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Abstract

The integration of renewable energy sources into power distribution systems
frequently presents challenges for conventional energy management systems
(EMS) due to the unpredictable and unstable characteristics of such energy
sources. As a result, novel and cutting-edge solutions are required. This paper
presents an intelligent web-based energy management system (iW-EMS)
specifically designed to address the integration and optimization of dis-
tributed energy resources, as outlined in the proposed approach. The system
incorporates a hybrid novel optimization approach that integrates simulated
annealing and cone programming to effectively manage the distribution of
energy resources and attain optimal outcomes from the proposed EMS.
Additionally, it leverages generative AI services to create optimal scenarios
based on historical data and real-time information, ensuring adaptability to
the dynamic nature of renewable energy generation, providing a user-friendly
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and flexible web environment for scenario planning. The proposed framework
facilitates seamless communication and collaboration among stakeholders
involved in renewable energy integration, while also enabling the incor-
poration of real-world data sources such as weather forecasts and energy
consumption patterns into the planning process.

Keywords: Energy management systems, web engineering, generative AI,
active distribution networks, soft open points, dynamic scenario generation.

1 Introduction

Energy systems have key components known as renewable energy parts.
These parts possess various characteristics, including widespread resource
distribution, significant potential for advancements, minimal impact on the
environment, and sustainability for nature. They promote the development
of a balance between humanity and natural energy resources, aligning with
China’s efforts to address the growing energy and environmental challenges.
Additionally, renewable energy plays a crucial role in establishing a smart
grid. Currently, access to renewable energy involves centralized and dis-
tributed approaches. In the future, we can expect more widespread and dense
utilization of renewable energy at the distribution system level, connecting
it to the distribution grid through distributed access, thereby increasing its
significance [1].

The presence of distributed generations (DGs) within the distribution
network offers several benefits, such as reducing system losses, enhanc-
ing power supply reliability, and mitigating environmental pollution [2, 3].
However, when integrating distributed power, especially intermittent sources,
into the distribution network, its operation is influenced by the environment,
resulting in noticeable randomness and fluctuation. Consequently, the dis-
tribution network faces challenges such as unstable voltage and network
congestion [4, 5]. The conventional distribution system’s limited regulation
mechanisms are insufficient to handle multiple intermittent distributed power
sources. For example, renewable energy sources like wind and solar power
are inherently intermittent and variable. This means that their energy output
can fluctuate rapidly due to weather conditions and time of day, making it
difficult for conventional EMSs to maintain a stable power supply. EMSs
designed for conventional power generation may struggle to adapt to these
rapid changes. Accurate forecasting of renewable energy generation is essen-
tial for grid stability. Conventional EMS relies on historical load data and
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predictable generation from fossil fuel power plants. However, renewable
generation forecasting can be challenging due to uncertainties in weather pat-
terns. Accurate prediction of renewable energy output is critical for balancing
supply and demand effectively.

Also, the integration of renewable energy sources requires changes in grid
management practices. Conventional EMS systems may lack the necessary
tools to control and optimize renewable energy generation, storage, and dis-
tribution. Grid operators need to adapt their control strategies to incorporate
new parameters, such as ramping rates and response times, which differ
from conventional power plants. Maintaining grid stability becomes more
complex as the share of renewable energy sources increases. Conventional
EMS systems are not inherently designed to handle the rapid changes in
power supply and demand that renewable sources can be introduced. Grid
stability becomes a more significant concern, and EMSs must incorporate
advanced control algorithms to address these issues.

Moreover, many renewable energy sources, such as wind and solar, can
benefit significantly from energy storage solutions. Integrating energy storage
systems into the grid adds an extra layer of complexity. Conventional EMSs
may lack the ability to manage and optimize energy storage effectively,
which is crucial for storing excess renewable energy when it’s abundant and
delivering it when needed. With distributed generation from renewables like
rooftop solar panels, power can flow in two directions – both from the grid
to the consumers and from consumers back to the grid. Conventional EMSs
may not be equipped to manage this bidirectional power flow efficiently.

On the other hand, the integration of renewables also introduces new
regulatory and market challenges. Conventional EMSs may not be designed
to participate in energy markets, where renewables can offer surplus energy
or provide ancillary services. These systems need to adapt to new market
structures and regulations to accommodate renewable energy integration.
Integrating renewable energy sources requires more extensive data collection
and communication infrastructure. Conventional EMS may not be equipped
to handle the increased data demands and may require upgrades in data
management and communication systems to ensure real-time monitoring and
control of renewable assets.

The evolving energy landscape, characterized by renewable energy inte-
gration, grid decentralization, digitalization, and changing market dynamics,
demands innovative EMS solutions. These solutions are essential for ensuring
grid reliability, efficiency, and sustainability while meeting the challenges and
opportunities of the modern energy sector.
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To address these challenges, a groundbreaking intelligent power distri-
bution instrument called the “soft open point” (SOP) has been introduced to
replace traditional contact switches [6–8]. SOP planning is a crucial aspect
of power distribution systems that aims to enhance the flexibility, reliability,
and efficiency of electricity distribution. In essence, it refers to the strategic
deployment of intelligent switching devices and control mechanisms within
the distribution network, enabling the seamless rerouting of electrical power
when needed. This concept is particularly pertinent in the context of modern-
izing power distribution systems to accommodate renewable energy sources,
demand response, and evolving grid architectures.

The primary goal of SOP planning is to facilitate dynamic and automated
changes in the configuration of the distribution grid to optimize energy flow,
mitigate disruptions, and accommodate the integration of distributed energy
resources (DERs). This adaptive approach is becoming increasingly impor-
tant as power distribution systems transition from conventional centralized
generation to a more decentralized, diversified, and resilient model.

By strategically implementing SOPs and advanced automation, utilities
and grid operators can efficiently manage the distribution of electricity,
respond to outages, and integrate renewable energy sources into the grid,
all while ensuring grid stability and the reliable delivery of electricity to
consumers. As renewable energy and distributed generation continue to play
a central role in our energy landscape, SOP planning becomes a critical tool
in achieving a sustainable and resilient power distribution system.

Compared to traditional contact switches, SOP offers safer power control,
increased reliability, and continuous real-time control, effectively managing
the new issues associated with distributed power access. The SOP is typically
implemented using fully controlled power electronics, resulting in high costs
related to investment, operation, and maintenance. Therefore, strategic plan-
ning for SOP deployment becomes crucial. Although existing literature has
explored the fundamental principles and model of SOP [6], and simulated its
steady-state and transient operation [7, 8], the specific issue of SOP planning
has yet to be addressed.

A generalized constraint equation for an SOP in a distribution system
represented as follows:

ISOP = Iin − Iout

where ISOP represents the current flowing through the SOP, Iin represents
the total current entering the SOP from various sources or feeders, and Iout
represents the total current leaving the SOP to downstream feeders or loads.
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The equation ensures that the current at the SOP remains balanced, reflecting
the conservation of electrical current. Depending on the specifics of the
distribution network and the SOP’s purpose, additional constraints related to
voltage, power flow, and other operational parameters may also be included
in the constraint equations to ensure the safe and efficient operation of the
system.

This article presents iW-EMS, a system designed to handle the opti-
mization of distributed energy resources using cutting-edge technologies
in a user-friendly web interface. It utilizes advanced technologies, includ-
ing simulated annealing and cone programming, along with generative AI
algorithms. The system offers a user-friendly web interface for scenario
planning, facilitates communication and collaboration among stakeholders,
and incorporates real-world data sources like weather forecasts and energy
consumption patterns to support informed decision-making in the dynamic
field of renewable energy integration.

It must be noted that the increasing complexity of distribution sys-
tem scenarios, particularly when incorporating timing characteristics, poses
significant challenges in solving the nonlinear large-scale mixed integer
optimization problem. In light of this, the suggested system, which employs
a rational planning approach, plays a vital role in enhancing the efficiency
of the power distribution system. This aspect is of utmost importance in
the energy management process. The system’s adaptable control mode is
achieved through a hybrid optimization algorithm proposed in this study.
Its successful application in the entire EMS highlights its considerable
implementation potential. It is a comprehensive solution to the challenges
of integrating and optimizing distributed energy resources, with a focus
on adaptability, user-friendliness, collaboration, and data-driven decision-
making.

2 Related Work

For traditional research on optimizing the dispatching of distribution net-
works, the most common approach is optimization-based [10, 11]. These
methods provide stable and interpretable results. However, they require an
explicit mathematical model of the system, which makes it difficult to obtain
accurate line parameters and system topology for large-scale networks. Addi-
tionally, these methods often rely on assumptions and simplifications during
the modelling process to ensure solvability. Excessive assumptions and sim-
plifications can lead to a deviation from real-world scenarios. There are also
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challenges in efficiently solving optimization problems. For example, when
optimizing a distribution network with discrete control devices, the nonlinear-
ity of the system constraints and the discrete nature of control attributes create
a nonconvex problem. Generally, mixed integer programming is used to
model such problems, but current solvers are relatively inefficient in solving
mixed-integer nonlinear programming within a reasonable timeframe.

To address these challenges, researchers have proposed heuristic
algorithm-based optimal dispatching strategies for distribution networks
[12, 13]. Heuristic algorithms are favored for their simplicity and ease of
implementation. Various heuristic methods, including particle swarm, ant
colony, genetic algorithms, and simulated annealing, have been applied to
optimize distribution network operation. However, these heuristic algorithms
cannot guarantee optimal solutions, and, as the complexity of the optimiza-
tion problems grows in relation to the number of variables and constraints,
the computational effort required also increases exponentially. Consequently,
solving complex optimization problems for large-scale distribution networks
can be time-consuming using heuristic algorithms.

Distribution networks with distributed renewable energy sources face
unique challenges. If a centralized control approach is employed, it presents
difficulties related to communication and processing of massive information,
maintenance of the control center model, agility of control strategies, relia-
bility of the control system, and information privacy [14]. On the other hand,
adopting a distributed control approach enables efficient, orderly, safe, and
cost-effective integration of renewable energy into the grid through clus-
tering control of distributed renewable energy generation. The consistency
algorithm, a classic distributed control method in distribution networks [15],
requires controllers to synchronize updates, thereby increasing communi-
cation complexity and execution difficulty. This makes it challenging to
ensure real-time control and handle voltage fluctuations caused by rapid
changes in renewable energy output. The alternating direction multiplier
method achieves an efficient solution to the distributed control problem by
iteratively addressing the proximity interval and solving in parallel [16].
However, it only exhibits first-order convergence and is inadequate for meet-
ing online control requirements when dealing with large-scale renewable
energy sources.

Compared to traditional methods used the intelligent method like the
proposed have several advantages [17, 18]. For instance, the complex process
of dealing with inaccurate physical models. Obtaining accurate physical
models of distribution networks is challenging in practical settings, unlike
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the main network. Determining line impedance and network topology typi-
cally requires a substantial amount of data recorded by phasor measurement
devices or a large quantity of recorded data based on time scales. The limited
observability of the distribution network makes it difficult for operators
to acquire precise line parameters and topology. Traditional optimization
methods heavily rely on accurate physical models, and deviations in model
parameters can impact control. In contrast, deep reinforcement learning meth-
ods achieve control without depending on physical models, mitigating the
impact of inaccurate models on control performance through rational design.

On the other hand, exploiting historical data offers a notable advantage.
As measurement devices and intelligent terminals are increasingly employed,
the distribution network continuously generates large volumes of data with
complex structures and correlations. These data contain valuable information
that can be effectively utilized to support system operation and optimization.
While optimization-based methods and heuristic algorithms do not capitalize
on the value of historical data, deep reinforcement learning extracts empirical
dispatch knowledge from historical records during offline training, effectively
leveraging the valuable information contained within historical data.

From this point of view, the use of generative AI algorithms is an advan-
tage that allows the system to create optimal scenarios based on historical
data and real-time information. This adaptability is crucial when dealing
with the unpredictable and dynamic nature of renewable energy generation.
Generative AI can help generate solutions that respond to changing condi-
tions and variables. Moreover, the application of web engineering technology
provides a flexible environment for scenario planning. This technology likely
involves web-based interfaces and platforms that enable communication and
collaboration among stakeholders involved in renewable energy integration.
It can also facilitate the integration of external data sources such as weather
forecasts and energy consumption patterns, enhancing the accuracy of energy
management decisions.

It must be noted the system’s ability to integrate real-world data
sources, including weather forecasts and energy consumption patterns, is
essential for making informed decisions. Weather forecasts are particularly
crucial for renewable energy systems since they help predict energy gen-
eration from sources like solar and wind. Integrating these data sources
can improve the system’s ability to adapt to changing conditions. In addi-
tion, the emphasis on seamless communication and collaboration among
stakeholders involved in renewable energy integration is crucial. Energy
management often requires coordination between various parties, including
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utility companies, consumers, and renewable energy providers. A web-based
system can facilitate this collaboration, making it easier to manage distributed
energy resources effectively.

3 Multi-scene Modelling Considering Wind and Light
Uncertainties

Multi-scene modelling considering wind and light uncertainties is a crucial
tool in the planning and operation of renewable energy systems. By account-
ing for the inherent variability and uncertainty of wind and solar resources,
it enables more informed decision-making, better risk management, and
improved energy system reliability.

3.1 Probabilistic Model for Wind Power Generation

Weibull probability distribution composed of two parameters is typically used
to model the velocity of the wind defined by:

f(v) =
k

c

(v
c

)k−1
exp

[
−
(v
c

)k
]

(1)

where v denotes the velocity of the wind; k and c represent parameters of
shape and scale, respectively.

The velocity and the power of wind are related and represented by

PWT =


0, 0 ≤ v ≤ vci or v ≥ vco

av3 + b, vci < v < vr

PWT ,N , vr ≤ v ≤ vco

(2)

where PWT,N is the rated power of wind power generation; vci, vr, and
vco is the cut-in wind speed, rated wind speed, and cut-out wind velocity,
respectively; a and b are the fitted parameters found by the power curve,
which can be calculated according to Equations (3) and (4):

a =
1

v3r − v3ci
PWT ,N (3)

b =
v3ci

v3r − v3ci
PWT ,N . (4)
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The probability density function (PDF) of wind power when the Weibull
distribution is used for the velocity of the wind is obtained through Equa-
tions (1)–(4):

f(PWT ) =
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]
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k
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PWT = PWT ,N

×δ(PWT − PWT ,N ),
(5)

where δ(·) is the impulse function.

3.2 Probabilistic Model of Photovoltaic Power Generation

A beta probability distribution is typically used to describe the intensity of
the light:

f(I) =
1

Imax
Γ(α+β)
Γ(α)Γ(β)

I
Imax

α−1 I

Imaxβ−1

(6)

where I denote the intensity of the light; Imax denotes the highest score of
I; α and β represent the Beta probability distribution’s two parameters; Γ(·)
denotes the gamma function.

Since the PV power PPV is roughly proportionate to the intensity of the
light I, the PDF of the PV power obeying Beta distribution is obtained as
follows:

f(PPV ) =
1

PPV ,N

Γ(α+ β)

Γ(α)Γ(β)

(
PPV

PPV ,N

)α−1(
1− PPV

PPV ,N

)β−1

(7)

where PPV ,N is the rated power of PV power generation.

3.3 Optimal Scene Generation Based on Wasserstein Distance

The uncertainty of the power output of distributed power sources such as
wind and light is generally denoted by continuous PDFs. In contrast, in plan-
ning models, discrete distributions are generally used instead of continuous
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distributions for simplification. Replacing continuous PDFs with discrete
ones and the probability values corresponding to the scenarios is called sce-
nario simulation, also called scenario generation. Based on continuous PDFs
regarding wind power and PV power output already obtained, the discrete
scenarios can be obtained by using the method called scenario generations
to minimize the errors of the discrete scenarios and the original distributions,
and by discretizing the continuous PDFs regarding wind power and PV power
output. Considering the strong nonlinearity and high dimensionality of the
tidal optimization problem itself, how real PDFs are approximated based
on a few discrete ones poses a modeling difficulty. In scene generation, a
method called optimal scene generation using the Wasserstein distance has
been widely implemented.

Assumed that x is a random variable denoted by a PDF f (x) and it is
desired to approximate f (x) by a discrete scene with S discrete points, the
method called optimal scene generations using the Wasserstein distance to
obtain the optimal points can be obtained by Equation (8):∫ zs

−∞
f(x)

1
r+1dx =

2s− 1

2S

∫ +∞

−∞
f(x)

1
r+1dx. (8)

The ps denotes the probability corresponding to zs and is calculated
according to Equation (9):

ps =

∫ zs+zs+1
2

zs−1+zs
2

f(x)dx. (9)

z0, zS+1 denote the lower and upper bounds of the variable x, respectively,
which will be −∞ and +∞, respectively, if not otherwise specified; r is the
order; Wasserstein distance represents an integral of the gap between two
PDFs at an exponent of order r (taken as r = 1).

Thus, the power points and the corresponding probabilities of wind power
and photovoltaic power generation could be attained separately, and the
optimal scenario of the combined scenery based on Wasserstein distance can
be obtained jointly.

4 Two-layer Planning Model for SOP Siting and Capacity
Setting

The two-layer planning model for SOP (solar power) siting and capacity set-
ting is a strategic approach used in the renewable energy industry, specifically
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for determining the optimal locations and capacities for solar power genera-
tion facilities. This model consists of two distinct layers or stages that work
together to guide decision-making in the deployment of solar energy projects.

4.1 The Main Functions and Mathematical Model of SOP

SOPs are mainly installed at conventional contact switches, as shown in
Figure 1, and could adaptively control the transmitted active power between
two feeders and give certain reactive power support. The application is
primarily dependent upon completely controlled power electronics, and three
main types of implementations exist: back-to-back voltage source converter
(B2B VSC), static synchronous series compensator (SSSC), and unified
power flow controller (UPFC).

In the manuscript, SOP planning in the power distribution system is exem-
plified by taking back-to-back voltage source converters, and the controllable
attributes of the SOP include four: active power and reactive power output of
two converters. Though the back-to-back voltage source converters present
high efficiency, when there is an uneven distribution of distributed power
sources and loads, and the active tide needs to be transferred in a wide range,
certain power losses will be generated, and a certain loss factor is considered
in the modeling process of this paper. It is supposed that the SOP injects
power into the grid in a positive direction. The reactive power output of
the two converters does not affect each other due to the isolation of the DC
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link, and only the capacity constraints of the respective converters need to be
satisfied. Here, the PQ-VdcQ control was chosen as the SOP’s control mode,
and the following SOP constraint equation is obtained. PQ-VdcQ control is a
comprehensive strategy that combines active and reactive power control with
DC voltage control to effectively manage the power flow and voltage quality
in the system, particularly when voltage source converters are utilized.

(1) The active power constraint of the SOP is:

Pi,SOP (s) + Pj,SOP (s) + Pij,SOP (s) = 0 (10)

Pij,SOP (s) = Ai,SOP |Pi,SOP (s)|+Aj,SOP |Pj,SOP (s)|. (11)

(2) The reactive power constraint of the SOP is:

−Sij,SOP ≤ Qi,SOP (s) ≤ Sij,SOP (12)

−Sij,SOP ≤ Qj,SOP (s) ≤ Sij,SOP . (13)

(3) The capacity constraint of the SOP is:√
Pi,SOP (s)2 +Qi,SOP (s)2 ≤ Sij,SOP (14)√
Pj,SOP (s)2 +Qj,SOP (s)2 ≤ Sij,SOP (15)

where s is the operation optimization scenario; i and j denote the node
numbers of the SOP linked to the distribution system; Pi,SOP (s), Pj,SOP (s),
Qi,SOP (s), and Qj,SOP (s) denote the injected active and reactive power by
the two converters of the SOP in the sth scenario, respectively; Ai,SOP and
Aj,SOP denote the loss coefficients of the converter; Pij,SOP (s) denotes the
transmission loss of the SOP; µ denotes the absolute value of the power factor
angle sine; Sij,SOP denotes the capacity of the SOP linked between i and j
nodes.

The SOP siting and capacity planning problem involves both determining
the location and capacity of the SOP installation location and capacity, but
also calculating the optimal operating phase of the entire distribution system
under each scenario. This is a typical two-level planning problem.

4.2 Upper Layer Optimization Model

The objective function of the upper layer planning model was to minimize
the yearly integrated cost C. The mathematical expression is:

minC = CI + CO + CL. (16)
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The meaning and calculation of each component cost are as follows.

(1) Converted to annual SOP fixed investment costs:

CI =
d(1 + d)y

(1 + d)y − 1

NSOP∑
k=1

ck,SOPSk,SOP (17)

where d represents the discount ratio; y denotes the SOP’s economical service
life; NSOP denotes the SOP numbers to be selected for installation; Sk,SOP

and ck,SOP are the capacity of k SOPs to be installed and the corresponding
investment cost per unit capacity, respectively.

(2) SOP’s yearly operation and maintenance costs:

CO = η

NSOP∑
k=1

ck,SOPSk,SOP (18)

where η is the yearly operation and maintenance cost factor.

(3) Yearly power supply loss cost of the distribution network:

CL = ct
S∑

s=1

{
N∑
i=1

[Pi(s) +Ai,SOP |Pi,SOP (s)|] · p(s)

}
(19)

where c is the tariff; t is the supply time; S is the number of scenarios; N
represents the system node numbers; Pi(s) denotes the total of the injected
active power at the sth scenario node i; p(s) shows the probability that
corresponds to the sth scenario, where Pi(s) could be stated by the active
current constraint equation shown in Equation (21).

The constraint is:

0 ≤ Sk,SOP ≤ Smax
k,SOP (20)

Sk,SOP = mksSOP (21)

where sSOP is the unit SOP installed capacity, i.e., the minimum optimizable
capacity of the installed converter, such as 10 kVA, 100 kVA, etc.; mk is
a non-negative integer; Sk,SOP indicates the SOP capacity installed at the
selected location; Smax

k,SOP is the SOP’s highest capacity allowed to be installed
at the selected location.

In the manuscript, the SOP’s location and capacity are considered uni-
formly through an integer variable. If the capacity of SOP to be installed is
planned to be 0, it is considered that the location does not need to install SOP,
and then the capacity is determined along with the installation location.
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4.3 Lower Layer Optimization Model

The lower layer planning model is to minimize the sum of network loss
and SOP loss for each scenario while satisfying various constraints of the
distribution network. The model’s objective function is given by:

min

[
S∑

s=1

N∑
i=1

Pi(s) +

S∑
s=1

N∑
i=1

Ai,SOP |Pi,SOP (s)|

]
. (22)

In addition to considering the operational constraints of SOP Equa-
tions (10)–(15), the constraints to be considered include:

Pi(s) =
∑

j∈N(i)

Ui(s)Uj(s)[Gij cos θij(s) +Bij sin θij(s)]

+GiiUi(s)
2 = Pi,DG(s) + Pi,SOP (s)− Pi,LD(s) (23)

Qi(s) = −
∑

j∈N(i)

Ui(s)Uj(s)[Bij cos θij(s)−Gij sin θij(s)]

−BiiUi(s)
2 = Qi,DG(s) +Qi,SOP (s)−Qi,LD(s) (24)

U
mini

max
i

i (25)

Iij(s)
2 = (G2

ij +B2
ij)[Ui(s)

2 + Uj(s)
2 − 2Ui(s)Uj(s) cos θij(s)]

≤ Imax2

ij

(26)

where N(i) represents the set of nodes linked to node i; Ui(s), Uj(s),
and θij(s) represent the voltage magnitude and phase angle difference of
the sth scene node i and j, respectively; Gii, Bii, Gij , Bij represent
the self-conductance, self-conductance, mutual-conductance, and mutual-
conductance of the node conduction matrix, respectively; Pi,LD(s), Qi,LD(s)
represent the active and reactive powers injected by the load at node i of
the sth scenario, respectively; Pi,DG(s) and Qi,DG(s) represent the active
and reactive powers injected by the distributed power source at node i of the
sth scenario, respectively; Umax

i and Umin
i represent the upper and lower

limits of the voltage magnitude at node i, respectively; Iij(s) is the current
magnitude at the sth scenario of branch ij; Iij max is the upper limit of the
current amplitude of branch ij.

Equations (23)–(24) in the above model is the system current constraint,
Equation (25) is the nodal voltage constraint, and Equation (26) is the



An iW-EMS for Distributed Energy Resources Integration and Optimization 179

branch current constraint. Equation (25) is the node voltage constraint, and
Equation (26) is the branch circuit current constraint.

The variables to be solved contain the SOP’s installation location and
capacity, the voltage magnitude and phase angle at each scene node, and the
active and reactive power transmitted by the SOP the active power, and the
emitted reactive power. Therefore, Equations (10)–(26) constitute a two-layer
planning model to configure optimally the SOPs.

5 Solving the Two-layer Programming Model of SOP

For the above SOP siting and capacity setting two-layer planning model, it
can be seen that the upper-layer planning passes the SOP’s installation loca-
tion and capacity to the lower layer, and the lower-layer planning optimizes
the operation phase of the distribution system concerning each scenario on
this basis and returns the optimization results to the upper-layer, which then
uses the results passed up from the lower-layer planning to compute the score
of the objective function of the current SOP planning scheme. This planning
problem poses a nonlinear large-scale mixed integer programming. Thus, a
single method is not enough to resolve the problem. Moreover, a method
employing hybrid optimization composed of simulated annealing and cone
programming was proposed in the article.

The method of hybrid optimization basically uses simulated annealing as
the framework of the whole hybrid optimization algorithm to find the SOP’s
installation location and capacity. During each iteration of the simulated
annealing algorithm, the cone programming algorithm was employed to
resolve the optimal operation of the distribution system in each scenario, and
after obtaining the optimal operation of each scenario, the adaptation degree
of the individuals in the simulated annealing algorithm is further calculated.

5.1 Simulated Annealing Algorithm

The simulated annealing method, a heuristic stochastic search method using
the iterative solution scheme of the Monte Carlo method, begins initially with
a certain high temperature and uses the Metropolis sampling criterion with
probabilistic jump characteristics to search in the solution space randomly,
and reiterates the process of the sampling to decrease the temperature to
obtain a solution that is the near-optimal solution of the problem.

Applying the simulated annealing to the SOP siting and capacity problem,
the solution idea is considered to combine the installation location and
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capacity of a group of SOPs as the state in which the particle is located,
and the score of the objective function under the combination, i.e., the annual
comprehensive cost, as the energy of the state in which the particle is located,
and the problem’s optimal solution is regarded to have been obtained when
the score of the objective function could no longer be reduced after changing
the location and capacity of SOPs for several times as the temperature
decreases continuously.

5.2 Cone Programming Algorithm

The cone programming problem could be characterized as the problem that
solves the minimization of a linear objective function subject to the non-
empty pointed convex cone import bias order, linear equation, and linear
inequality constraints, and its feasible domain is the intersection of the
Cartesian product of the convex cone and the affine subspace [19, 20].

The system current constraint and the branch current constraint in the
model described in Section 4.3 are nonlinear functions concerning the node
voltage magnitude and phase angle difference. Thus, the cone programming’s
rigid conditions for a linear objective function and the feasible domain are
not met. Therefore, when applying the cone programming algorithm for the
solution, the model needs to be transformed accordingly [9, 21].

First, the linearization of some constraints is achieved by variable
substitution. 

Xi(s) =
Ui(s)

2

√
2

Yij(s) = Ui(s)Uj(s) cos θij(s)

Zij(s) = Ui(s)Uj(s) sin θij(s)

. (27)

Second, the nonlinear constraints Equations (14) and (15) are transformed
into the following rotational cone constraints by transforming the equations
as follows:

Pi,SOP (s)
2 +Qi,SOP (s)

2 ≤ 2
Sij,SOP√

2

Sij,SOP√
2

(28)

Pj,SOP (s)
2 +Qj,SOP (s)

2 ≤ 2
Sij,SOP√

2

Sij,SOP√
2

. (29)

The following constraints are added:

Mi,SOP (s) ≥ 0 (30)
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Mi,SOP (s) ≥ Pi,SOP (s) (31)

Mi,SOP (s) ≥ −Pi,SOP (s). (32)

Finally, the nonlinear second-order rotating cone constraint is introduced
so that the optimized model is within the constraints of the pointed convex
cone [22, 23].

2Xi(s)Xj(t) ≥ Yij(s)
2 + Zij(s)

2. (33)

This constraint holds naturally in the above model and therefore does not
cause a change in the solution to the original problem.

After the cone transformation process, Equations (10)–(13), (16)–(22)
and (27)–(33) constitute the cone planning model for SOP siting and capacity
setting.

5.3 SOP Two-layer Planning Model Solving Process

With the SOP’s location and capacity to be installed as the control variables,
the upper-level planning uses a simulated annealing algorithm to gener-
ate a planning scheme and perform a cone closing planning algorithm to
run optimization calculations for each scenario under the scheme and pass
the optimization results to the upper-layer planning; Figure 2 depicts the
algorithm flow.

6 Simulation and Analysis of Algorithms

The overall design of a data center can be classified in four categories:
Tiers I–IV.

In the article, an IEEE 33-node test feeder was employed to analyze and
validate the proposed two-layer programming approach and hybrid optimiza-
tion method. Figure 3 depicts the structure of the IEEE 33-node test feeder,
and the voltage class is 12.66 kV.

To completely see the influence provided by the access of distributed
power, five typhoon power units and three groups of photovoltaic systems are
connected respectively in the calculation example. Table 1 summarizes the
fundamental configurations of the parameters. Figure 4 depicts the annual
variation curve of wind velocity and the intensity of the light in the region
where the distribution network is set. The SOP adopts a back-to-back voltage
source converter and relevant parameters of the SOP. Table 2 shows the fans.
According to wind velocity and the intensity of the light, Weibull distribution
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Figure 2 Flowchart showing the SOP’s optimal siting and sizing.
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Figure 3 Structure of the IEEE 33-node test feeder.

Table 1 Parameters of DGs
Parameters Wind Turbine Photovoltaic Systems
Location 10 16 17 30 33 7 13 27
Capacity/kW 500.0 300.0 200.0 200.0 300.0 500.0 300.0 400.0

Figure 4 Yearly curves of the wind velocity and the intensity of the light.

scale parameter c = 2, shape parameter k = 10, and Beta distribution
parameter α = β = 0.95 were calculated.

Considering the scenery output uncertainty, the PDF is obtained, and
the technique generating an optimal scenario using the Wasserstein distance
was employed to construct a planning model with two layers concerning
the determination of both the SOP siting and capacity. Considering the
limitation of geographical location, the SOP to be selected is located at the
contact switch, and the location and capacity to be installed are optimally
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Table 2 Parameters of the studied case
Parameters Value
Discount ratio 0.08
SOP economic useful life/year 20
SOP unit capacity investment cost/(yuan/kVA) 1000
SOP unit optimized capacity/kVA 100
SOP loss coefficient 0.02
SOP operation and maintenance cost coefficient 0.01
Fan cut-in wind velocity/(m/s) 3
Fan-rated wind velocity/(m/s) 15
Fan cut-out wind velocity/(m/s) 25
Electricity price/(yuan/(kW·h)) 0.5

selected. Among them, the simulated annealing algorithm is implemented by
a Matlab scripting program, and the cone planning algorithm toolkit Mosek
6.0 is called. Intel Xeon CPU E5-1620 with 3.70 GHz, 32 GB of memory,
Win7 64-bit operating system, and Matlab R2014a are employed to conduct
calculations.

6.1 Planning Results

Utilizing the parameters of the obtained Weibull PDF, the wind turbine’s rele-
vant parameters, and the rated output power PWT ,N = 1.0 pu, Equation (34)
gives the wind turbine’s probability mapping according to Equation (5):

f(PWT ) =


0.088 · δ(PWT − 1), PWT = 0

1.5P−0.333
WT · e−2.25P 0.667

WT , 0 < PWT < 1.

0.103 · δ(PWT − 1), PWT = 1

(34)

Based on the obtained Beta distribution parameters and relevant parame-
ters of the PV system with rated output power PPV ,N = 1.0, the probability
mapping of the PV power was obtained using Equation (7):

f(PPV ) = 0.904P−0.05
PV (1− PPV )−0.05. (35)

When the Wasserstein distance index r is set to 1 and the scene numbers
S are set to 5 to get the optimal scene power points and probabilities of
wind power and PV power respectively, we finally get the joint optimal scene
power and its corresponding probabilities, as shown in Table 3.

After considering the wind power and PV power output uncertainty sce-
narios, the proposed hybrid optimization algorithm is used to solve the SOP
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Table 3 Wind and photovoltaics’ probability distribution
PPV

PWT 0.0966 0.2971 0.5000 0.7029 0.9034
0.0000 0.0180 0.0174 0.0173 0.0174 0.0180
0.0795 0.0916 0.0885 0.0882 0.0885 0.0915
0.3163 0.0468 0.0452 0.0451 0.0452 0.0468
0.7094 0.0268 0.0259 0.0258 0.0259 0.0268
1.0000 0.0210 0.0203 0.0203 0.0203 0.0210

Table 4 Locations and capacities of the SOP
Location TS1 TS2 TS3 TS4 TS5
Results 1 2 3 0 0
Scheme 100 kVA 200 kVA 300 kVA – –

Table 5 Economic analysis of SOP installation
Item/10,000 yuan CI CO CS C

Before – – 46.95 46.95
After 7.27 1.24 35.48 43.99

site-selected capacity planning model. Tables 4 and 5 present the obtained
planning scheme and the planning outcomes below.

The annual comprehensive cost after planning is reduced by 29,600,000
yuan compared with that before planning, among which, the yearly loss
cost of the distribution system was decreased by 114,700,000 yuan, greatly
enhancing the operation economy of the whole distribution system. Consid-
ering the future development of converter technology and further reduction of
production costs, the comprehensive benefit of SOP will be further improved.
In addition, SOP has flexible and diverse control modes, which can provide
voltage support when faults occur, reactive power compensation as the volt-
age surpasses the limit, and improve the ability of distributed power sources
to consume, and regarding the above-mentioned contributions regarding eco-
nomic and environment, the SOP’s empirical contribution would be more
enhanced.

6.2 Algorithm Validation

To validate the rapidity and convergence of the hybrid optimization method
proposed in this paper to resolve the problem of SOP planning, and to
experiment with the transformation of the cone approach’s correctness and
the method to generate optimal scenarios using the Wasserstein distance,
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Table 6 Comparison of the performance with the hybrid optimization algorithm and BON-
MIN

Number of Discrete Scenes Algorithms Time/s
Based on Wasserstein’s Hybrid optimization algorithm 138.89
discrete 25 scenarios GAMS BONMIN 719.53
Equidistant discrete Hybrid optimization algorithm 2954.36
100 scenes GAMS BONMIN No convergence

the obtained scenery output PDF is discretized to 10 scenes at equal dis-
tances respectively, constituting a scenery of 100 scenes, based on which the
hybrid optimization algorithm is used for SOP planning. For comparison, the
SOP planning model is solved using the BONMIN module of the GAMS
software package which provides an optimization algorithm employing the
interior point approach, and is capable of solving mixed integer nonlinear
programming problems. The SOP planning model based on Wasserstein dis-
tance discretization for 25 scenarios (decision variable dimension: 195*25)
converges for each algorithm, but the BONMIN module solves the SOP
planning model based on equal distance discretization for 100 scenarios
(decision variable dimension: 195*100) is no longer reliably convergent. The
algorithms converge to obtain the same SOP planning scheme, as shown in
Table 4, and Table 6 presents the solution times of each algorithm for different
scenarios.

The method used for generating optimal scenarios using the Wasser-
stein distance remarkably decreases the scenario numbers and significantly
enhances the computational efficacy while assuring the rationality of the
planned scenarios. When the number of scenarios is small, each algorithm can
converge and obtain optimal results, and the hybrid optimization algorithm
suggested in the manuscript could be solved swiftly; when the scenario num-
bers increase, the dimensionality of decision variables increases dramatically,
and the BONMIN solution algorithm appears to be non-convergent, and
the hybrid optimization algorithm, due to decoupling the integer variables
from the continuous variables, uses the intelligent optimization algorithm
and mathematical planning method to solve the problem, respectively, and
shows good convergence with the hybrid optimization algorithm because it
decouples the integer variables from the continuous variables and solves them
using the intelligent optimization algorithm and mathematical programming
method, respectively. Therefore, the hybrid optimization method suggested in
the article outperforms the commercial software algorithms in terms of speed
and convergence.
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7 Cutting-edge Technologies

The paper uses generative AI algorithms to generate the best scenarios
using historical and real-time data. This ensures that the planning process
can adapt to the changing nature of renewable energy generation. Web
engineering technology is also used to create a flexible environment for
scenario planning. These technologies allow for easy communication and
collaboration among stakeholders involved in renewable energy integration,
and they facilitate the inclusion of real-world data sources in the planning
process.

7.1 Utilizing Generative AI Algorithms for Scenario Creation

Generative AI algorithms are powerful tools in the field of artificial intelli-
gence. They have the ability to create data that imitates patterns observed in
the training data. This paper used a generative adversarial network (GAN).
GAN is a type of machine learning model used for unsupervised learning.
It consists of two neural networks called the generator and the discriminator,
which are trained together in a competitive way. The main purpose of GAN
is to create realistic data samples, which are impossible to tell apart from real
data.

The generator’s objective is to take random noise (usually from a normal
distribution) as input and produce data that looks like real data samples.
Its aim is to generate high-quality fake data. During training, the generator
generates fake data samples, which are then passed to the discriminator. The
generator’s loss is determined by how well the discriminator is fooled by
these fake samples. Its goal is to minimize this loss. As training progresses,
the generator gets better at generating realistic data.

The discriminator acts as a binary classifier. It takes both real data samples
from the training set and fake data samples from the generator and tries
to distinguish between them. Its objective is to correctly classify real and
fake data. During training, the discriminator is given both real and fake data
samples. Its training aims to maximize its ability to differentiate between
them by minimizing a loss function. The discriminator becomes better at
distinguishing real from fake data as training progresses.

GANs work in an adversarial training loop. The generator and dis-
criminator are trained iteratively, each trying to outperform the other. The
generator and discriminator have opposing loss functions. The generator aims
to minimize its loss (by fooling the discriminator), while the discriminator
aims to minimize its loss (by correctly classifying real and fake data). The
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Figure 5 GAN architecture.

training process reaches a Nash equilibrium when the generator produces data
that is indistinguishable from real data, and the discriminator cannot reliably
classify between the two. Figure 5 shows a depiction of the GAN architecture.

In the context of renewable energy integration, these algorithms can be
particularly useful as they can generate synthetic scenarios that closely resem-
ble real-world conditions. GANs heavily rely on historical data for generating
accurate scenarios. This historical data encompasses various information
related to past weather patterns, energy generation, energy consumption, and
other relevant factors. For instance, historical weather data would include
details such as the number of sunlight hours, wind speeds, and cloud cover in
a particular region over a specific period.

To make the generated scenarios adaptable and current, generative AI
algorithms can also incorporate real-time data. For example, these algorithms
can access real-time weather conditions, solar panel efficiency, and power
grid load. By considering such up-to-the-minute information, the generated
scenarios can accurately reflect the dynamic conditions prevailing at any
given moment.

One of the notable strengths of generative AI algorithms lies in their
ability to continuously update scenarios with real-time data. This adaptability
factor ensures that the algorithms can keep pace with the ever-changing
nature of renewable energy generation. As an illustration, if clouds suddenly
appear and obscure the sun, the generative AI algorithm can promptly adjust
the scenario to reflect the reduced potential for solar power generation in real
time.

Consider the following practical scenario. There exists a solar power
project located in a region characterized by regular and unforeseeable cloud
cover. In such a circumstance, the application of a generative AI algorithm
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proves exceedingly advantageous. This algorithm is trained utilizing his-
torical weather data and is linked to real-time weather feeds. It possesses
the ability to produce simulated scenarios that depict diverse levels of
cloud cover, enabling accurate predictions regarding their influence on solar
energy generation. Employing this adaptive approach, project planners can
enhance their comprehension of potential energy production fluctuations and
consequently make more informed preparations.

7.2 Employing Web Engineering Technology for Collaboration
and Data Integration

Web engineering technology encompasses the use of online tools, frame-
works, and platforms to develop and maintain applications. When it comes to
integrating renewable energy, this technology can be employed to establish an
internet-based environment that fosters collaboration and data sharing. This
virtual space acts as a central hub, bringing together various stakeholders like
energy companies, grid operators, and government agencies to collaborate
on projects related to renewable energy integration. The platform provides
a range of features, including shared project dashboards, repositories for
storing documents, and communication tools.

Through this platform, stakeholders can easily communicate and
exchange information with one another. They can efficiently share project
updates, real-time data feeds, and reports regarding energy generation and
consumption among team members. This facilitates seamless collaboration
and enables stakeholders to stay connected and well-informed. Moreover,
web engineering technology allows the integration of real-world data sources.
For example, it can connect with weather forecasting application program-
ming interfaces (APIs) to provide accurate and up-to-date weather predic-
tions. These forecasts are essential for effectively planning renewable energy
initiatives. Additionally, the technology can integrate with energy monitoring
systems to gather data on actual energy consumption patterns. By leveraging
web engineering technology, stakeholders in the renewable energy sector can
enhance their collaboration efforts, improve information exchange, and make
informed decisions based on reliable data.

Consider, for instance, a hypothetical renewable energy project bring-
ing together a consortium of engineers, meteorologists, and grid operators.
Leveraging the aforementioned web engineering platform, the meteorolo-
gist is equipped to promptly disseminate precise weather forecasts. This
information, in turn, is seamlessly integrated into the energy generation
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models by the engineers. Concurrently, the grid operators supply real-time
data pertaining to power demand. The harmonious amalgamation of these
data sources ensures that planning decisions are premised upon the most cur-
rent and accurate information obtainable, thereby fostering an environment
of informed decision-making and optimal project outcomes.

In the delineated framework, web engineering technology offers a capa-
bility for seamless integration with energy monitoring systems. These sys-
tems are instrumental apparatuses or mechanisms designed for the systematic
collection and meticulous analysis of data pertaining to energy consumption
patterns, operational within a specific domain, such as a singular edifice, an
urban agglomeration, or an all-encompassing power distribution network.

The process of integration with these energy monitoring systems
entails the web engineering platform establishing an interfacing mechanism
with the said systems to procure and assimilate real-world data encompassing
the veritable facets of energy consumption. This dataset encompasses details
concerning the temporal patterns and modalities of energy utilization, the
longitudinal trends in energy consumption over a specified timeframe, and
the elucidation of the distribution of energy loads across an assortment of
consumers or geographic sectors.

By orchestrating the connectivity with energy monitoring systems, the
web engineering platform confers upon stakeholders within the sphere of
renewable energy a discernible access route to this invaluable dataset. This
dataset can be marshaled for an assortment of objectives, inclusive of but not
limited to the following:

1. Demand response: The adept comprehension of real-time energy con-
sumption patterns furnishes grid operators and utility entities with the
acumen to adroitly adjust their strategies governing energy generation
and allocation in concurrence with the authentic demands. This adaptive
responsiveness culminates in the bolstering of grid robustness and the
augmentation of operational efficiency.

2. Efficiency analysis: A retrospective analysis of historical data chron-
icling energy consumption patterns empowers stakeholders to discern
potential avenues for the enhancement of energy efficiency. This cog-
nitive insight assumes a pivotal role in formulating resolutions with
respect to energy-conservation initiatives and the judicious allocation
of resources to elicit maximal impact.

3. Resource planning: The accessibility to authentic data pertaining to
energy consumption presumes an indispensable role in the elucidation
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of a blueprint for the execution of renewable energy undertakings. This
manifests in its utility in dimensioning renewable energy installations,
such as photovoltaic arrays or wind turbines, predicated on the observed
energy consumption patterns within a particular geographic enclave.

4. Optimizing energy distribution: The compilation and analysis of data
sourced from energy monitoring systems empower grid operators to
orchestrate a refined allocation of energy resources, ensuring their judi-
cious routing to those regions or sectors of the grid where exigency is
most pronounced.

For instance, consider a hypothetical scenario in which a municipality
is in the process of devising a solar energy project. The confluence of a
web engineering platform with energy monitoring systems within this set-
ting would grant municipal authorities immediate access to a reservoir of
historical data encapsulating energy consumption patterns prevalent within
the confines of the municipality. Subsequently, this data could be invoked
to guide decisions regarding the sizing and spatial localization of solar
photovoltaic installations, thereby optimizing the generation and distribution
of solar energy resources with the utmost efficiency.

8 Conclusion

This paper introduces the iW-EMS, a specialized framework designed for the
seamless integration and optimization of distributed energy resources. This
system harnesses a sophisticated approach, combining simulated annealing
and cone programming to achieve optimal outcomes. Furthermore, it lever-
ages generative AI services to generate optimal scenarios by synthesizing
historical and real-time data, thus allowing it to adapt dynamically to the
ever-changing landscape of renewable energy generation.

A hallmark of the iW-EMS is its provision of an intuitive web-based envi-
ronment tailored for scenario planning. This platform not only streamlines
communication but also fosters collaboration among a diverse array of stake-
holders actively engaged in the intricate process of renewable energy integra-
tion. Moreover, the system offers the capability to incorporate real-world data
sources such as weather forecasts and energy consumption patterns, enriching
the planning process with accurate and pertinent information.

It is imperative to underline that the application of a rational planning
approach for SOP has been empirically validated to significantly enhance the
efficiency of power distribution systems, a pivotal facet of the overarching
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energy management process. The system’s adaptable control mode con-
fers numerous advantages upon the entirety of the EMS, underscoring its
implementation potential.

In response to the escalating complexity of distribution system scenarios,
particularly when temporal characteristics are considered, the resolution of
the nonlinear, large-scale mixed integer optimization problem assumes an
even more formidable nature. This accentuates the heightened relevance of
the merits offered by the hybrid optimization algorithm, rendering it an
indispensable component for effective problem-solving within the purview
of the proposed web interface.

As the integration of renewable energy sources continues to assume a
central role in the inexorable transition toward sustainable energy systems, an
expansive realm for prospective research emerges. Notably, the burgeoning
avenue for future research resides in the further development and integra-
tion of generative AI algorithms and advanced web engineering technology.
This trajectory holds the promise of refining the domain of optimal energy
management, enhancing its efficiency, reliability, and scalability to meet the
burgeoning demands of our energy landscape.
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