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Abstract

The appearance of a new Android platform and its popularity has resulted
in a sharp rise in the number of reported vulnerabilities and consequently in
the number of mobile threats. Mobile malware, a dominant threat for modern
mobile devices, was almost non-existent before the official release of the
Android platform in 2008. The rapid development of mobile platform apps and
app markets coupled with the open nature of theAndroid platform triggered an
explosive growth of specialized malware and subsequent search for effective
defence mechanisms. In spite of considerable research efforts in this area, the
majority of the proposed solutions have seen limited success, which has been
attributed in the research community to the lack of proper datasets, lack of
validation and other deficiencies of the experiments. We feel that many of
these shortcomings are due to immaturity of the field and a lack of estab-
lished and organized practice. To remedy the problem, we investigated the
employed experimentation practices adopted by the smartphone security com-
munity through a review of 120 studies published during the period between
2008–2013. In this paper, we give an overview of the research in the field
of intrusion detection techniques for the Android platform and explore the
deficiencies of the existing experimentation practices. Based on our analysis
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we present a set of guidelines that could help researchers to avoid common
pitfalls and improve the quality of their work.

Keywords: intrusion detection, smartphones, mobile malware.

1 Introduction

The rapid evolution of various mobile platforms in the past decade has swiftly
brought smartphones to all aspects of our daily life. Such popularity has
stimulated underground communities, giving an unprecedented rise to mobile
malware. Among the most targeted platforms is the Android platform, mostly
due to the ease of use of malicious apps, and the lack of proper defence.
According to Kaspersky’s estimation, the number of mobile malware targeting
theAndroid platform tripled in 2012, reaching 99% of all mobile malware [37].
Also, they said that in 2013 there are more than 148,427 mobile malware
modifications in 777 families and 98.05% of mobile malware found this year
targets Android platform [41].

The lack of necessary defence mechanisms for mobile devices has been
mostly restricted by the limited understanding of these emerging mobile
threats and the resource-constrained environment of smartphones. Indeed,
on the one hand, the rapid growth of vulnerabilities for a new and less-
studied platform, coupled with the lack of timely access to emergent mobile
malware, hinder our abilities to analyze these threats. On the other hand,
the resource-constrained environment of smartphones, which is unable to
afford computationally intensive operations, presents a significant challenge
to the development of intelligent intrusion detection solutions. With mobile
phone security quickly becoming an urgent necessity, researchers have started
focussing their attention on the problem.

In the past several years the number of studies in the field of mobile phone
security has been steadily increasing. In light of recent work around security-
related studies in long established domains (e.g. anomaly detection), a lack
of scientific rigor has been shown in the experimentation in the majority of
these studies [42–43, 47]. As a result, we examine the evaluation practices of
a newly appearing field of mobile phone security.

In this paper, we explore research in the area of intrusion detection for the
mobile platform published during the period between 2008–2013. Aiming
to discover the problems related to experimentation rigor encountered in
other fields, we highlight the most common shortcomings and offer a set of
guidelines for proper evaluation practice to the smartphone intrusion detection
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community. Within this study we give an overview of the common trends in
smartphone intrusion detection research highlighting the general focus of the
research efforts and the existing gaps. We hope that these efforts will give an
insight into the future development of viable intrusion detection mechanisms
for mobile devices.

The rest of the paper is organized as follows: in Section 2, we present
some related works; in Section 3, we discus intrusion detection in mobile
devices; in Section 4, we provide our assessment methodology; in Sections
5–6, we discuss the results of our evaluation; in Section 7, we present a set of
guidelines that would help researchers to avoid common pitfalls and improve
the quality of their work. Finally, we summarize our conclusion in Section 8.

2 Related Work

With the recent burst of research interest in the area of smartphone security,
a number of studies have been aiming to organize and classify the existing
efforts. One of the first attempts to summarize the research in the area of
security for mobile devices was presented by Enck [24]. A broader study
focusing on a variety of mobile technologies (e.g., GSM, Bluetooth), their
vulnerabilities, attacks, and the corresponding detection approaches, was
conducted by Polla et al. [33]. A more thorough analysis of research in the
area of smartphone related to security solutions was offered by Shahzad [46].
Before these major surveys there were several other studies focusing on
various aspects of mobile phone security [49, 19, 30, 12].

The lack of clear guidelines for structuring and analyzing existing research
in the area of smartphone security has triggered additional efforts aim-
ing to devise a structured taxonomy and provide necessary classification
criteria. Among these efforts, there are a taxonomy for classification of
smartphone malware detection techniques proposed byAmamra et al. [12], and
a classification of attack vectors for smartphones developed by Becher [17].

To complement these research efforts, several study groups have been
surveying mobile malware characteristics. Felt et al. [27] evaluated the
behavior of 46 mobile malware samples and the effectiveness of existing
defence mechanisms. On a broader scope, Zhou et al. [52] gave a detailed
characterization of over 1000 Android malware samples.

This paper, on the other hand, steps beyond traditional survey boundaries
and takes a critical look at the experimentation practices adopted by the
smartphone security community.
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3 Specificity of Intrusion Detection in Mobile Devices

Intrusion detection in traditional networks is one of the most well defined and
extensively studied fields. Intrusion detection in mobile networks generally
falls under an umbrella of this broader domain, and thus the core foundation
of intrusion detection generally follows the defined principles. At the same
time, there are several specificities that make traditional IDSs not suitable for
mobile devices:

• Constrained resources: the resource-constrained environment of smart-
phones puts strict limitations on the usage on the available time, power,
and memory resources, essentially dictating what actions the detection
system can and cannot afford. As such many of the approaches that
require a heavy computational operations (e.g., malware static analysis)
are avoided.

• Mobility: As opposed to traditional IDSs where an IDS system is perma-
nently stationed on a known network or a host, mobile device IDSs are
generally located on a mobile device with some more resource intensive
functionality residing on a cloud. Thus as mobile device goes through a
variety of networks with often unknown configurations and different
security postures, mobile IDS faces various challenges to provide a
comprehensive defense for a wide range of threats and conditions.

• Deployment environment: One of the security features characterizing
modern mobile platforms is the use of sandbox environment that allows
to constrain unwanted activity. Since a sandbox is meant to execute
untrusted code, trusted native code is generally run directly on a platform.
Although sandboxing is generally seen as a desirable intrusion detection
technique, it has limitations. Sandboxing is usually less effective in
detecting non-generic targeted attacks, e.g., malware designed to be
activated on specific user action or to trigger malicious behavior after
a period of normal activity.
Sandboxing is also largely ineffective against another practice, i.e., the
use of external code, that have been gaining popularity in mobile apps.
This mechanism allows to use legitimate application to load a malicious
functionality without requiring any modifications to the existing legit-
imate code. As such the original bytecode remains intact allowing an
app evade detection. Poeplau et al. [40] defined several techniques to
load external code on a device: with the help of class loaders that allow
to extract classes from files in arbitrary locations, through the package
context that allow to access resources of other apps, through the use of
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native code, with the help of runtime method exec that gives access to a
system shell, and through less stealthy installation of .apk files requested
by a main .apk file.

• Exposure: The typical attacks vectors seen in traditional platforms also
exist in mobile environments. However, the specificity of mobile devices
opened up new avenues for compromise. As such infection methods
usually not monitored by traditional IDS, e.g., through SMS, MMS, app’
markets, have recently gained a wide popularity.

• Privacy: As opposed to traditional networks where privacy leakage
typically constitutes a small portions of potential threats, private infor-
mation theft is rapidly becoming one of the major concerns for mobile
devices [32, 44].

4 Evaluation Methodology

To investigate evaluation practices employed by security community, we
conducted a survey of research work in the area of intrusion detection
for smartphones published since the official release of Android platform in
2008. To avoid selection bias, we collected all research papers indexed by
Google Scholar for the reviewed time period from 2008 until 2013. This
included studies introducing defence mechanisms specifically developed for
the smartphone platforms.

Our research study excluded short papers, extended abstracts, non-peer-
reviewed research, and papers not available in the English language. To narrow
our focus, we further selected research work relevant to intrusion detection;
thus, any methods specifically developed for fault detection, safety analysis,
etc. were excluded. The final set of 120 papers, containing 17 journal and
103 conference/workshop papers, was reviewed manually without use of any
automatic search techniques. Each of the selected papers were put through at
least two evaluation rounds to reduce classification errors.

5 Overview of the Reviewed Studies

In the past several years the number of studies in the field of mobile phone
security has been steadily increasing as our survey shows in Figures 1, 2.

Even though most of the research focus on Android, we have seen other
platforms used as testing platform as illustrated in Table 1. Traditionally, there
have been various classifications relating to intrusion detection mechanisms.
Statistics about the surveyed papers with regards to these classifications are
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Figure 1 The reviewed papers: a perspective over the years

Figure 2 The reviewed papers: a perspective over the years

Table 1 The details of generic approaches
Testing Platforms

Symbian OS 35% (8 papers out of 23)
Windows Mobile OS 26% (6 papers out of 23)
Hybrid 39% (9 papers out of 23)
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Table 2 The details of the surveyed papers
Papers by intrusion detection types

Network-Based methods 5% (6 papers out of 120)
Hybrid Methods 13% (15 papers out of 120)
Host-Based Methods 82% (99 papers out of 120)

Application level 64% (73 papers out of 114*)
Operating system level 3% (4 papers out of 114)
Hardware level 4% (5 papers out of 114)
Hybrid 29% (32 papers out of 114)

Malware Detection 67% (80 papers out of 120)
By detection approach:

Anomaly-Based 55% (44 papers out of 80)
Signature-Based 44% (35 papers out of 80)
Hybrid 1% (1 papers out of 80)

By focus:
Malicious Apps 65% (52 papers out of 80)
Information Leakage 19% (15 papers out of 80)
System Behavior 16% (13 papers out of 80)

Papers by applied detection approach
Anomaly-Based 58% (70 papers out of 120)
Signature-Based 40% (48 papers out of 120)
Hybrid 2% (2 papers out of 120)

Papers by a level of invasiveness
Static 35% (42 papers out of 120)
Dynamic 48% (57 papers out of 120)
Hybrid 17% (21 papers out of 120)

shown in Table 2. Among the reviewed papers, the majority of the studies
focused on a host-based detection (99 papers out of 120), with only six papers
introducing network-based mechanisms and 15 papers proposing hybrid
approaches. In addition to these common categories, we noticed an increased
interest in specialized mechanisms for mobile malware detection: 80 papers
out of 120 considered various aspects of malware detection either through
detection of malicious apps (52 out of 80 papers), detection of information
leakage (15 out of 80 papers) or suspicious system behavior (13 out of
80 papers).

5.1 Intrusion Detection Focus

To provide a broad overview of research conducted in the field, we cate-
gorize the research based on three common parameters: monitoring scope
of the proposed technique, underlying detection approach and level of

*114 papers include 99 pure host-based analysis and additional 15 hybrid approaches.
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technique invasiveness. Figure 3 illustrates a high-level summary of these
categorizations.

By scope of monitoring In general, suspicious activity can be spot-
ted at least at one of the following levels: application, operating system
(OS) or hardware. Events at the application level are generally related to
user activity and are often seen through suspicious SMS/MMS messages,
unusual keystroke dynamics, etc. Since this is a high-level behavior that is
not necessarily exhibited by all malware threats, a placement of detection
mechanisms at this level provides only limited coverage. OS level activity,
on the other hand, includes events triggered by the built-in OS mechanisms
(e.g., system calls) thus giving a better picture of the underlying system behav-
ior. While this is often a preferred location for intrusion detection mechanisms
in traditional computer-based environments, it presents a number of problems
for resource-constrained mobile phone environments that can only afford
lightweight detection techniques. Finally, intrusion detection at hardware level
allows researchers to obtain basic measurements of the monitored systems
(e.g., CPU, network usage, power supply) that might be indicative of abnormal
device behavior, especially when they are compared to normal device usage.

Figure 3 Overview of intrusion detection methods classification
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Detection at this level provides a number of benefits that are particularly
valuable for mobile devices, including fast, reliable, and scalable intrusion
detection. Of the reviewed papers, the majority of studies focus on application
level (64%), then OS level (only 3%), and then hardware level (4%). The
remaining papers address hybrid levels (29%).

By detection approach Another common classification of intrusion
detection techniques, based on how intrusive activities are detected, broadly
groups techniques into anomaly-based and signature-based approaches. Since
anomaly-detection is perceived as more powerful due to its higher potential
to address new threats, it is not surprising to see the majority of the reviewed
studies employing it (70 papers out of 120).

Interestingly, a large portion of the reviewed studies is focused on the
application of signature-based detection. In spite of criticism of this approach
in academic research (due to a high reliance on ever-growing signature bases
and the lack of detection of ‘zero-day’ threats) almost 40% of the reviewed
studies (48 out of 120) employed signature-based detection.

By invasiveness of technique The approaches for detection of intrusive
activity can be further broken down into dynamic (behavior-based) and static
detection, depending on the level of invasiveness of the intrusion detection
system. Dynamic techniques generally adopt a black box approach by focusing
on behavior of a target system in general or specific files/apps in particular.
Since this detection is only possible during the execution of a program, it
has a limited focus and is often at the mercy of the executable malware that
might or might not exhibit suspicious behavior in a given running environment.
Static detection, on the other hand, allows the researcher to analyze an app/file
without its execution (via disassembly or source code analysis) and is thus
considered to be more thorough, although it is more expensive. Among
the reviewed studies, 48% of the papers employed dynamic analysis, with
35% focusing on static detection.

5.2 Trends

The vast popularity of mobile phones, and specifically the Android platform
resulted in a rapid increase of mobile malware. One of the major sources
of malware became third party app markets [29, 52]. For example, due to
popularity of Android platform, we have seen a arise of alternative Android
app markets (i.e. not officially supported by Google), often known for their
lack of security checks and thus favored by malware writers. Figure 4 clearly
shows this trend. Although the use of Google Play market slightly increased
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Figure 4 The use of apps from various markets in the surveyed works

Figure 5 Trends of Research Focused

from 2012 to 2013, it has a significantly smaller share compared to the newly-
emerging markets.

Among other trends noticed in the reviewed studies is a clear tendency
towards application-level detection (Figure 5). The interest in application-
level detection has been steadily increasing and in 2013 the proportion of
studies with this scope reached 64%.
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6 Detailed Survey Observations

The impact of data quality on the outcomes of the various studies was empha-
sized throughout the research. Indeed, the ability of a study to predict the per-
formance of a method in a real deployment environment is highly dependent
on the ability of a dataset to reflect conditions of that deployment setting.

Datasets. Although the mobile phone setting is not an exception, the
lack of comprehensive datasets (mostly attributed to immaturity of the field)
has posed a significant problem [52]. There have been several attempts to
create structured, comprehensive datasets specifically for evaluating mobile
security solutions. Table 3 lists some of these publicly available resources.
In spite of their variety, most of these sets have limited applicability and/or
require additional preprocessing. The lack of appropriate datasets is reiterated
throughout the papers in our survey: all papers that involved experimen-
tal studies (110 out of 120 papers) employed self-constructed datasets
(see table 4). Although the researchers’ intentions are understandable, the
lack of standardized datasets employed across the majority of studies raises
several concerns.

The first concern is the transparency of a dataset. Customized datasets
require collecting data, preprocessing activities (e.g., anonymization, cleaning
out redundant data, assuring necessary balance of normal and suspicious
behavior), and validating (e.g., confirmation of ’ground truth’). These activi-
ties are tedious, time-consuming and often require specialized infrastructure,
including equipment and necessary permissions for collecting private data.
Unless these activities are fully described and the dataset made available,
there is little assurance that a dataset will be representative of a deployment
environment. Although the initial step can be avoided with the use of malware
repositories, the rest of the concerns remain.

Due to the nature of smartphone threats, the authors of all 110 papers
that conducted an experimental study employed a set of mobile apps for this
analysis. Out of these 110 papers, 91 papers used real apps collected through
app markets and online mobile repositories, three papers implemented their
own version of apps and five papers used a combination of these two categories
(real and self-written apps).

The majority of the real apps used in surveyed papers were collected
through various Android markets (58% of papers) with the assumption that
apps coming from a market are benign. With the increasing number of reports
showing markets being adopted by hackers as one of the ways for malware
distribution, it is expected that all market apps in any experimentation study
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Table 4 Experimentation practices employed in the surveyed works
Datasets

Data collection detail:
Market-Based 52% (63 papers out of 120)
Host-Based 43% (51 papers out of 120)
Network-Based 5% (6 papers out of 120)

Datasets details:
Self-constructed set 97%(107 papers out of 110)
MIT Reality 3%(3 papers out of 110)

Dataset sharing 3% (3 papers out of 110)
Real apps 83% (91 papers out of 110)
Self-written 11% (12 papers out of 110)
Hybrid 6% (7 papers out of 110)

Normal apps:
From Market 54% (53 papers out of 98)
Not specified 46% (45 papers out of 98)

Malware samples:
From Repositories 16% (16 papers out of 98)
From Known Data set 17% (17 papers out of 98)
Hybrid 2% (2 papers out of 98)
Not specified 65% (63 papers out of 98)

Evaluation
Performed experimental study 90% (108 papers out of 120)
Used simulation 2% (2 papers out of 120)
Do not perform experimental study 8% (10 papers out of 120)

Among 110 that performed experiments:
Reported evaluation results 93% (102 papers out of 110)
Compared with other techniques 15% (17 papers out of 102)
Involved Internet Access 15% (31 papers out of 78*)
Used Monkey tool 15% (11 papers out of 78)

Employed evaluation metrics:
Detection Rate 23% (25 papers out of 110)
FPR 35% (39 papers out of 110)
Recall 26% (29 papers out of 110)
Precision 10% (11 papers out of 110)
ROC curves 11% (12 papers out of 110)
AUC 12% (13 papers out of 110)
Self-developed metrics 11% (12 papers out of 110)
DR or FPR or ROC Curves 45% (50 papers out of 110)

will undergo a thorough check to ensure their legitimacy. However, among
these studies only 27 verified that apps are malware free.

*78 papers include 57 dynamic analysis and additional 21 hybrid methods.
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The other concern related to the use of several sources (i.e., markets)
for compiling a single dataset is the necessity of data cleaning. Since many
authors distribute apps through a number of markets, duplicative apps (both
legitimate and malware) are commonly encountered in different markets. In
the reviewed set only 27% of the papers reported at least some activity related
to data cleaning.

Although malware apps can be obtained from a number of sources, only
16 out of 981 papers utilized existing mobile malware repositories, while
several papers reported the use of self-implemented malware apps. With the
appearance of research-based mobile datasets, several studies have turned
their attention to already prepared data. As such, 17 out of 98 papers used
samples from existing malware sets. However, all of these studies have only
partially used the datasets, either removing or complementing the existing
samples with additional data. This move is another indication of a dire lack
of suitable datasets in mobile phone security.

Table 5 presents a summary of the distribution of legitimate and malicious
apps in the employed datasets. Throughout our analysis, we observed a very
large differences in the sizes of employed datasets. The main concern that
this variability raises is the presence of studies with a very small number of
samples. Given the availability of data, especially in recent years, evaluations
performed on only three malware samples is hardly representative and thus
unjustifiable.

The second concern relates to the lack of standardized datasets available
to researchers. Among the reviewed studies only three papers made datasets
publicly available2.

Table 5 The sizes of the employed data set in the surveyed papers
Years Total Size Normal Samples Malware Samples

Smallest Largest Smallest Largest Smallest Largest
2013 8 276016 3 150368 3 12158
2012 6 482514 20 207865 5 378
2011 5 42000 2 13098 3 32
2010 1 2285 30 2285 1 5
2009 240 311 311 311 2 240
2008 4 1000 3 1000 4 7
All years 1 482514 3 207865 1 12158

1The 98 papers include 91 studies employing real apps and seven studies using hybrid
datasets.

2An explicit note about this availability was made in the content of the paper.
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The third concern relates to the feasibility of the comparative analysis.
Such variability of customized data makes comparative analysis of tech-
niques challenging. Indeed, among the surveyed papers only 15% (17 out of
102 papers) attempted to compare the effectiveness of the developed approach
with other methods.

The fourth concern and one of the primary ones when selecting suitable
datasets for experiment, is the selection of features that would serve as
a basis for analysis. During our survey we extracted 188 unique features
used in the reviewed papers. All the papers, even the ones that did not
involve the performance of experiments, propose features for analysis. These
features were classified according to the categorizations outlined in Fig-
ure 6. The statistics for the most commonly employed features are given
in Table 6. In spite of ‘permissions’ being the most commonly used feature
throughout the last five years (29% of papers), before that (prior to 2011)
‘system calls’ was the most popular feature (as illustrated in nine papers
out of 22 papers published during 2008–2010). The variability of features
in the surveyed research is yet another indication of the immaturity of the
field.

Experimentation. Evaluation of the proposed approach is an essential
component of any research study in the domain of intrusion detection. Among
the reviewed papers, 10 (8%) did not involve any experimentation, while one
paper limited its analysis to simulation only. The limitations of simulation
in security domain have been repeatedly emphasized in academic studies
[13, 39]. Seen as non-exhaustive evaluation technique, simulation does
not provide necessary depth of the analysis mostly due to inability to

Figure 6 A classification of features
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Table 6 Features employed in the surveyed papers
Application level:

Requested permissions 29% (69 papers out of 120)
Imported Package 3% (8 papers out of 120)
Extra information 6% (14 papers out of 120)

Operating System level:
API calls 16% (38 papers out of 120)
System calls 19% (31 papers out of 120)
Control flow graphs 1% (3 papers out of 120)
Dataflow 1% (2 papers out of 120)
Logged Behavior sequences 8% (19 papers out of 120)
Instructions (Opcode) 6% (14 papers out of 120)

Hardware level:
Power consumption 6% (17 papers out of 120)

Network level level:
Network traffic 11% (27 papers out of 120)

guarantee security properties. Constrained to a given scenario simulation
does not give insight into a method’s performance in unrestricted threat
environments or with undiscovered attacks. Although a thorough simula-
tion can provide a sense of average performance of the evaluated tech-
nique, it should not be utilized for comprehensive evaluation of security
properties.

Among the studies that lacked experiments, only one work reported a
proof-of-concept implementation with no mentioning of results. Two of these
studies gave a theoretical analysis of the introduced method’s performance.
Close analysis of the rest of the studies revealed that while all of them
discussed some strategies for implementation and potential analysis, none
of them offered neither of these.

The details of experimental setup and the employed methodology are
necessary to ensure repeatability of the experiments and therefore to facilitate
the comparison between techniques. However, as our survey shows most of
the researchers neglect to include these details in the study description.

For example, user interface interactions, as one of the triggers of malicious
behavior, are known to be essential for analysis of mobile malware [50]. How-
ever, among 78 papers that performed dynamic analysis and hybrid analysis
of malware, only 11 papers reported the use of user interface interactions to
produce events.All of these studies however employed the use of Monkey tool
that produces pseudo-random streams of user and system events [14]. Meant
for general stress testing of Android apps, the tool is limited to some subset
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Table 7 The details of published techniques
Compared with other techniques

Virus total scanner [11] 23% (4 papers out of 17)
TaintDroid [25] 17% (3 papers out of 17)
Kirin [26] 12% (2 papers out of 17)
Andromaly [45] 12% (2 papers out of 17)
VirusMeter [36] 6% (1 papers out of 17)
Andrubis [35] 6% (1 papers out of 17)
DNADroid [20] 6% (1 papers out of 17)
Androguard [22] 6% (1 papers out of 17)
Clam-AV Scanner [31] 6% (1 papers out of 17)
Manual Analysis 6% (1 papers out of 17)

of actions that do not correctly represent a realistic user of system behavioral
patterns.

Similarly, although the access to the Internet is one of the important triggers
for many malware, we found that only 31 out of 78 studies reported the use
of Internet access in their experiments.

Evaluations. Among the 110 papers that undertook evaluation, eight
studies did not report results. Of the 110 studies overall, most works
(102) offered experimentation results, which varied significantly from exten-
sive discussion reasoning behind the obtained numbers to a brief mentioning
of whether an attack was detected or not.

The evaluation of the method’s effectiveness is generally performed
along two directions: (1) evaluation of method’s overhead in terms of CPU
occupancy, memory usage, power consumption and detection speed; and
(2) evaluation of the method’s detection capability. While both types of
experiments are necessary to assess the quality of the newly developed
approach, the majority of the surveyed studies are mostly focused on the
evaluation of classification accuracy of a method. To assess this accuracy
though, it is necessary to compare the new method’s performance against
known benchmarks in the field. However, due to the infancy of the field
such benchmarks are mostly non-existent. As such most of the studies either
do not provide any comparison or look at previously proposed methods.
Of these surveyed papers, only 17 (15%) compared experimentation results
with perviously published intrusion detection techniques and tools. The list
of these techniques is given in Table 7. The fact that these techniques are
selected for comparison might be an indication of them becoming future
benchmarks.
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7 Guidelines

The evaluation of intrusion detection methods is an inherently difficult
problem due to a variety of factors, from a diversity of monitored events
to the unpredictable nature of a deployed environment. Aggravated by the
immaturity of the field, evaluation of intrusion detection solutions for
smartphone platforms are often guided by subjective choices and individual
preferences of the researchers. A review of the experimentation practices
employed in this field suggests several important points. Based on the results of
our review we formulated several guidelines for proper evaluation of intrusion
detection methods for smartphones.

The resulting criteria is offered in three general dimensions of scientific
experimentation, formulated by previous research [47, 43]: factors related
to the employed datasets, the performed experiments, and the performance
evaluation. Since the previous studies have attempted to outline some of
the limitations and constraints of scientific experimentation in computer
security, we aimed to devise comprehensive guidelines and recommen-
dations for a smartphone setting. The following guidelines can be used
as a structure for experimental design and subsequently in manuscript
organization:

Employed datasets define applicability and deployability of the devel-
oped technique to a real-life setting. To ensure the effectiveness of these
qualities the dataset description is an essential component of any manuscript.
Although this description will vary depending on the source of data
(self-constructed or publicly available), it should provide enough detail to
allow an intelligent analysis of the proposed technique. Specifically, the
following aspects of employed data should be addressed:

• Data overview:

• the source of the data, (i.e., whether the dataset is public, proprietary,
or self-constructed).

• quantitative description of malicious and normal events in a dataset
(e.g., apps, malware, network flows).

• how these malicious and normal events were obtained (i.e., sim-
ulated, implemented, collected). This should include description
of the environment/process. For example, assuming the dataset
includes Android apps that are collected from various sources: are
these apps free or paid, what are the sources (e.g., list app markets),
what malware families these apps represent, why these malware
apps are selected while others are excluded? On the other hand, if
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the data is collected on the network, then the description should
include the duration/time of the collection, access to the Internet,
use of visualization, etc.

• monitored features.

• Data validation:

• the ground truth established, (i.e., how the legitimacy and
abnormality of data is verified). For example, in the case ofAndroid
apps, whether or not the collected apps checked through third-party
sources.

• obsolete data removed, (i.e., in the case where a dataset containing
malware or apps is employed, sinkholed or inactive samples should
be removed).

• Training/testing data:

• quantitative division of dataset into training and testing sets, cor-
responding numerical estimation of normal and malicious samples
in each.

• Data sharing:

• data employed in the experiments should be archived for reference
for future authors. Even if datasets are not made public, the pos-
sibility of sharing on demand should be explicitly indicated in a
manuscript.

The performed experiments refer to the setting of the performed exper-
iments and thus allow for transparency of the experiments to be ensured,
(i.e., that the conducted experiments are repeatable and comprehensible).
Several aspects need to be addressed here to allow for objective evaluation of
a study:

• Environmental setting:

• experimental setup, (i.e., simulation, emulation, experimentation).
• context for execution for both victim and attack side, including

hardware (e.g., devices employed, their topology) and software
(e.g., operating systems, NAT, privileges). This description might
be complemented with a diagram to avoid ambiguities in interpret-
ing an environmental setup.

• the employed tools, with an indication of their releases and versions,
and parameters.

• the use of technology (e.g., access to the Internet).
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• Experiments:

• methodology, (i.e., steps involved, allowed user interaction, dura-
tion, number of repetitions).

• the use of sampling, the employed algorithm and justification.

Performance evaluation. The primary goal of this section is to give
insight into a proposed method for performance, which is called for a detailed
and, more importantly, objective analysis of evaluation.

• Evaluation Methodology:

• the scripts or procedures used for analysis should be specified. Often
a closer analysis of intrusion detection results call for a manual
examination of traces. Regardless of the findings this should be
stated.

• the employed statistical apparatus.

• Evaluation metrics:

• define evaluation metrics. To avoid ambiguities in metric inter-
pretation, a clear definition of a chosen metric should be pro-
vided. This becomes critically important when non-traditional
metrics are employed, as the lack of consistent terminology hin-
ders researcher’s ability to properly identify and apply common
methods. As the use of self-developed metrics becomes more
widespread, a metric definition should be followed by a clear
validation of the proposed metric for a given task.

• ensure a proper combination of metrics. Detection rate (DR) and
false positive rate (FPR) (or their graphical representation ROC
curve) are the most widely used metrics in spite of criticism.
Several studies have shown that the ROC curve alone or DR/FPR
metrics combination might be misleading or simply incomplete for
understanding the strengths and weaknesses of intrusion detection
systems [18, 48, 38, 16, 34].Although such misinterpretation can be
partially avoided when DR/FPR values are complemented with the
absolute numbers of false alarms or missed detections, exclusive
evaluation of an approach with these methods may not accurately
represent the performance of the system.

• Findings:

• provide numerical results. The reporting of numerical results should
be comprehensive (i.e., use complementary metrics that show all
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perspectives of the evaluated method performance) and consistent
(i.e., reported in the same equivalents). For example, only stat-
ing the accuracy of the proposed approach (i.e., that shows the
percentage of correctly classified events) gives almost no insight
into a method’s performance with respect to malicious events.
On the other hand, for example, stating detection rates in per-
centages, while indicating false positive rates in absolute num-
bers, makes it challenging for a researcher to interpret the
numbers.

• interpret the results. The intrusion detection community has tra-
ditionally focused on understanding the limitations of detection
methods. Therefore, simply stating numbers is not sufficient for
interpreting the performance of the detection method. Numerical
results should be included to show the soundness of the approach
and allow for future comparative analysis of the detection methods,
but they are not the main goal. Thus, a close and often manual
examination of results (e.g., false positives and false negatives) is
necessary to understand and explain to the research community why
and when a system performs in a given way.

• Comparison:

• a comparative analysis of the proposed scheme with the established
benchmarks in the field is an essential component of a study.
Whenever existing benchmarks are not available an attempt should
be made to perform a quantitative comparison against prior results.

8 Conclusion

With the popularity of Android platform, the amount of research studies on
security of smartphones is rapidly increasing. While an increasing volume of
studies in the field is generally seen as an indicator of a field evolution, the
true value of existing work and its impact on the smartphone security progress
remains unclear.

As such in spite of variability of tools proposed only a few of them
have been accepted by a security community. Among them is an Android
analysis tool, Androguard [22]. Effective against even obfuscation tech-
niques, Androguard has been adopted many academic and industry mal-
ware analysis solutions, such as Virustotal portal [11], APKInspector [3],
Marvinsafe [7], Anubis (Andrubis) [35], Androwarn [2], googleplay-api [5]
and MalloDroid [6]. In academic studies, as our review shows, there is less
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consensus and studies employ a variability of tools for evaluation of new
solutions.

The validity of experimental research in academic computer science in
general has shown to be questionable. Through our review we also con-
firmed our initial hypothesis, showing that immaturity of the smartphone
security negatively affects experimentation practices adopted in the field.
In this context, it is plausible to suggest that the lack of adoption of the
developed innovations by industry can be attributed to the lack of proper
rigor in experimentation that shadows the true value of the developed solu-
tions. Among the factors that contribute to the lack of scientific rigor in
experimentation are the lack of consistency and transparency in the use of
datasets, the lack of clear understanding of relevant features, the lack of
benchmarked experimentation, and the biased selection of malicious apps
for analysis.

While the infancy of the field of mobile phone security might justify
some shortcomings in experimentation, many of the pitfalls can be avoided
with proper practices established and adopted by a security community. To
facilitate acceptance of this practice, we formulated a set of guidelines for a
proper evaluation of intrusion detection methods for smartphone Platforms.
The suggested guidelines allow a detailed description and analysis of experi-
mentation results, and, as such, might be used for designing experimentation
studies as well as for structuring experimentation sections in a manuscript.
While some of the suggested guidelines might be seen as common sense,
we believe that framing them in a structured way will help researchers to
improve experimentation practices by providing them with a methodological
reference.
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Appendix

List of the Reviewed Papers
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