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Abstract

The paper recommends new methods to estimate effectively the probabilities
of buffer overflow in high-speed communication networks. The frequency
of buffer overflow in queuing system is very small; therefore the overflow
is defined as rare event and can be estimated using rare event simulation
with continuous-time Markov chains. First, a two-node queuing system is
considered and the buffer overflow at the second node is studied. Two efficient
rare event simulation algorithms, based on the Importance sampling and
Cross-entropy methods, are developed and applied to accelerate the buffer
overflow simulation with Markov chain modeling. Then, the buffer overflow
in self-similar queuing system is studied and the simulations with long-range
dependent self-similar traffic source models are conducted. A new efficient
simulation algorithm, based on the RESTART method with limited relative
error technique, is developed and applied to accelerate the buffer overflow
simulation with SSM/M/1/B modeling using different parameters of arrival
processes and different buffer sizes. Numerical examples and simulation
results are provided for all methods to estimate the probabilities of buffer
overflow, proposed in this paper.
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1 Introduction

Overflows in high-speed communication networks are uncommon and defined
as rare events. The frequency of rare events is very small, e.g. 10−6 or less;
however, rare event probability can be used to simulate, estimate and analyze
many queuing system characteristics. Queuing systems are appropriate refer-
ence models being used in different mehodologies and techniques to accelerate
rare event simulation in high-speed communications networks. Estimation of
rare event probability using Monte Carlo simulation requires a very long
computing time and cannot easily be implemented [2, 4, 19]. Lately two
basic methods of the rare event simulation were developed based on cross-
entropy approach that can be applied to a wide range of optimization tasks
[6, 9, 10]:

• Splitting of the sample path that for to reach definite intermediate level
between the starting level and rare event [5]; and

• Importance Sampling (IS) generation [3].

The Probability Density Function (PDF) is used in the IS approach as a
rare event evaluation measure, which can be compared and changed based on
the likelihood ratio of the less rare event PDF [17].

One of the rare event simulation objectives is estimating total network
population overflow. Exact large deviation analysis leading to asymptotically
efficient change of measure is rather difficult. Instead, heuristic change of
measure is proposed, which interchanges the arrival rate to the first queue and
the slowest service rate. Similar change of measure is suggested based on time
reversal arguments. However, analysis shows that the IS estimator based on
this change of measure is not necessarily asymptotically efficient. In fact, it
has an infinite variance in some parameter regions [10].

Another rare event simulation objective is estimating buffer overflow
observed at individual network node. This objective is the purpose of our
study. If the node of concern is a bottleneck relative to all preceding nodes,
then asymptotically efficient exponential change of measure can be obtained
by interchanging the arrival rate and the service rate at this particular node;
and the service rates at all other nodes are kept unchanged [11–12].
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However, this change of measure is not asymptotically efficient when
overflow of buffer at the consequent node is considered. Effective bandwidth
is used to derive heuristics for efficient feed-forward discrete-time queuing
network simulation. This class of networks essentially resembles feed-forward
fluid-flow networks. The analogous approach to continuous-time queuing
networks has not yet been introduced even for Markov chains.

Initially, two-node queuing systems are considered in this paper; and the
event of buffer overflow at the second node is studied. Discrete-Time Markov
Chain (DTMC) with its regular structure is highly efficient model used for
performance evaluation of the queuing system. On one hand, the states are
easily arranged as a grid in DTMC (with as many dimensions as the number of
queues). On the other hand, any transition in DTMC corresponds to a particular
elementary event at one of the queues (e.g., arrival or service completion).
These events are known as transition events, and they are defined separately
from the states; i.e., there is only one transition event for a service completion
at a given queue, and this particular transition event corresponds to a transition
out of each state in the DTMC while this particular queue is non-empty
[13, 16].

However, not all transition events are enabled in every state. For example,
the service completion event of the particular queue is not possible in a state
where the queue is empty.

In this paper we propose a new simulation method based on Markov
Additive Continuous-Time Process (MAP) modeling. We develop and apply
Importance sampling algorithm with exponential tilting of the unbiased PDF
estimation to the appropriate MAP representation, which let us estimate
effectively the probability of buffer overflow at the second node. Unlike
several heuristic changes of measure described in the literature, the derived
change of measure depends on the content of the first buffer.

When the first buffer is finite, we confirm that the proposed simulation
procedure yields the estimation with a relative error that is bound independent
of the buffer overflow level. This result is much stronger than the asymptotic
efficiency, which cannot be observed with other known methods.

When the first buffer is infinite, we propose a natural extension of change
of measure for finite buffer case. Applying the orthogonal polynomial model
we obtain two types of simulation behavior. When the second buffer is a
bottleneck, we confirm once more that simulation yields the estimation with a
relative error that is bound independent of the buffer overflow level. However,
when the first buffer is a bottleneck, the simulation results prove that the
relative error is asymptotic and linearly bound to the buffer overflow level.
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Finally, long-range dependent self-similar queuing systems are considered
in this paper; and the event of buffer overflow is studied. We propose a new
steady-state simulation method, based on SSM/M/1/B modeling.

We develop and apply RESTART with Limited Relative Error (LRE) algo-
rithm, which let us estimate effectively the probability of buffer overflow in a
long-range dependent self-similar queuing system with different parameters
of arrival processes and different buffer sizes.

2 Estimating Probability of Buffer Overflow in Continuous
Time Queueing Systems

Markov additive continuous-time process is a stochastic process (Jt, Zt), where
(Jt) is Markov chain with the denumerable state space, and (Zt) has stationary
and independent increments during the time intervals when (Jt) is in any given
state. That is, if given Jt has not changed in the interval (t1, t2), then for any
t1<s1<. . .<sn<t2, the increments Zs2 − Zs1 ,..., Zsn − Zsn−1 are mutually
independent, and the total increment during the interval [t1, t2] depends
on t1 and t2 only through the difference t2 − t1.

Moreover, the transition from state i to state j (Jt) has a certain probability
(depending only on i and j) of triggering the transition of (Zt) at the same
time. The size of the transition in the process (Zt) has fixed distribution, which
depends only on i and j.

Markov additive continuous-time process (Jt, Zt) is characterized by the
family of the matrices (Mt(s), t ≥ 0), where (i, j)-th element of Mt(s) is (1),

[Mt(s)]ij = Ei[es(Zt−Z0)I{Jt=j}] (1)

where Ei, denote the expectation operator given to the initial MAP state J0 = i.
Let us notice that Mt(·) is a generalization of the moment generating function
for the ordinary random variables, as shown in (2).

Ei[es(Zt+h−Z0)I{Jt+h=j}] =

=
∑
k

Ei[es(Zt+h−Z0)I{Jt=k}I{Jt+h=j}]

=
∑
k

Ei[es(Zt−Z0)I{Jt=k}]Ei[es(Zt+h−Zt)I{Jt+j=j}|Jt = k] (2)

=
∑
k

[Mt(s)]ikEk[es(Zh−Z0)I{Jh=j}]
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Consequently, if for all k and j (3) can be defined,

[A(s)]kj := lim
h↓0

1
h

Ek[es(Zh−Z0)I{Jh=j} − δkj ] (3)

where δ is usual notation of Dirac, then (4) can be easily obtained,

d

dt
Mt(s) = Mt(s)A(s), t ≥ 0 (4)

with M0(s) = I (the identity matrix). It is true as soon as (5) is true.

Mt(s) = etA(s), t ≥ 0 (5)

The matrix A(s) is known as the MAP (infinitesimal) generator.
Let us consider a simple Markov chain that consists of two queues in

tandem. The calls arrive to the first queue (e.g., buffer) according to Poisson
process with the rate λ. The departure time is exponentially distributed with
the rate μ1. The calls that leave the first queue enter the second queue. The
departure time has an exponential distribution with the rate μ2.

The queuing system stability is assumed, i.e. λ<min {μ1, μ2}. The size
of the first buffer may be finite or infinite; in fact, let us consider both cases.
Let Xt and Yt denote the number of the calls in the first and the second queues
at the time t, respectively. Let Pi denote the probability measure under which
(Xt) starts from i at the time 0 (i.e., X0 = i, i ≥ 0); and let Ei, denote the
corresponding expectation operator.

Assuming that the second buffer is initially non-empty, say, Y 0 = 1, the
probability that, starting from (X0, Y 0) = (i, 1), content of the second buffer
hits some high level L∈N before hitting 0, can be estimated. This probability
is noted by γi, and referred to it as the second buffer overflow probability,
given that the initial number of calls in the first queue is i.

2.1 Rare Event Simulation with Markov Chain Modeling

Let us consider the IS approach for the rare event simulation, where the
probability density function is used as the measure of rare event evaluation,
which is compared and changed with the likelihood ratio of the probability
density function of a less rare event. First, let us determine the rare event. Let
X = (X1,..., XN ) be a random vector, which values belong to the certain state
space χ. Let {f(·, v)} be the family of the probability density functions on
χ, with respect to some base measure υ. Here v is a real-valued parameter
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(vector). Then, for any measurable function H is obtained as (6).

E[H(X)
∫

H(x)f(x; v)υ(dx)] (6)

In many cases f is often called the Probability Mass Function (PMF), but in
this paper the generic term density, or the Probability Density Function (PDF),
is used. Let S be some real function on χ. The probability that S(X) is greater
than some real number γ, under F (·; u)can be defined. Therefore, probability
can be written as (7),

l = Pu(S(X) ≥ γ) = Eu[I{S(X)≥γ}] (7)

where I{S(X)≥γ} is the indicator function. If this probability is very small, like
10−6 or less, then {S(X) ≥ γ} is a rare event. The simplest way to estimate l
is to use the basic Monte Carlo simulation. Draw a random sample X1,..., XN
from f(·;u), and use (8) as the unbiased estimator of l.

1
N

N∑
i=1

I{S(Xi)≥γ} (8)

However, it poses serious problems when {S(X) ≥ γ} is a rare event. In
that case a large simulation effort is required in order to estimate l accurately.
An alternative is based on the IS. Take a random sample X1,..., XN from the
IS density g on χ, and evaluate l using the unbiased estimator, called the
likelihood ratio estimator (9).

l̂ =
1
N

N∑
i=1

I{S(Xi)≥γ}
f(Xi; u)
g(Xi)

(9)

It is well known that the optimal way to estimate l is to use the change of the
measure with the density (10)

g∗(x) =
I{S(X)≥γ}f(x; u)

l
(10)

Specifically, applying this change of the measure to (9), (11) can be obtained
for all i.

I{S(Xi)≥γ}
f(Xi; u)
g∗(Xi)

= l (11)

In other words, the estimator (9) has a zero variance, and only N = 1 sample
need to be produced. The obvious difficulty is, of course, that the g* depends
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on the unknown parameter l. Moreover, one often wishes to choose this g from
the density family {f(·, v)}. Now the plan is to choose the tilting parameter v,
such that the distance between the densities g* and f(·, v) is minimal.

A particular suitable measure of the distance between two densities g and
f is the Kullback-Leibler distance, which is defined in (12).

D (g, f) = Eg[ln
g(X)
f(X)

]

=
∫

g(x) ln g(x)υ(dx) −
∫

g(x) ln f(x)υ(dx) (12)

Therefore, minimizing the Kullback-Leibler distance between g in (11) and
f(·,v) is the same as choosing v, such that − ∫

g(x)In f (x; v)υ(dx) is mini-
mized, or equally, such that − ∫

g(x)In f (x; v)υ(dx) is maximized. Formally,
it can be written as (13).

max
v

D(v) = max
v

∫
g(x) In f(x; v)υ(dx) (13)

Applying g from (10) to (13) as the substitution, the following optimization
program can be obtained as (14).

max
v

D(v) = max
v

∫
I{S(X)≥γ}f(x; u)

l
In f (x; v)υ(dx)

= max
v

Eu[I{S(X)≥γ} In f(X; v)] (14)

Using the IS again, with the change of measure f(·;w), (14) can be re-written
into (15),

max
v

D(v) = max
v

Ew [I{S(X)≥γ}W (X; u, w) In f (X; v)] (15)

for any tilting parameter w, where the likelihood ratio at x between f(·;u) and
f(·;w) is W. This can be presented according to (16).

W (x; u; w) =
f(x; u)
f(x; w)

(16)

The basic idea of the IS method regarding rare event is to accelerate its
frequency with iterative tilting the unbiased estimation of the probability
density function to appropriate MAP representation.
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The acceleration of conditional probability of rare event X1 with one-
parameter function f(x) is shown in Figure 1. The conditional probability
of rare event Pf{x > X1} is changing with conditional probability of
g(x) – Pg{x > X1}.

At each iteration of the IS simulation, N independent samples are gener-
ated, which distribution g(x) can be evaluated with the likelihood ratio W(X1).
The optimal solution for (15) can be written as (17).

v∗ = arg max
v

Ew[I{S(X)≥γ}W (X; u, w)ln f (X; v)] (17)

It can be obtained by solving the following stochastic program, which can be
considered as a stochastic counterpart of (15) and written according to (18),

max
v

D̂ (v) = max
v

1
N

N∑
i=1

I{S(X)≥γ}W(Xi; u, w)ln f (Xi; v) (18)

where X1,..., XN is a random sample from f(·;w).
The solution for (18) can be obtained by solving the following system of

equations with respect to v in (19),

1
N

N∑
i=1

I{S(Xi)≥γ}W (Xi; u, w)∇ ln f (Xi; v) = 0 (19)

where the gradient is defined regarding v.
This confirms the expectation that the differentiation operators and the

function D̂ can be interchanged in (18) with respect to v. The advantage of

Figure 1 Conditional probability of rare event Pf{x > X1} - (a); and its acceleration with
likelihood ratio W(X1) - (b).
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this approach is in the fact that often the solution of (19) can be calculated
analytically. In particular, this happens when the random variable distributions
belong to the natural exponential family. The cross-entropy program (19) is
useful only when the probability of the target event {S(X) ≥ γ} is not too
small, say 1 ≥ 10−5.

Then, above program is useful in terms of potentially more accurate
estimator determination. However, in a rare event context, (say, 1 ≥ 10−6),
the program (19) is useless to rarity of events {S(Xi) ≥ γ}, because the random
variables I{S(Xi)≥γ}, i = l ,..., N and the associated derivatives of D̂(v) vanish
with high probability, as given in the right-hand side of (19), for reasonable
sizes of N.

2.2 Exponential Change of Measure

Let us initially think that the first buffer has a finite capacity N. In this
case the state space of the driving process (Xt) is finite in {0,...,N}. Let
us consider Markov additive continuous-time process (Xt, Zt). To create
a corresponding MAP generator (i.e., matrix A(s) in (5)), the infinitesimal
expectations Ei[es(Zh−Z0)I{Xh = j} − δij ] as h↓0 for all i, j in {0,...,N} have
to be determined, where Z0 = l and δij = 0 for j �= i.

For instance, since the downward transition of (Xt) leads to the upward
transition of (Zt), (20) is used for i = l,..., N, as h↓0.

Ei[es(Zh−Z0)I{Xh = i−1} − δi,i−1] =

= Ei[es(Zh−Z0)|Xh = i − 1]Pi(Xh = i − 1) =
= es(μ1h + O(h)) = μ1hes + o(h) (20)

Therefore, the (i, i-l)-th element of the matrix A(s) exists and is equal to μ1es.
Other elements of the matrix A(s) can be defined similarly. Consequently, (5)
holds with A(s) for Markov additive continuous-time process (Xt, Zt) with
the given (N + l, N + l)-tridiagonal matrix (21).

GN (s) =

⎛
⎜⎜⎜⎜⎝

−λ − μ2 + μ2e−s λ

μ1es −λ − μ1 − μ2 + μ2e−s λ

. . .
. . .

. . .
μ1es −μ1 − μ2 + μ2e−s

⎞
⎟⎟⎟⎟⎠

(21)

Let us note that the MAP generator GN(s) is now equal to the matrix (22).
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Q̂(n)(u) =

⎛
⎜⎜⎜⎝

−λ − μ2 + μ2u λ
μ1/u −λ − μ1 − μ2 + μ2u λ

. . .
. . .

. . .
μ1/u −μ1 − μ2 + μ2e−s

⎞
⎟⎟⎟⎠

(22)
Next, the change of the measure based on the family of the matrices GN(s)

is defined. For any s ≥ 0, kN (s): = log(sp(Mt(s))) / t has to be defined, where
sp(Mt(s)) denotes the spectral radius (or, the maximum Eigen value) of Mt(s).
Using (5) kN(s) can be identified as the largest positive Eigen value of GN(s).
Let w(s) = {wk(s),0 ≤ k ≤ N} represent the correspondent right-eigenvector.

When the first buffer has the infinite capacity, the process (Xt, Zt) is still
Markov additive continuous-time process, but the state space for Markov
process (Xt) is now infinite. Equation (5) is still used, but A(s) is now given
by the infinite-dimensional tri-diagonal matrix (23).

G(s) =

⎛
⎜⎜⎜⎝

−λ − μ2 + μ2e
−s λ

μ1e
s −λ − μ1 − μ2 + μ2e

−s λ
. . . . . . . . .

⎞
⎟⎟⎟⎠ (23)

Let us note that the MAPgenerator G(s) is now equal to the infinite tri-diagonal
matrix (24).

Q(u) =

⎛
⎜⎜⎜⎝

−λ − μ2 + μ2u λ
μ1/u −λ − μ1 − μ2 + μ2u λ

. . . . . . . . .

⎞
⎟⎟⎟⎠ (24)

2.3 Importance Sampling Algorithm and Simulation Results

The Markovian network that consists of tandem queues with feedback is
shown in Figure 2 and used as a simulation example, with the entry parameters
follow: λ1 = λ2 = 1, μ1 = μ2 = 6, p = 0.5.

The Importance Sampling (IS) algorithm to accelerate rare event simula-
tion with Markov chain modeling in high-speed communication networks is
suggested in this paper. It consists of the following six steps provided below.
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Algorithm 1 Importance sampling simulation method
Step 1. Set t := 1 (initialization of iteration counter). Define the likelihood ratio v1: = 0 (in
this case Monte Carlo simulation is appropriate).

Step 2. Generate a sample X1, . . . , Xk, . . . , XN , from the density f(Xk;vt−1) in such way
that for the ρ-th part of samples (ρ = 0.01) the condition of the rare event S(Xk)>M is
executed.

Step 3. Determine the full paths and sort ascending in following way S(1) ≤ S(2)≤..≤ S(N).

Step 4. Calculate the conditional probability γt = S[(1−ρ)N ].

Step 5. For each S(Xk) > γ define the rare event indicator I{S(Xi)≥M} = 1 and then
determine the likelihood ratio for the next iteration vt+1 according to (15), (16) and (19).

Step 6. If γt<M then t: =t+1 and repeat steps 2, 3 and 4.

The simulation results for Poisson distribution and fixed numbers of calls
n1 and n2, for four different overflow cases are provided in Table 1. As could
be seen, the overflow probability exponentially decreases with increase of the
fixed number of calls in queues n1 and n2. The exponential behavior depends
more on the number n1.

Figure 2 Two-node queuing network with feedback.

Table 1 Simulation results

Overflow

Level Overflow

n1 n2 λ1 λ2 μ1 μ2 p Probability

25 25 0.13 0.11 0.29 0.18 0.42 2.22x10−8

50 50 0.23 0.18 2.15 2.26 0.31 1.15x10−15

60 40 1.18 1.42 4.91 3.58 0.44 6.29x10−25

100 40 2.02 1.67 5.82 2.94 0.37 1.86x10−50
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2.4 Cross-Entropy Algorithm and Simulation Results

The Cross-entropy algorithm to accelerate rare event simulation with Markov
chain modeling in high-speed communication networks is suggested in this
paper. The idea is to introduce a sequence of reference parameters {vt, t ≥ 0}
and a sequence of the levels {γt, t ≥ 1}, and iterate in both γt and vt.

The initialization is done with choosing a not very smallp, say ρ = 10−2,
and defining v0 = u. Next, we let γ1 (γ1<γ) be such that under the original
density f(x; u), the probability 11 = Eu[I{s(x)≥γ1}] is at least ρ.

After, let v1 be the optimal cross-entropy reference parameter to estimate
l1, and repeat the last two steps iteratively with the purpose to estimate the
pair {l, v*}. In other words, the iteration of the algorithm consists of two main
phases. In the first phase γt is updated, in the second phase vt is updated.
Particularly, starting with v0 = u, the subsequent γt and vt are obtained as
described below.

Phase 1 includes adaptive update of γt. For a fixed vt−1, let γt be a
(1-ρ)-quintile of S(X) under vt−1. That is, γt satisfies (25) and (26).

Pvt−1(S(X) ≥ γt) = Eu[I{S(X)≥γ}] (25)

Pvt−1(S(X) ≤ γt) ≥ 1 − ρ (26)

where X∼f(· ; vt−1). The simple estimator γ̂t ofγt can be obtained by drawing
a random sample X1, . . . ,XN from f(· ; vt−1), calculating the performances
S(Xi) for all i, ordering them from the smallest to the biggest: S(1) ≤ . . . ≤
S(N) and finally, evaluating the (1 − ρ) sample quintile as (27).

γ̂t = S[(1−ρ) N ] (27)

Let us note that S(j) is called j−th order-statistic of the sequence
S(X1),...,S(XN). Let us note also that γ̂t is chosen such that the event
{S(X) ≥ γ̂t} is not too rare (it has a probability of around ρ), and therefore,
the reference parameter updated with a procedure such as (27) is not void of
the meaning.

Phase 2 contains adaptive update of vt. For fixed γt and vt−1, let us derive
vt from the solution of the following cross-entropy program according to (28).

max
v

D(v) = max
v

Evt−1 [I{S(X)≥γ}W(X; u, vt−1)In f(X; v)] (28)

The stochastic counterpart of (28) is shown as follows: for fixed γ̂t and
v̂t−1, derive v̂t, from the solution of the program according to (29).
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max
v

D̂(v) = max
v

1
N

N∑
i=1

I{S(Xi)≥γ̂t}W (Xi; u, v̂t−1) ln f (Xi; v) (29)

Therefore, at the first iteration starting with v̂0 = u, the target event is
artificially made less rare with temporarily use of the level γ̂1, which is chosen
smaller than γ that for to get a good estimate for v̂1.

The value v̂1 obtained in this way will make the event {S(X) ≥ γ} less
rare in the next iteration, so the value γ̂2 can be used in the next iteration,
which is closer to γ itself.

The algorithm terminates when the level is reached at some iteration t,
which is at least γ and after the original value of γ can be used without getting
too few samples. As mentioned before, the optimal solution of (28) and (29)
can be often obtained analytically, in particular when f(x; v) belongs to the
natural exponential family.

The above rationale results are placed in the multi-level Cross-entropy
algorithm for accelerated rare event simulation with Markov chain modeling
in high-speed communication networks. This efficient algorithm consists of
the following five steps provided below.

Algorithm 2 Multi-Level Cross-Entropy Simulation Method
Step 1. Define v̂0 = u. Set t = 1. (Iteration = level counter).

Step 2. Generate a sample X1,...,XN with the density f(· ; vt−1) and compute the
sample(1-ρ) quintile γ̂t performance according to (28) with γ̂t < γ. Otherwise, set γ̂t = γ.

Step 3. Use the same sample X1,...,XN to solve the stochastic program (29). Denote the
solution by v̂t.

Step 4. If γ̂ < γ, then set t = t + 1 and reiterate from Step 2. Else, proceed with step 5.

Step 5. Estimate the rare event probability l using (30),

l̂ =
1
N

N1∑
i=1

I{S(Xi)≥γ}W (Xi; u, v̂T ) (30)

where T denotes the final number of iterations, or number of the levels used.
As a simulation example, let us apply this efficient algorithm to a similar

tandem queue with feedback as was given in Figure 2, but at this time with
the following entry parameters: λ = 0.2; μ1 = 0.8; μ2 = 0.2; p = 0.5.

The simulation results for generating N = 10,000 samples are shown in
Table 2. As could be seen, overflow is obtained when there are j = 6 iterations.
The accuracy increases up to N = 1,000,000 in the seventh iteration, and the
overflow probability is obtained equal to �̂IS = 1.342e−15.
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Table 2 Simulation results

Iteration
Repetitive
Trails λ μ1 μ2 p Estimation

1 104 0.2 0.8 0.2 0.5 -

2 104 0.216 0.643 0.258 0.364 1.426e−15

3 104 0.198 0.621 0.287 0.322 1.462e−15

4 104 0.196 0.614 0.279 0.318 1.436e−15

5 104 0.195 0.614 0.282 0.320 1.372e−15

6 104 0.196 0.612 0.284 0.322 1.318e−15

7 106 0.196 0.612 0.284 0.322 1.342e−15

3 Estimating Probability of Buffer Overflow in Self-Similar
Queuing Systems

Recent studies of high-speed communication network traffic have clearly
shown that teletraffic (technical term, identifying all phenomena of transport
and control of information within the high-speed communication networks)
exhibits long-range dependent self-similar properties over a wide range
of time scales. Therefore, self-similar queuing systems are appropriate
reference models being also used in different methodologies and tech-
niques to accelerate rare event simulation in high-speed communication
networks [13].

Long-range dependent self-similar teletraffic is usually observed in LAN
and WAN, where superposition of strictly independent alternating ON/OFF
traffic models, whose ON- or OFF-periods have heavy-tailed distributions
with infinite variance, can be used to model aggregate queuing network traffic
that exhibits long-range dependent self-similar behavior, typical for measured
LAN traffic over a wide range of time scales [14, 18].

Long-range dependent self-similar teletraffic is also observed in ATM
networks: when arriving at an ATM buffer, it results in a heavy-tailed buffer
occupancy distribution, and a buffer cell loss probability decreases with
the buffer size not exponentially, like in traditional Markovian models, but
hyperbolically [16, 18].

Furthermore, long-range dependent self-similar teletraffic is observed
in the Internet as many characteristics can be modeled using heavy-tailed
distributions, including the distributions of traffic times, user requests for
documents, and document sizes. In IP with TCP self-similar queuing networks
the transfer of files or messages shows that the reliable transmission and flow



Estimating Buffer Overflow Probabilities in High-Speed Communication 413

control mechanisms serve to maintain long range dependent structure included
by heavy-tailed file size distributions [1].

Long-range dependent self-similar video traffic provides possibility for
developing models for Variable Bit Rate (VBR) video traffic using heavy-
tailed distributions [16, 18]. Therefore; we can clearly see that impact
of self-similar models on the queuing and network performance is very
significant.

The properties of long-range dependent self-similar teletraffic are very
different from properties of traditional models based on Poisson, Markov-
modulated Poisson, and related processes. More specifically, while tails
of the queue length distributions in traditional teletraffic models decrease
exponentially, those of long-range dependent self-similar teletraffic models
decrease much slower.

Therefore, the use of traditional models in high-speed communication
networks characterized by long-range dependent self-similar processes can
lead to incorrect conclusions about the queuing and network performance.
Traditional models can lead to over-estimation of the queuing and network
performance, insufficient allocation of communication and data processing
resources, and consequently difficulties in ensuring the QoS.

Self-similarity can be classified into two types: deterministic and stochas-
tic. In the first type, deterministic self-similarity, a mathematical object is
assumed to be self-similar (or fractal) if it can be decomposed into smaller
copies of itself. That is, deterministic self-similarity is a property, in which
the structure of the whole is contained in its parts [14, 18].

This work is focused on stochastic self-similarity. In that case, probabilistic
properties of self-similar processes remain unchanged or invariant when
the process is viewed at different time scales. This is in contrast to Poisson
processes that lose their burstiness and flatten out when time scales are
changed [18].

However, the time series of self-similar processes exhibit burstiness over
a wide range of time scales. Self-similarity can statistically describe teletraffic
that is bursty on many time scales [14].

One can distinguish two types of stochastic self-similarity. A continuous-
time stochastic process Yt, is strictly self-similar with a self-similarity
parameter H (1/2 < H < 1), if Yct, and cHYt (the rescaled process with
time scale ct) have identical finite-dimensional probability for any positive
time stretching factor c. This definition, in a sense of probability distribution,
is quite different from that of the second-order self-similar process, observed
at the mean, variance and autocorrelation levels [14].
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The process X is asymptotically second-order self-similar with 0.5 <

H <1, if for each k large enough ρ
(m)
k → ρk, as m → ∞, where ρk =

E[(Xi − μ)(Xi+k − μ)]/σ2.
In this work the exact or asymptotic self-similar processes are used

in an interchangeable manner, which refers to the tail behavior of the
autocorrelations [14, 18].

3.1 Long-Range Dependent Self-Similar Processes

We have to say that the most striking feature of some second-order self-similar
processes is that the accumulative functions of the aggregated processes do
not degenerate with the non-overlapping batch size m increasing to infin-
ity. Such processes are known as Long-Range Dependent (LRD) processes
[1, 14, 18].

This is in contrast to traditional processes used in modeling high-speed
communication network traffic, all of which include the property that the
accumulative functions of their aggregated processes degenerate as the non-
overlapping batch size m increasing to infinity, i.e., ρ

(m)
k → 0 or ρ

(m)
k =

0(|k| > 0), for m > 1. The equivalent definition of long-range dependence is
given as (31).

∞∑
k = −∞

ρk = ∞ (31)

Another definition of LRD is presented as (32),

ρk ∼ L(t)k−(2−2H), as k → ∞ (32)

where 1/2 < H <1 and L(·) slowly varies at infinity, i.e. for all x > 0 it could
be determined as (33).

lim
t→∞

L(xt)
L(t)

= 1 (33)

The Hurst parameter H characterizes the relation in (32), which specifies the
form of the tail of the accumulative function. One can show that is true for
1/2 < H < 1, as given in (34).

ρk =
1
2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
(34)

For 0 < H < 1/2 the process is Short-Range Dependent (SRD) and could be
presented as (35).
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∞∑
k = −∞

ρk = 0 (35)

For H = 1 all autocorrelation coefficients are equal to one, no matter how
far apart in time the sequences are. This case has no practical importance in
real high-speed communication network traffic modeling. If H > 1, then (36)
is true.

ρk =
{

1 for k = 0
1
2k2Hg(k−1) for k > 0 (36)

where
g(x) = (1 + x)2H − 2 + (1 − x)2H (37)

One can see that g(x) → ∞ as H > 1. If 0 < H < 1 and H �= 1/2, then the
first non-zero term in the Taylor expansion of g(x) is equal to 2H(2H – 1)x2.
Therefore, (38) is true.

ρk/(H(2H − 1)k2H−2) → 1, as k → ∞ (38)

In the frequency domain, an essentially equivalent definition of LRD for a
process X with given spectral density (39),

f(λ) =
σ2

2π

∞∑
k = −0

ρke
ikλ (39)

is that in the case of LRD processes, this function is required to satisfy the
following property (40),

f(λ) ∼ cf1λ
−γ , as λ → 0 (40)

where cf1 is a positive constant and 0 < γ < 1, γ = 2H − 1 < 1. As a
result, LRD manifests itself in the spectral density that obeys a power-law
in the vicinity of the origin. This implies that f(0) =

∑
k ρk = ∞. Conse-

quently, it requires a spectral density, which tends to +∞ as the frequency λ

approaches 0.
For a Fractional Gaussian Noise (FGN) process, the spectral density f(λ,

H) is given by (41),

f(λ, H) = 2cf (1 − cos (λ))B(λ, H) (41)

with 0 < H < 1 and −π ≤ λ ≤ π, where (42) is true,
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cf = σ2(2π)−1 sin(πH)Γ(2H + 1)

B(λ, H) =
∞∑

k = −∞
| 2πk + λ |−2H−1 (42)

and σ2 = Var[Xk] and Γ(·) is the gamma function. The spectral density
f(λ, H) in (41) complies with a power-law at the origin, as shown in (43),

f(λ, H) → cfλ1−2H , as λ → 0 (43)

where 1/2 < H < 1.

3.2 Steady-State Simulation with SSM/M/1/B Modeling

As we have previously accepted, there is a significant difference in the queuing
and network performance between traditional models of teletraffic, such
as Poisson processes and Markovian processes, and those exhibiting long-
range dependent self-similar behavior. More specifically, while tails of the
queue length distributions in traditional models of high-speed communication
network traffic decrease exponentially, those of self-similar traffic models
decrease much slower (14]; [18]).

Let us consider the potential impacts of traffic characteristics, including
the effects of long-range dependent self-similar behavior on queuing and
network performance, protocol analysis, and network congestion controls.
Steady-state simulation of long-range dependent self-similar queuing system
includes:

• Generation of long-range dependent self-similar traffic [14, 18];
• Simulation of long-range dependent self-similar queuing process [14];

and
• Simulation of the overflow probability [14, 15].

This can be demonstrated with the buffer overflow simulation in SSM/
M/1/B queuing systems (B < ∞, i.e. queuing systems with the finite buffer
capacity) with long-range dependent self-similar queuing processes. In this
case, the difference with M/M/1/B queuing system is that the arrival rate λj ,
into SSM/M/1/B queuing system is not a constant value. It depends on the
sequential number of time-series i, the total number of observations n and
the Hurst parameter H, which determine the rate of self-similarity. The ana-
lyzed SSM/M/1/B queuing system has exponential service times with constant
rates 1/μ as is shown in Figure 3. The flow balance equations are given
below [8, 14]:
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Figure 3 State transition diagram for a SSM/M/1/B self-similar queuing system.

λj = λ(i, n, H); j = 1, 2, . . . , B
λj = 0 : j ≥ B + 1
μj = μ; j = 1, 2, . . . , B + 1

(44)

This system is stable with a throughput ρ = λ(i,n,H)
μ < 1. Let us consider two

separated cases: ρ = 1, and ρ �= 1. For j = 0,1,2,..., B the distribution of the
number of flows in the system is Pj = ρjP0, which is determined according to

PJ = ρj(1−ρ)
1−ρB + 1 ; ρ �= 1

Pj = 1
B + 1 ; ρ = 1

(45)

Therefore, the rate at which the flows are blocked and lost is λPB . The
self-similar queuing process is described with the steady-state simulation
procedure [16], presented in Figure 4.

The self-similar traffic can be generated and the sequence of arrivals is
obtained. The fixed length of self-similar traffic is extracted by fixing the
number of observations. As the service process is Markovian, the sequence of
departures has exponential distribution, generated with an inverse transform
generator [14].

The next step is the calculation of the buffer size. If the service size is
greater than the size of arrivals, then the buffer size B = 0, as it is impossible
to have a negative buffer size. In cases when the buffer size is greater than the
overflow L, i.e. B > L, the traffic is lost, therefore we have made an assumption
that B = L.

The simulation is performed with splitting of the sample path [15],
using a variant based on the RESTART method [7], where any chain is
split by a fixed factor when it hits a level upward, and one of the copies
is tagged as the original for that simulation level. When any of those
copies hits that same level downward, if the copy is the original it just
continues its path, otherwise it is killed immediately. This rule applies
recursively, and the method is implemented in a depth-first fashion, as
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Figure 4 Steady-state simulation of self-similar queuing system.

follows: whenever there is a split, all the non-original copies are simulated
completely, one after the other; then the simulation continues for the original
chain [20].

The reason for eliminating most of the paths that go downward is to reduce
the work. Therefore, the buffer size calculations being made for all sequences
provide the opportunity to estimate the overflow probability using the steady-
state simulation based on the RESTART method with the limited relative error
(LRE) algorithm.

3.3 RESTART Method with Limited Relative Error Algorithm
and Simulation Results

The limited relative error algorithm helps to determine the complementary
cumulative function of arrivals at single server buffer queues with Markov
processes. In order to describe the LRE princilpes for steady-state simulation
in Discrete-Time Markov Chains (DTMC), let us consider a homogeneous
two-node Markov chain, which is extended to regular DTMC, consisting of
(k + 1) nodes with states, respectively S0, S1,..,., Sk, as shown in Figure 5.

We obtain the random generated sequence x1, x2,..., xt, xt+1... for
x = 0, l,..., k, for which a transition for state Sj at the time t exists, e.g. xt = j
and there are no constraints to the parameters of the transition probabilities:
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Figure 5 Cumulative function F(x) for (k + 1)-node Markov chain.

Pij = P (j|i); (i, j) = 0, 1, . . . , k;
k∑

j = 1

pij = 1 (46)

There are no absorbing states Si, at pii = 1 for all stationary probabilities
Pjj = 0, 1, . . . , k, which satisfy the constraint condition:

0 ≤ Pj < 1;
k∑

j = 0

Pj = 1 (47)

The cumulative distribution F(x) can be presented as:

F (x) = Fi; (i − 1) ≤ x < i; i = 1, 2, . . . , k + 1;

Fi =
i−1∑

j = 0

Pj ; F0 = 0; Fk + 1 = 1;

⎫⎪⎬
⎪⎭ (48)



420 I. Lokshina

In order to simulate the (k+1) nodes of Markov chain, the complementary
cumulative distribution G(x)=1–F(x) that is more significant, can be deter-
mined along with the local correlation coefficient ρ(x) through the limited
relative error approach.

After having the homogeneous two-node Markov chain defined as shown
in Figure 3, with changing the states n times, an estimation of the local
correlation coefficient ρ̂(x) can be obtained, which connects the number
of transitions through a dividing line ai ≈ ci,with the total number of
observed events li = n–d, (β = 0,1, ...i − 1,) at left side, and di, at right
side(β = i, i + 2, . . . , k).

The value of simulated complementary cumulative distribution Ĝi can be
defined directly by using relative frequency di/n , if there is enough number
of samples:

n ≥ 103; (li, di ≥ 102); (ai, ci, li − ai, di − ci) ≥ 10 (49)

The posterior equations can be used for the complementary function Ĝ(x),
the average number of generated values of β̂, the local correlation coefficient
ρ̂(x), the correlation coefficient Cor[x] and the relative error RE[x]:

Ĝ(x) = Ĝi = di/n β̂ = 1
n

k∑
i = 1

di

ρ̂(x) = ρ̂i = 1 − ci/di

1−di/n i − 1 ≤ x < i

i = 1, . . . , k

(50)

Cor[x] = Cori = (1 + ρ̂i)(1 − ρ̂i) RE[x]2 = REi = 1−di/n
d · Cori

The main advantage of this approach is that the relationships between tran-
sitions ci are obtained with routine statistical calculations. The necessary
total number of simulation trails n is determined with the maximal relative
error REmax[x]2 and with the less value of the function G(x), presented as
Gmin = Ĝk in approximation equation:

n = (1−Gmin)
Gmin.REmax[x]2 ≈ Cork

Ĝk.REmax[x]2
;

Cork = 1+ρ̂k
1−ρ̂k

(51)

This method can be described with a standard version of limited relative error
algorithm for random discrete sequences of buffer arrivals. It consists of the
following three steps provided below.
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Algorithm 3 Restart with Limited Relative Error Simulation Method
Step 1: Initialization of minimal and maximal values of the simulation parameter.

Step 2: Estimation and management of the simulation time.
Cycle L1: Determine the current variable for calculating the Markov chain, e.g.
ω := β;generate a new value for β with given distribution.
Increase the number of state hβ .
If the condition β < ω is true, then increase the number of transitions cβ+1 while it reaches
the value of cω .
Cycle L 2: Determine the total number of events at the left part ls and at the right part ds

of the Markov chain and number of transitions as := cs; check on the constraint condition
(49) for the index i = s.
If the constraint condition (49) is true, then calculate the posterior values of the local
correlation coefficient ρ̂s and relative error RE[x] with use of (50). Calculate whether the
relative error RE[x] ≤ REmax[x].
If s<k, than leave the cycle L2.
If the index s = k is reached, than leave the cycle L1 and increase the index of the simulation
time s: = s+1;

Step 3: Printing out the experimental results for i = l, 2, ..., k The results for the total
frequency di are determined according to (52):

di =
k∑

j = 1

hj for i = 0, 1, . . . , k where do = n (52)

The values of the complementary function Ĝi , the local correlation coefficient
ρ̂s and the relative error RE[x] are calculated as given in (50).

As an example, the overflow probability of an SSM/M/1/B self-similar
queuing system has been simulated with different characteristics of long-range
dependent self-similar arrival processes. In order to demonstrate the effects of
self-similarity on the buffer overflow probability, the obtained experimental
results were compared with the complementary cumulative distribution in the
traditional single server finite buffer queue M/M/1/B. The obtained results in
a logarithmic scale are given in Figure 6.

In order to get representative and steady results the sequences of
10000 observations were used. With the suggested LRE algorithm the values
of complementary cumulative function G(x) for different buffer sizes were
calculated. The calculations were provided with the step m = 4. One can see
in Figure 6 that the increasing Hurst parameter has led to an insignificant
decrease in the overflow probability.

For example, for the value of Hurst parameter H = 0.6 the overflow
probability was G(L) = 1.045*10−1, and for H = 0.9 it was G(L) = 5.6*10−2.
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Figure 6 Buffer overflow probability (L = 41) in SSM/M/1/40 self-similar queuing system.

On the other hand, the overflow probability of self-similar queuing system
has increased significantly in comparison with the theoretical M/M/1/B
self-similar queuing system, for which G(L) = 4.79*10−5.

After that, the simulation was repeated for SSM/M/1/B self-similar queu-
ing system by using long-range dependent self-similar arrival process with
H = 0.6 and different buffer sizes. The obtained results for buffer size B = 40,
B = 60 and B = 80 are shown in Figure 7. One can see that since the buffer
size was increased twice, the overflow probability has been changed simply
by about two orders of magnitude – from 1.045*10−1to 6.4*10−3.

Finally, it was confirmed that in order to design a single server finite
buffer model with long-range dependent self-similar arrival processes, the
buffer size has to be increased many times in order to decrease the overflow
probability.
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Figure 7 Buffer overflow probability in SSM/M/1/B self-similar queuing system with
different buffer sizes.

4 Conclusions

The paper recommends new methods to estimate effectively the probability
of buffer overflow in high-speed communication networks. The frequency
of buffer overflow in queuing systems is very small; therefore the overflow
can be defined as rare event and estimated using rare event simulation with
Markov chains.

Initially, two-node queuing systems have been considered in this paper;
and an event of buffer overflow at the second node was studied. Two efficient
rare event simulation algorithms, based on the Importance sampling and Cross-
entropy methods, have been developed and applied to accelerate the buffer
overflow simulation with Markov chain modeling. Simulation results were
shown and analyzed.
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Then, steady-state simulations of self-similar queuing systems have been
conducted using the RESTART method with Limited Relative Error algorithm
to estimate effectively the probability of buffer overflow. The models of
SSM/M/1/40 self-similar queuing system have been applied with different
parameters of arrival processes and different buffer sizes. Simulations results
were shown and analyzed.

The resulting recommended methods to estimate effectively the proba-
bility of buffer overflow are appropriate and particularly efficient being used
for performance evaluation in high-speed communication networks, while
higher performance networks must be described by lesser buffer overflow
probabilities.
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