommodate them. Within the realm of computer archi-
tecture, two primary approaches exist: single-core and multi-core. In the
context of single-core architecture, enhanced performance is achieved by
elevating clock speeds, although this approach is constrained by the challenge
of managing heat generation. Conversely, multi-core architecture involves
integrating multiple processing cores onto a single chip, thereby enabling
the simultaneous execution of multiple instructions and consequently accel-
erating program execution [3]. However, the adoption of multiple cores on a
single-chip processor gives rise to several challenges, including issues related
to memory, cache coherence, power consumption, and load distribution
among the cores [4]. In response to these challenges, asymmetric multi-
core architecture has gained traction in the computing landscape, thanks to
its ability to offer high performance and energy efficiency. This architecture
is increasingly prevalent in various computing devices, ranging from per-
sonal computers and cell phones to General Purpose computing on Graphics
Processing Units (GPGPU) [5].

Edge computing, a technology on the rise, involves processing data in
close proximity to the source or collection device. It encompasses a variety of
networks and devices located near the user. Edge computing offers multiple
benefits [25], including (i) Improved data privacy and security, (ii) Lower
operational costs, (iii) Enhanced network reliability, and (iv) Facilitation of
machine learning and artificial intelligence capabilities in close proximity to
the devices.

To meet the user’s requirements, these devices need to operate efficiently.
Among the challenges posed by multi-core architecture in edge computing
devices, the assignment of tasks to the appropriate core is also a significant
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challenge because the assignment of tasks or task scheduling is an NP prob-
lem [7]. The present Linux (Completely fair scheduler) scheduler is designed
with a symmetric multi-core processor keeping in mind that the tasks are
scheduled without knowing the capability of the core, which degrades the
overall performance of the Asymmetric multi-core systems [11].

The suggested approach is versatile and can function efficiently within
both symmetric and asymmetric multi-core systems. Initially, the method
assesses each core’s inherent tendencies towards high performance or energy
efficiency. Subsequently, it classifies tasks into three discrete groups based
on their designated priorities. Ultimately, the procedure coordinates task
scheduling to align with these priorities, assigning high-priority tasks to
high-performance cores and directing medium and low-priority tasks towards
energy-efficient cores. The proposed method has shown an improvement in
speed of up to 16% for high-priority tasks. This paper is the extended version
of [14], in which the efficacy of the proposed method is tested on Linux 20.

The remainder of the paper is organised as follows: Section 2 discusses
existing techniques for priority based scheduling in Linux and Windows;
Section 3 includes the details of the proposed approach; Section 4 includes
experimental results that help validate the efficacy of the proposed approach;
and finally, Section 5 concludes the paper with pointers to future work.

2 Previous Works

A considerable amount of literature is available on scheduling techniques for
the Linux scheduler, all of which aim to improve its scheduling ability. This
section will cover some of these efforts.

An optimal algorithm for task scheduling and data block placement in
edge computing devices was suggested by the author [21]. The primary aim
of the algorithm is to minimize response time and computational delay. When
considering data block placement, the algorithm takes into account three key
factors: popularity, data storage capacity of the block, and replacement ratios
of an edge server. The algorithm utilizes real data for task scheduling.

The paper [19] introduces a novel task scheduling algorithm for edge
computing, leveraging IoT devices. The algorithm allows tasks from edge
computing devices to be transferred to nearby IoT devices, as long as it
doesn’t disrupt the normal operation of the device and enhances the through-
put of edge services. By considering energy consumption and offloaded
execution time, the edge computing devices intelligently determine the
optimal IoT device to which their tasks should be shifted.
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The article [31] presents a combined algorithm for task scheduling and
containerization. The algorithm begins by conducting experiments to assess
the resource utilization of container operations. Subsequently, system models
are created to accurately capture the execution characteristics of tasks within
containers. Leveraging these models, the algorithm proceeds to perform
containerization and task scheduling.

In article [24], a scheduling framework designed to address energy effi-
ciency, shared resource contention, and fairness concerns in heterogeneous
multi-core processors is introduced. Author put this framework into practice
and assessed its performance on an actual HMP (heterogeneous multi-core
processor) platform. The experimental results, obtained using the SPEC
CPU2006 benchmark, demonstrate that proposed framework outperforms
Linux and four other schedulers in terms of both fairness (with an average
improvement of 58%) and energy efficiency (with an average improvement
of 37%).

The author [23] considered various factors, including equitable resource
utilization, which can result in decreased performance predictability,
extended makespan, instances of starvation, and quality of service (QoS)
degradation. Additionally, the impact of cluster voltage and frequency set-
tings on fairness was explored through Dynamic Voltage and Frequency
Scaling (DVFS). The effectiveness of the proposed approach was assessed
on an actual heterogeneous multi-core processor, leading to energy efficiency
and fairness enhancements.

In Task Snatching Technique the high-performance core snatches the
tasks from energy-efficient cores; some times high-performance core may
snatch a task with less execution time from an energy-efficient core while
another slow core has a task with more execution time and results in poor
execution time [2].

CAMP: In CAMP scheduling, two tasks, utility factor and scheduling algo-
rithm, are performed. A metric utility factor produces a single value as
CAMP to evaluate the application’s work. The rhythmic design helps the
scheduler choose the best threads to run on fast cores. The scheduler must
recognise the most eligible contenders to run on fast cores [22]. Calculations
of the applications are done after utility factors are computed. Depending
on the individual utility factors, CAMP recognises the threads that could be
placed on different types of cores [30]. As we discussed above, CAMP is
a thread-level scheduler because tasks in the same task-based programs can
often achieve similar speedup ratios on fast cores; it does not facilitate the
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performance of a single parallel program. Therefore, CAMP did not consider
the scheduling problem in parallel applications [17].

Bias Scheduling: This scheduling dynamically monitors the thread bias
to match them with the suitable cores, eventually amplifying the system
throughput. Each application gives a bias that supplements its resource needs
appropriately in this work [20]. Though bias scheduling can be easily imple-
mented and requires fewer changes in actual code, the problem with this
approach is that it requires a bias scheduling matrix. If the information of
any task is absent in this matrix, it performs similarly to regular scheduling,
resulting in degradation of performance [8].

Speed-Based Balancing: The Speed Balancing algorithm aims to oversee
the migration of threads, ensuring that each thread has an equitable oppor-
tunity to execute on the swiftest available core. Rather than focusing on
distributing workloads evenly, this algorithm strives to equalize the time each
thread spends executing on both faster and slower cores [15]. However, this
approach can inadvertently lead to task snatching, which, in turn, introduces
significant overhead and diminishes overall system performance.

The task scheduling techniques like task snatching [2] snatch tasks from
the slow-core with less remaining execution time and increases the overall
execution time of the system. CAMP [16] works based on individual utility
factor tasks, and then the task is scheduled according to utility factor, but it
only works with threads. Therefore, in the proposed work, the task scheduling
problem is addressed via CPU affinity (in which any task can be scheduled
explicitly on a particular core). The proposed task scheduling algorithm
determines the priority of individual tasks and schedules the task based on
priority on an appropriate core as per its capability [13].

3 Proposed Work

The remainder of the section is organised as follows: Section 3.1 discusses
the problem of scheduling in Linux operating system; Section 3.2 includes
the system architecture; and Section 3.3 represents the proposed solution.

3.1 Detailed Problem Statement

In an Asymmetric Multicore Processor (AMP) or Heterogeneous Multicore
system, not all cores share identical characteristics. Instead, various cores
exhibit distinct architectures and capabilities. These heterogeneous cores may
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Figure 1 Scheduling in AMP.

differ in terms of factors such as frequency, voltage, and memory model,
among others. The crucial feature in asymmetric chip multiprocessing lies in
the ability to seamlessly transition between these diverse cores and efficiently
power down any unused cores. We are working with an Asymmetric Multi-
core Processor (AMP), comprising one high-speed core denoted as C0 and
three slower cores, namely C1, C2, and C3. We have four tasks labeled as
T0, T1, T2, and T3, each assigned a priority level of low, medium, high, and
low, respectively, for scheduling across these cores. Let’s assume that tasks
T0, T1, T2, and T3 require time intervals of S0, S1, S2, and S3 for execution
on the slower cores, while they require F0, F1, F2, and F3 time intervals on
the fast core, respectively. It is reasonable to infer that for each task, the time
required on the fast core is less than the time required on the corresponding
slow core, resulting in the relationships F0 < S0, F1 < S1, F2 < S2, and
F3 < S3 [10]. You can find a visual representation of the overall scheduling
in AMP in Figure 1 (Figure 1).

If the tasks are allocated according to optimal priority scheduling means
allocating the tasks such as high-performance core get high priority tasks,
then overall completion time Topt (make-span) can be expressed as,

Topt= max(F0, S1, S2, S3) = F0

Because F0 < S0, we can say that Topt < S0.
In another traditional allocation technique, task T0 is scheduled on slow

core C3, and task T3 is scheduled on fast core C0. The make-span for
traditional allocation time Topt can be expressed as,

Ttrad= max(S0, F1, S2, S3) ≥ S0 > F0.
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It’s clear that assigning a high-priority task to a slower core could fre-
quently result in a decline in the overall performance of high-priority tasks.
Therefore, the objective is to allocate processes in a manner that prioritizes
high-performance cores for tasks with high priority, while directing tasks with
medium and low priority to lower-performance cores [20]. It’s worth noting
that finding the optimal allocation of tasks to cores is a computationally chal-
lenging problem known as NP-hard. Due to the dynamic nature of runtime
behavior, achieving a perfect allocation may not always be feasible, but we
can strive to schedule tasks in a near-optimal manner to adapt to changing
conditions [12].

3.2 System Architecture of Task Scheduling

The priority-based task scheduling within the Asymmetric Multi-core Pro-
cessor (AMP) context involves managing multiple tasks denoted as T1, T2,
and so forth up to Tn−1, and Tn, all residing in the ready queue. In this
setup, we have a total of n cores, ranging from C0 to Cn, where C0 to Ck

are characterized as high-performance cores, and Ck+1 to Cn are designated
as energy-efficient cores. The primary objective is to establish an effective
mapping of tasks that ensures high-priority tasks are scheduled on high-
performance cores, while medium and low-priority tasks are dispatched to the
low-performance cores. To achieve this task allocation, a mapping function is
employed, which classifies tasks into three priority categories: low, medium,
and high. Subsequently, based on their respective priorities, tasks are assigned
to cores that align with their priority class.

Figure 2 shows the task scheduling process in AMP, in which we have
tasks from T1 to Tn and cores from C0 to C3, where cores C0 and C1 are
high-performance cores and C2 and C3 are energy-efficient cores. The map
function schedules the task on the basis of priority, such as the task with high
priority will schedule on high-performance cores and the tasks with medium
and low priority will schedule on energy-efficient cores.

3.3 Proposed Algorithm

The proposed algorithm is structured into two distinct stages: (i) CPU rank
assignment, and (ii) Parallel priority class-based scheduling. In the initial
phase, the algorithm determines the rank of each CPU by assessing its perfor-
mance. This is achieved by executing a dummy task on all cores and using the
resulting execution time as the basis for ranking. As a result of this ranking,
each CPU is classified as either “High-performance” or “Energy-efficient”.
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Figure 2 Proposed task scheduling process.

Algorithm 1 Algorithm for Parallel Priority Class
Input: Different Tasks, CPU Ranks
Output: Execution Time of Task according to their Priority

Process:

1. Initiate all the cores according to CPU Ranks
i.e. (C0, C1) > (C2, C3) and so on.

2. Get the priority of the tasks.
3. Divide the tasks in to classes according to priority

(in low, medium and high class).
4. Bind the tasks to particular core according to class

(medium & low class tasks on energy-efficient cores and high class tasks on high-
performance cores).

5. Calculate Execution Time of each high priority tasks.
6. Calculate Speedup of the task execution.

Subsequently, in the second phase, the algorithm retrieves the priorities of
all tasks and employs them to schedule the tasks onto specific cores. The
scheduling process takes into account the priority, niceness, and weight of
each process. Several critical factors influence the task scheduling process,
including:

• Priority and Niceness of process: The utilization of idle CPU time can
be regulated through the “nice” parameter, albeit with some trade-off
in terms of speed. In Linux, the “nice” value (NI) is employed within
a range of −20 to +19, where −20 represents the highest value, 0 is



Priority Based Scheduler for Asymmetric Multi-core Edge Computing 879

CPU rank↵
Assignment

CPU

High-performance cores Energy-efficient cores

Check Priority↵
 of task

Assign TasksHigh-priority tasks Medium and low-priority tasks

Compute execution time

….

….

New tasks

Executed tasks

Figure 3 Flow chart of proposed task scheduling process.

the default value, and +19 indicates the lowest value. The priority (PR)
denotes the actual priority of a process as utilized by the Linux kernel.
There exists a correlation between the “nice” value and the priority,
which can be expressed as follows:

PR = 20 +NI (1)

The priority (PR) ranges from 0 to 39 and maps from 100 to 139 for user
processes. The nice value can be changed using a command or system
call.

• Relation between Nice and Weight of Process: The weight calculation
in the Linux Completely Fair Scheduler (CFS) is determined by an
exponential increase as the nice value decreases. The weight can be
approximately calculated using the following method:

Weight = 1024/1.25nice value (2)

3.3.1 CPU rank assignment
In Asymmetric Multi-core Architecture, at least two different cores are
present. One core is performance-efficient (big cores), and another is energy-
efficient (LITTLE cores). The big cores or performance-efficient cores are
designed for efficient performance, and the LITTLE cores are designed for
efficient energy [27].
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3.3.2 Parallel priority class-based scheduling algorithm
In Multi-core Architecture, OpenMP (Open Multi-Processing) is used to cre-
ate task or thread-level parallelism in Operating Systems to run concurrently
on different cores. With the help of this, the overall execution of the task
becomes fast. In OpenMP, the task can run on the same or different cores.

In this, tasks are scheduled on different cores according to their priority.
Suppose we have four cores C0, C1, C2, C3 where (C0 and C1) > (C2 and
C3), so the task having high priority will schedule on core C0 or C1, medium
and low on core C2 or C3.

In the proposed work, CPU Affinity is used to bind the task with a
particular core and the set of CPUs on which a thread can be eligible to
run is determined by the thread’s CPU affinity mask [29]. On a multi-core
processor system, the performance benefits can be obtained with the help
of CPU affinity mask. By dedicating one CPU to a particular thread (i.e.
setting the affinity mask of that thread to specify a single CPU and setting
the affinity mask of all other threads to exclude that CPU), [28] it is possible
to ensure maximum execution speed for that thread. Restricting a thread to
run on a single CPU also avoids the performance cost caused by the cache
invalidation that occurs when a thread ceases to execute on one CPU and
then recommences execution on a different CPU.

4 Evaluation

This section provides the implementation details and performance evaluation
of the proposed model. Here are several noteworthy function calls employed
in the implementation of the suggested algorithm.

• CPU set: Cpusets offer a mechanism within the Linux kernel that
enables the restriction of CPU and Memory Node usage for a process
or a group of processes.

• Set affinity: It is a Linux system call used for binding a thread thread RP
to the cpu core present in variable cpuset.

pthread setaffinity np(thread RP, sizeof(cpu set t),&cpuset)

(3)

• Schedule parameters: Param contains priority of threads which can
anything between (0-99) for SCHED RR and policy defines the schedul-
ing policy which is used by cores for scheduling tasks for per cpu core
queue. (SCHED RR means Round Robin Scheduling is used in this
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experiment).

pthread setaffinity np(thread RP, sizeof(cpu set t),&cpuset)

(4)

• Sched get priority: It is used for extracting the priority of any thread or
process in Linux.

The rest of this section is structured as follows: Subsection 4.1 outlines the
necessary system requirements for conducting the experiment, Subsection
4.2 analyzes the execution time of the suggested method on a Linux system,
and Subsection 4.3 provides a performance comparison between CFS and the
proposed method.

4.1 System Requirements

The experiments are performed on Dell G15, AMD Ryzen processor, with
6.8 GHz frequency, 8 cores and 20 MB cache size. The proposed method
is deployed on Ubuntu, Linux kernel 4.20. The implementation utilizes the
following relevant technologies:

1. OpenMP [6] is an Application Programming Interface designed for
facilitating parallel programming in languages such as C [18], C++ [26],
and FORTRAN [1]. It provides support for various platforms, encom-
passing Unix-based systems as well as Windows NT systems. OpenMP
is primarily oriented towards achieving portability and scalability. The
effectiveness of OpenMP is assessed based on the ease and adaptability
it affords developers during the implementation process. Essentially,
OpenMP serves as a set of compiler specification

2. MPI [9] is a standard message passing system that aimed to work in par-
allel computing applications. The standard currently supports message-
passing programs in FORTRAN, C and C++. Two implementations of
the MPI standard will be introduced.

4.2 Comparison

The experiments are performed on multiple tasks with a proper mixture
of high, medium and low priorities. The tasks are first scheduled on a
normal scheduler Completely Fair Scheduler (CFS), then the same tasks are
scheduled with our proposed approach. The overall execution time of high
prioritised tasks are calculated, that can be shown in Table 1.
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Table 1 Comparison of the proposed algorithm

Ubuntu 18 Ubuntu 20

Batch⋆ NT
†

AP
‡

ETL
§

ETP
¶

ETL
§

ETP
¶

Batch 1 990 99 6.13975 5.54364 5.97126 5.38963
Batch 2 910 99 6.12872 5.52790 5.95716 5.28789
Batch 3 1000 79 6.12692 5.39783 5.98182 5.28907
Batch 4 870 81 6.12898 5.41726 5.99546 5.11901
Batch 5 980 91 6.28981 5.23411 5.90159 5.03341
Batch 6 880 85 6.23981 5.24321 6.02671 5.04233
Batch 7 780 93 9.76146 7.98019 9.56109 7.68614

Total 46.8155 40.3441 45.3951 38.8475

NT
†

denotes the total number of high-priority tasks in particular batch, AP
‡

denotes

average priority of high-priority tasks, ETL
§

denotes execution time (in seconds) required

in Linux scheduler, and ETP
¶

denotes execution time (in seconds) required in proposed
method.

Figure 4, compares the execution time of high priority tasks (which are
scheduled in form of different batches) of our class based algorithm (in red)
with existing Linux based task scheduling(in blue) for Ubuntu 18 and 20. It
shows that our proposed algorithm take less execution time as compared to
existing Linux scheduling for high priority tasks.

4.3 Performance Measure

To measure the performance of our proposed algorithm, we have used
speedup, which can be calculated as,

Speedup =
Total time in linux

Total time in new algorithm
(5)

Speedup Ubuntu18 =
46.8155
40.3441

= 1.1604 (6)

Speedup Ubuntu20 =
45.3951
38.8475

= 1.1685 (7)

The proposed algorithm shows the speedup of 1.1604 or up to 16 %.
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(a) Ubuntu 18

(b) Ubuntu 20

Figure 4 Comparison of proposed algorithm with Linux scheduling algorithm on Ubuntu
18 and Ubuntu 20.
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5 Conclusion

In this study, we have made modifications to the existing Linux scheduling
technique by introducing priority class-based scheduling. Within the context
of Asymmetric Multi-core Processors (AMP), where cores exhibit varying
levels of performance (as indicated by task execution times), tasks are typi-
cally scheduled on cores without prior knowledge of their priority. To address
this, we’ve implemented a Parallel Priority Class-Based Scheduling approach
using OpenMP techniques and CPU affinity. The proposed algorithm lever-
ages a parallel mechanism, allowing tasks to be scheduled on different cores.
This approach proves highly effective for high-priority processes, resulting in
notable reductions in execution time.

Our algorithm was subjected to testing with a diverse mix of high,
medium, and low-priority processes. It demonstrated a substantial improve-
ment of up to 16% in the execution time of high-priority tasks when compared
to the existing Linux scheduling algorithm. However, it’s important to note
that the performance of the proposed algorithm may decrease when there is
an increased number of high-priority tasks scheduled simultaneously.

To address this issue, future work in this direction could explore poten-
tial solutions. One approach could involve refining the Parallel Priority
Class-Based Scheduling strategy to better manage the allocation of low and
medium-priority tasks to low-performance cores, minimizing the potential
impact on their performance. In future, we also try to in execute the proposed
method on SPEC CPU 2017 and compare the performance of it. Additionally,
the proposed method can be integrated with load balancing techniques to
facilitate the migration of low and medium-priority tasks to high-performance
cores when they are idle, thereby enhancing overall system performance.
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