Prediction Model of Post-TAVR
Complication Using a Medical Twin
Web Navigator

Se-Min Hyun and KangYoon Lee*

Department of Computer Engineering, Gachon University, Republic of Korea
E-mail: tpalsgus0@ gachon.ac.kr; keylee @ gachon.ac.kr
*Corresponding Author

Received 24 September 2023; Accepted 21 December 2023;
Publication 03 February 2024

Abstract

Transcatheter aortic valve replacement (TAVR) has been introduced as an
alternative to surgical aortic valve replacement for patients with severe aortic
valve disease and is expanding into a universal treatment. However, com-
plications after TAVR can have devastating consequences for patients and
must be predicted. By designing a TAVR medical twin architecture based
on real-world data (RWD), we can minimize complications and achieve
optimal clinical outcomes through analysis and simulation results in a virtual
environment that can predict complications. The simulation phase utilizes
machine learning algorithms for complication prediction to predict patients
with conduction abnormalities, a complication of TAVR, and provides the
prediction results through a web-based monitoring system. We also conduct
research to identify factors that influence complications, so that complication
prediction in a virtualized environment on a medical twin architecture can
serve as a guide for personalized care design for patients undergoing TAVR.
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web navigator, complication prediction model.
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1 Introduction

Transcatheter aortic valve replacement (TAVR) is the latest surgical method
used to treat aortic valve stenosis. It has been commonly used in large-scale
clinical studies in the United States and Europe since Dr Alain Cribier of
France attempted and succeeded in treating patients with severe aortic valve
stenosis in 2002 [1]. However, while TAVR has a growing body of research on
its efficacy and safety relative to surgical risk compared with surgical aortic
valve replacement (SAVR), TAVR is associated with a variety of clinical
outcomes and side effects depending on the individual patient’s condition,
the size of the valve used during the procedure, and the location of insertion.

In the medical system, personalized care refers to the provision of
optimized treatment of patients by considering genetic, environmental, and
lifestyle factors. Compared with conventional treatments, personalized care
is more effective and has fewer side effects. For such a system, we propose a
medical twin, which is a virtual representation of a real-world object. Medical
twins and personalized medicine are complementary technologies. Medical
twins can be used to monitor a patient’s condition and make treatment plans,
and are expected to contribute to improving the quality of life of patients in
medical systems. For example, a patient’s condition can be monitored in real
time to detect and treat disease deterioration at an early stage, treatment can
be optimized to increase treatment effectiveness, and the patient’s course of
treatment can be monitored to prevent side effects.

Traditional prediction models rely on statistical regression models [2].
However, machine learning, a subfield of computer science, has shown good
predictive power in various areas, including Alzheimer’s prediction [3]. The
machine learning algorithm can take the already output results and learn from
them to optimise the prediction for this outcome. The optimised prediction
results can also be provided to the physician as a web dashboard so that he
can see the patient’s information and the prediction results for TAVR, and
provide feedback on the results to provide a better prediction model.

In this paper, we study a medical twin-based simulated web navigator
based on artificial intelligence machine learning algorithms using real world
data (RWD).

2 Related Research
2.1 Transcatheter Aortic Valve Replacement (TAVR)

The aortic valve is located between the left ventricle and the aorta [4] and
is responsible for preventing blood from the aorta from flowing back into
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Figure 1 Diagrammatic representation of a normal aortic valve versus aortic stenosis [8].

the left ventricle. The normal aortic valve is a trileaflet structure located
at the junction between the left ventricular outflow tract and aortic root [5]
as in Figure 1. However, degenerative aortic valve stenosis, caused by con-
genital abnormalities or calcification due to calcium deposition in the heart
valve, gradually leads to thickening of the heart muscle, resulting in cardiac
dysfunction and symptoms such as shortness of breath, chest pain, fainting,
and a high mortality rate. Although cholesterol and high blood pressure may
contribute to the issue, the primary cause is aging. As a result, the majority
of patients are over 70 years old. In recent years, the aging population
has led to an increase in the number of patients [6] with aortic stenosis, a
condition in which the aortic valve ages and calcifies. In the past, the surgical
treatment of older patients was either impossible or difficult; however, recent
improvements in the outcomes of TAVR using a catheter have led to an
increase in the number of patients undergoing the procedure [7].

Unlike traditional surgery, which involves replacing the valve through an
incision in the chest, TAVR involves guiding a balloon along a blood vessel
in the thigh to the valve, inflating the balloon between the narrowed valves,
and securing a stent to the aortic valve, which can act as a valve. The intro-
duction of TAVR as complementary technique to SAVR has revolutionized
the treatment of severe aortic stenosis. TAVR has become the standard of
care for patients with severe aortic stenosis who are at increased risk for
surgery [9]. While TAVR has a numerically low surgical risk, studies have
shown that pre- and post-procedural complications can affect postoperative
survival, as in Figure 2, which shows moderate/severe paravalvular leak-
age (PVL) [10], major vascular and bleeding com-plications [11], disabling
stroke [12], acute kidney injury (AKI) [13], and conduction abnormalities
such as high-degree atrioventricular block (AVB) [14] requiring permanent
pacemaker implantation. The rate of new-onset left bundle branch block
(LBBB) after TAVR varies from approximately 4% to 65%, depending on the
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Figure 2 Big five periprocedural complications that significantly impact long-term out-
comes after transcatheter aortic valve replacement [16].

type of valve used. The two most commonly used valves are self-expanding
and balloon-expandable [15].

A conduction abnormality (CA) occurs when electrical signals from the
heart do not travel properly, and conduction abnormalities can cause an
irregular heartbeat or heart attack. It is not known exactly why conduction
abnormalities occur after a TAVR procedure, but they are thought to be caused
by damage to the nerves that carry the electrical signals of the heart during
the TAVR procedure. A pacemaker is a device that can regulate the heart’s
electrical signals and normalize the heart’s rhythm; therefore, if conduction
abnormalities occur after a TAVR procedure, a pacemaker may need to
be implanted. Therefore, to predict CA as a complication of TAVR, it is
necessary to identify factors that affect CA and to study the possibility of
CA in post-TAVR through machine learning prediction models.

2.2 Medical Twin Web Navigator Architecture

A digital twin is a technology that realizes twins that reflect the physical
features of real objects in a three-dimensional model and uses them to make
decisions about objects through simulation in synchronization with reality.
They can be applied in various fields, such as manufacturing, construction,
smart cities, and medical services [17], and are growing as a core technol-
ogy for digital transformation. With recent advancements in data analysis
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technology and the emergence of wearable devices, digital twins can be
combined with medical data to enable personalized precision medicine and
innovative healthcare services in the medical field. The key to precision
medicine and prevention are personalized medical data and disease predic-
tion, which are in contact with digital twins. A medical twin is a concept that
applies digital twins to the medical field and provides services by applying
digital twins at all stages, such as prevention, diagnosis, treatment, and man-
agement in healthcare. By leveraging individual patients’ electronic medical
records and patient-generated data, digital twin technology can also promote
personalized medicine research by enabling better research results, such as
drug interactions and treatment effects [18].

In this study, we designed the TAVR navigator architecture as shown
in Figure 3. The patient data (baseline, EKG, cardiac) collected from the
hospital is entered into the eCRF of the hospital information system (HIS) and
stored in the database for development. The patient’s data is stored in the post-
TAVR navigator DB through the API, data analysis and prediction models are
developed in the post-TAVR simulation layer, and the result data is stored in
the navigator result DB. Then, in the digital twin application layer, the results
of the post-TAVR prediction model are delivered to the web navigator through
the API, visualized through the web dashboard, and modified or improved
through feedback from medical staff on the results of the prediction model.
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Figure 3 TAVR medical twin navigator.
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After defining the data required to build a medical twin environment,
we designed a database, synchronized RWD in real time to create a virtual
environment framework, and created a virtual twin model that can repro-
duce the TAVR medical twin framework based on the input RWD to build
a virtual environment that can reproduce TAVR. The virtual environment
manages the patient’s treatment decision process, aortic condition, etc. It
utilizes deep learning and machine learning analysis techniques to provide
feedback on patient status information and outcomes generated by the results
of the clinical twin simulation environment. After surgery, the patient’s RWD
medical twin and surgical outcome data were precisely checked, utilized, and
synchronized to continuously monitor the patient’s condition.

To improve the post-TAVR complication risk prediction model based
on the virtual object of the medical twin, we pre-processed patient data
including RWD-based ECG data, trained a risk status classification machine
learning/deep learning AI model, and applied and evaluated the classification
prediction algorithm for complication risk management prediction. Finally,
we performed patient-specific complication risk management simulations
and implemented feedback-based prediction model improvement to improve
the accuracy of the prediction model through feedback via a web-based
dashboard. In addition, we provided a predictive model for conduction
disturbances among complications in a virtual environment on a medical
twin architecture, we went through data pre-processing and exploration,
and trained the model using machine learning algorithms such as logistic
regression, decision tree, random forest, and gradient boosting.

3 Research Method

The database included TAVR patient data from Gil Hospital in Incheon,
Republic of Korea, where the study was conducted with institutional
permission.

3.1 Study Patient Population

The following 44 variables were collected for each patient as in Table 1:
clinical data (age, gender, BMI (kg/m?), smoking status, hypertension [HTN],
diabetes melitus [DM], chronic kidney disease [CKD]), lab data (hemoglobin
(g/dL), HbAlc(%), aspartate aminotransferase [AST] (U/L), alanine amino-
transferase [ALT] (U/L), creatinine (mg/dL), Nt-proBNP (pg/mL)), vital data
(systolic blood pressure [sBP], diastolic blood pressure [dBP], pulse rate
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(per/min), respiratory rate (per/min)), drug (angiotensin-converting enzyme
inhibitors or angiotension II receptor blocker [ACEi or ARB], beta blocker,
aldosteroneantagonist, antiplatelet other than ASA, calcium-channel blockers
[CCB], diuretics, acetylsalicylic acid [ASA]), EKG (RBBB, LBBB, first
degree AV block, PR interval (ms), QRS interval (ms), Baseline QRS >
120 ms, DeltaPR, DeltaQRS, new onset RBBB, new onset LBBB, pace-
maker imputation), TAVR cardiac CT (left ventricular outflow tract [LVOT]
perimeter (mm), LVOT diameter (mean) (mm)), TAVR cardiac echo (aortic
valve (AV) Vmax (m/s), AV mgPG (mmHg), left ventricular end diastolic
diameter [LVEDD] (mm), left ventricular ejection fraction [LVEF] (%), peak
AV velocity [Vmax] (m/s), AV mean pressure gradient (mmHg)), valve (valve
size, valve code).

Baseline characteristics of clinic data, vital data, ECG data, and valve data
for the raw data in the study population are shown in Table 2. Categorical
variables expressed as ‘Yes’ and ‘No’ resulted in only ‘Yes’ outcomes.
Continuous variables are expressed as mean =+ standard deviation for normal
distribution and median and interquartile range for non-normal distribution.
Categorical variables are expressed as N (%). Table 2 shows the results of the
raw data prior to data pre-processing, missing values (PR_interval, Delta_PR)
were addressed in the study design of the prediction model.

The baseline characteristics of the patients are as in Table 2. The mean
age was 81.6 years, and approximately 43% (43 patients) were female. New
onset LBBB was present in approximately 13.8% (11 patients).

3.2 Prediction Model Research Design

The prediction model was trained using machine learning algorithms, includ-
ing logistic regression, decision tree, random forest, and XGBoost (extreme
gradient boosting). Logistic regression was chosen due to its common use in
clinical studies.

The data was randomly divided into two subsets: a training set (70%)
and a test set (30%) to ensure fair evaluation of the model. Missing data
values were imputed using a random forest algorithm. To address the imbal-
ance in patient representation within the existing training set, the synthetic
minority oversampling technique (SMOTE) was applied prior to model
development [19]. SMOTE is a technique that generates new samples by
adding random values to existing samples from classes with fewer data
points. Although randomized oversampling has a higher probability of over-
fitting, SMOTE has the advantage of a lower probability of overfitting, less
information loss compared to under-sampling, and no data reduction.
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Table 2 Baseline characteristics of TAVR patients

Variable N Total
age 80 81.0 £ 6.1
Female 43 43 (53.8%)
BMI 80 24.8 +£3.7
Smoking 80 72 (90.0%)
HTN 80 10 (12.5%)
sBP 80 133.2+155
dBP 80 72.6 +10.2
pulse_rate 80  70.0 £ 10.9
respiratory_rate (=20) 80 64 (80.0%)
RBBB 80 11 (13.8%)
LBBB 80 2 (2.5%)
PR_interval 70 180.7 £ 434
first_degree_AVblock 80 11 (13.8%)
QRS_interval 80 99.85 +£23.2
Delta_PR 65 3.8 +40.6
Delta_QRS 80 16.6 +26.2
BaselineQRS > 120ms 80 14 (17.5%)
New_onset_ RBBB 80 7 (8.8%)
New_onset_LBBB 80 11 (13.8%)
Pacemaker 80 5 (6.2%)

The prediction performance of the machine learning model was evaluated
on the test set using accuracy, F1-score, precision, recall, and the area under
the curve (AUC). The F1 score, which is the harmonic mean of precision
and recall [20], was used to measure performance. Precision represents the
proportion of positive results that are truly positive, while recall represents
the ability of a test to correctly identify positive results and obtain the
true positive rate. The F1 score achieves its optimal value at 1, indicating
perfect precision and recall, and its worst value at O [21]. To evaluate the
importance of each feature in the prediction model using RF, we applied
the permutation-based feature importance measurement. Because RF clas-
sification model leads to a reduced correlation between each decision tree
and can alleviate the overfitting issue, which is identified as a weakness of
the decision tree [22], and permutation feature importance is defined as the
decrease in a model’s score when the feature’s value is randomly permuted,
breaking the relationship between the feature and the true outcome [23]. The
significance of a feature is determined by computing the rise in the model’s
prediction error when the feature is permuted [24]. The measurement of



1046 S.-M. Hyun and K. Y. Lee

Table 3 Comparison of machine learning algorithm performance evaluation for conduction
abnormalities (CA) post-TAVR
Logistic Regression ~ Decision Tree Random Forest =~ XGBoost

Accuracy 0.81 0.87 0.93 0.83
Precision 0.72 0.84 0.88 0.73
Recall 0.84 0.83 1.00 0.84
F1-score 0.77 0.83 0.94 0.76

Random Forest
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o
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False Positive Rate

Figure 4 ROC curve and ROC AUC of random forest.

feature importance based on permutation was applied and explained in detail
in a study on plasma biomarkers for risk stratification in heart failure patients
with preserved ejection fraction [25].

The statistical analysis was performed using R software, version 4.3.1
(The R Foundation, Korea Yeungnam University), and machine learning
techniques were implemented in python(v 3.9.13) using Jupyter Notebook.

3.3 Results of Prediction Model

Table 3 shows the results of the performance evaluation of the CA predic-
tion classification model using four machine learning algorithms: logistic
regression, decision tree, random forest, and XGBoost. Figure 4 shows the
receiver operating characteristic (ROC) curve and ROC-AUC (area under the
curve) results for the random forest model. Figure 5 lists the top 30 variables
that predict CA after TAVR. The results of the feature importance analysis
indicate that EKG data was heavily represented in the TAVR patient data.
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Figure 5 Visualization of random forest features importance.

4 TAVR Web Navigator

Predictive model results and patient data can be provided as a web dashboard
via API and doctors can check predictive results and receive feedback.

4.1 Medical Twin Navigator’s Web Dashboard Design

The medical twin navigator’s web dashboard provides baseline information
about the patient’s personal information and eCRF, and provides personal-
ized prediction accuracy for CA, as shown in Figures 6 and 7. The patient
information and data displayed in the web dashboard is fictitious patient data
to anonymize patient information.

The main page of the web dashboard displays patient information (patient
name, TAVR procedure date, age, gender, height, weight), eCRF information
(vital data, underlying condition, lab data, valve data), prediction result (‘nor-
mal’ or ‘abnormal’), probability (%) for the prediction result, explanation
and feedback for the prediction result, ROC curve, features importance, and
interpretation and feedback for features importance.

Figure 6 displays the predicted outcome and its corresponding probabil-
ity, indicating to the doctor the need for an in-depth patient test based on the
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Figure 6 TAVR navigator dashboard (ROC curve).

prediction. Additionally, the ROC curve results are provided to assess the per-
formance of the prediction model. Figure 7 displays the feature importance
that influenced the prediction of the patient’s complications. It suggests to the
physician which patient features should be examined in-depth based on their
importance. A separate menu is available to view the ECG data due to the
feature importance results indicating an association between CA and ECG.
TAVR Web provides information and an explanation of the results to
increase confidence in the accuracy of the prediction model. It also provides
interoperability and the ability to predict complications for patients, and
provides physicians with feedback on prediction results to improve clinical
decision-making and help patients make informed procedural decisions [26].

5 Conclusions

In this study, based on the medical twin architecture layer, a complication
prediction model based on machine learning is used at the simulation layer
stage to predict complications. Factors affecting CA include clinic data,
echocardiograms, and valves, although first degree AV block, PR interval,
QRS interval, BaselineQRS > 120 ms, DeltaPR, and DeltaQRS items are the
most numerous. While previous research has focused on simulations such as
analysis and prediction in the real world, this study develops a RWD-based
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medical twin architecture to collect and analyse TAVR procedure data, predict
complications, and provide feedback in a virtual environment.

Patient RWD data and simulation data before and after the procedure
are synchronized, stored, managed, and utilized within the medical twin
architecture to ensure traceability for follow-up. In addition, a feedback
system compares post-TAVR results with the composite predictive model
results provided during the simulation modelling phase to improve simulation
accuracy, and analytical reports are provided to physicians and patients via a
web dashboard to predict outcomes and improve clinical outcomes through
feedback, allowing for continuous development of the complication model.
The medical twin navigator architecture also gives you access to a variety of
post-TAVR complication predictions, not just CA, and allows you to track
changes in features across complication types.

The medical twin navigator simulates the entire process of TAVR in a
virtual environment, it replicates a real medical system or body organ in a
virtual space, enabling doctors to predict treatment effectiveness, visualize
hard-to-see organ parts based on image data (such as CT or X-ray), prepare
for unexpected incidents during the procedure, and examine organs in detail
that cannot be seen in real life. The medical twin navigator can aid in
medical education, help make optimal procedural decisions, predict possible
complications for patients, and facilitate post-procedure follow-up.
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Therefore, the medical twin navigator is expected to facilitate the entire
TAVR process, from data collection to feedback, in a virtual environment.
This will enable doctors to predict surgical outcomes and improve clinical
outcomes based on objective and specific data during pre-procedure diagnosis
and evaluation. The use of this technology will increase the convenience and
safety of treatment for patients who require TAVR, minimize complications,
and reduce the burden of medical costs.
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