
Leveraging Conceptual Data Models
to Ensure the Integrity of Cassandra

Databases

Pablo Suárez-Otero, Marı́a José Suárez-Cabal and Javier Tuya

Computer Science Department, University of Oviedo, Campus de Viesques,
Gijón, Spain
E-mail: suarezgpablo@uniovi.es; cabal@uniovi.es; tuya@uniovi.es

Received 10 January 2019;
Accepted 05 June 2019

Abstract

The use of NoSQL databases for cloud environments has been increas-
ing due to their performance advantages when working with big data.
One of the most popular NoSQL databases used for cloud services is
Cassandra, in which each table is created to satisfy one query. This
means that as the same data could be retrieved by several queries,
these data may be repeated in several different tables. The integrity of
these data must be maintained in the application that works with the
database, instead of in the database itself as in relational databases. In
this paper, we propose a method to ensure the data integrity when there
is a modification of data by using a conceptual model that is directly
connected to the logical model that represents the Cassandra tables.
This method identifies which tables are affected by the modification
of the data and also proposes how the data integrity of the database
may be ensured. We detail the process of this method along with two
examples where we apply it in two insertions of tuples in a conceptual
model. We also apply this method to a case study where we insert

Journal of Web Engineering, Vol. 18 4-6, 257–286.
doi: 10.13052/jwe1540-9589.18461
c© 2019 River Publishers

258 P. Suárez-Otero et al.

several tuples in the conceptual model, and then we discuss the results.
We have observed how in most cases several insertions are needed to
ensure the data integrity as well as needing to look for values in the
database in order to do it.

Keywords: NoSQL, Cloud, Conceptual Model, Logical Model,
Cassandra, Logical Data Integrity.

1 Introduction

The importance of NoSQL databases has been increasing due to the
advantages they provide in the processing of big data [1]. These
databases were created to have a better performance than relational
databases [2] in operations such as reading and writing [3] when
managing large amounts of data. This improved performance has
been attributed to the abandonment of ACID constraints [4]. NoSQL
databases have been classified in four types depending on how they
store the information: [5]: those based on key-values like Dynamo
where the items are stored as an attribute name (key) and its value;
those based on documents like MongoDB where each item is a pair
of a key and a document; those based on graphs like Neo4J that store
information about networks, and those based on columns like Cassandra
that store data as columns.

Internet companies make extensive use of these databases due
to benefits such as horizontal scaling and having more control over
availability [6]. Companies such as Amazon, Google or Facebook use
the web as a large, distributed data repository that is managed with
NoSQL databases [7]. These databases solve the problem of scaling
the systems by implementing them in a distributed system, which is
difficult using relational databases. Examples of companies that are
using these NoSQL databases for their web services are Telefonica,
Facebook or EA in the case of MongoDB [8] and Netflix, eBay or Sony
in the case of Cassandra [9].

Cassandra is a distributed database developed by the Apache Soft-
ware Foundation [10]. Its characteristics are [11]: 1) a very flexible
scheme where it is very convenient to add or delete fields; 2) high

Leveraging Conceptual Data Models to Ensure the Integrity 259

scalability, so the failure of a single element of the cluster does not
affect the whole cluster; 3) a query-driven approach in which the data
is organized based on queries. This last characteristic means that, in
general, each Cassandra table is designed to satisfy a single query [12].
If a single datum is retrieved by more than one query, the tables
that satisfy these queries will store this same datum. Therefore, the
Cassandra data model is a denormalized model, unlike in relational
databases where it is usually normalized. The integrity of the informa-
tion repeated among several tables of the database is called logical data
integrity.

Cassandra does not have mechanisms to ensure the logical data
integrity in the database, unlike relational databases, so it needs to be
maintained in the client application that works with the database [13].
This is prone to mistakes that could incur in the creation of incon-
sistencies of the data. Traditionally, cloud-based systems have used
normalized relational databases in order to avoid situations that can lead
to anomalies of the data in the system [18]. However, the performance
problems of these relational databases when working with big data
have made them unfit in these situations, so NoSQL systems are used
although they face another problem, that of ensuring the logical data
integrity [6].

To illustrate this problem, consider a Cassandra database that
stores data relating to authors and their books. This database has two
tables, one created to satisfy the query “books that a given author has
written” (Books by author) and another created to satisfy the query
“find information of a book giving its identifier” (Books). Note that
the information pertaining to a specific book is repeated in both tables.
Suppose that during the development of a function to insert books in
the database, the developer forgets to introduce a database statement
to insert the information of the new book in table “Books by author”.
This produces an inconsistency of the data, as the inserted book would
only be in table “Books” and not in table “Books by author”, although
both tables store the Id of books. This example is illustrated in Figure 1.
Partition key columns are labelled ‘K’ and the clustering key columns
are labelled ‘C’ [24]. These columns compound the primary key of a
Cassandra table:

260 P. Suárez-Otero et al.

Insert Book

Book_Id K
Book_�tle

Books_by_author
Author_Id
Book_Id

1
Inconsistency produced because
book was not inserted in Books2

Books
K
C

Figure 1 Logical integrity broken.

We have identified two types of modifications that may produce an
inconsistency:

• Modifications of the logical model: when there is a modification
regarding the tables, such as the creation of a new table or the
addition of columns to an existing table. Data integrity can be
broken as the new columns could store data that may already be
stored in other tables of the database. These data must be inserted
in the new columns in order to maintain the logical integrity of the
data.

• Modification of data: we define a modification of data as the change
of the values (insertion, update or deletion) stored in a row of the
logical model or the change of the values assigned to attributes
in a tuple from the conceptual model. After a modification of
data in a table, an inconsistency is produced if the modified data
has functional dependencies with other data stored in other tables
and they are not updated. This type of modification is shown in
Figure 1.

As the number of tables with repeated data in a database increases, so
too does the difficulty of maintaining the data integrity. In this work we
introduce an approach for the maintenance of the data integrity when
there are modifications of data. This article is an extension of earlier
work [14] incorporating more detail of the top-down use case, a new
casuistic for this case where it is necessary to extract values from the
database and a detailed description of the experimentation carried out.
The contributions of this paper are the following:

1. A method that automatically identifies the tables that need main-
tenance of the data integrity.

2. A method to automatically generate a set of Cassandra Query
Language (CQL) statements [15] to ensure the data integrity in
the identified tables.

Leveraging Conceptual Data Models to Ensure the Integrity 261

3. An evaluation in a case study of the proposed method inserting
tuples in the conceptual model.

This paper is organized as follows. In Section 2, we review the current
state of the art. In Section 3, we describe our method to ensure the
logical integrity of the data and detail two examples where this method
is applied. In Section 4, we evaluate our method inserting tuples and
analyse the results of these insertions. The article finishes in Section 5
with the conclusions and the proposed future work.

2 Related Work

Most works that study the integrity of the data are focused on the
physical integrity of the data [19]. This integrity is related to the
consistency of a row replicated throughout all of the replicas in a
Cassandra cluster. However, in this work we will study the maintenance
of the logical integrity of the data, which is related to the integrity of
the data repeated among several tables.

Logical data integrity in cloud systems has been studied regarding
its importance in security [16, 17]. In these studies, research is carried
out into how malicious attacks can affect the data integrity. As in our
work, the main objective is to ensure the logical integrity, although we
approach it from modifications of data implemented in the application
that works with the database rather than from external attacks.

The problem of the maintenance of the logical data integrity has
been researched by the official team of Cassandra, partially solving it by
developing the feature “Materialized views” [20]. These “Materialized
views” are table-like structures where the data integrity is ensured
automatically on the server side. Usually, in Cassandra data modelling,
a table is created to satisfy one specified query. However, with this
feature the data stored in the created tables (named base tables) can
be queried in several ways through Materialized Views, which are
query-only tables (data cannot be inserted in them). Whenever there
is a modification of data in a base table, it is immediately reflected in
the materialized views. Each materialized view is synchronized with
only one base table, not being possible to display information from more
tables, unlike what happens in the materialized views of the relational

262 P. Suárez-Otero et al.

databases. To implement a table as a materialized view it must include
all the primary keys of the base table. Scenarios like queries that retrieve
data from more than one base table cannot be achieved by using Material
Views, requiring the creation of a normal Cassandra table. In this work
we approach a solution for the scenarios that cannot be obtained using
these Materialized Views.

Related to the aforementioned problem is the absence of Join oper-
ations in Cassandra. There has been research [21] about the possibility
of adding the Join operation in Cassandra. This work achieves its
objective of implementing the join by modifying the source code of
Cassandra 2.0. However, it still has room for improvement with regard
to its performance.

The use of a conceptual model for the data modelling of Cassandra
databases has also been researched [22], proposing a new methodology
for Cassandra data modelling. In this methodology the Cassandra
tables are created based also on a conceptual model, in addition to
the queries. This is achieved by the definition of a set of data modelling
principles, mapping rules, and mappings. This research [22] introduces
an interesting concept: using a conceptual model that is directly related
to the Cassandra tables, an idea that we use for our approach.

The conceptual model is the core of the previous research [22].
However, it is unusual to have such a model in NoSQL databases.
To address this problem, there have been studies that propose the
generation of a conceptual model based on the database tables. One
of these works [23] presents an approach for inferring schemas for
document databases, although it is claimed that the research could be
used for other types of NoSQL databases. These schemas are obtained
through a process that, starting from the original database, generates
a set of entities, each one representing the information stored in the
database. The final product is a normalized schema that represents the
different entities and relationships.

In this work we propose an approach for maintaining data integrity
in Cassandra database. This approach differs from the related works
of [22] and [23] in that they are focused on the generation of database
models while in our approach we are focused on the data stored in the
database. Our approach maintains data integrity in all kinds of tables,

Leveraging Conceptual Data Models to Ensure the Integrity 263

contrasting with the limited scenarios where Materialized Views [20]
can be applied. Our approach does not modify the nature of Cassandra
implementing new functionalities as [21], it only provides statements
to execute in Cassandra databases.

3 Ensure Logical Data Integrity

Cassandra databases usually have a denormalized model where the
same information could be stored in more than one table in order
to increase the performance when executing queries, as the data is
extracted from only one table. This denormalized model implies that
the modification of a single datum that is repeated among several tables
must be carried out in each one of these tables to maintain the data
integrity. In order to identify these tables, we use a conceptual model
that has a connection with the logical model (model of the Cassandra
tables). This connection [22] provides us with a mapping where each
column of the logical model is mapped to one attribute of the conceptual
model and one attribute is mapped from none to several columns. We
use this attribute-column mapping for our work to determine in which
tables there are columns mapped to the same attribute.

Our approach has the goal of ensuring the data integrity in the
Cassandra databases by providing the CQL statements needed for it.
We have identified two use cases for our approach: the top-down and
the bottom-up:

• Top-down use case: This use case is applied when the conceptual
model is the reference model to define modifications of data. In
this use case given a modification of data in the conceptual model
(insertion, update or deletion of a tuple), our approach maps the
attributes from the conceptual model to the columns of the logical
model. After that, the insertions, updates and deletions of rows
that must be carried out in order to ensure the data integrity are
determined. Finally, our approach creates the CQL statements to
apply these modifications of data.

• Bottom-up use case: This use case is applied when the logical
model is the reference model to define modifications of data. In
this use case, given a modification of data in the logical model

264 P. Suárez-Otero et al.

(insertion, update or deletion of a row), our approach identifies
through the use of the attribute-column mapping the attributes
mapped to the columns of the row. Then, our approach determines
the modifications of data in the conceptual model (insertion, update
or deletion of tuples) equivalent to the given modification of data
in the logical model. If there is no conceptual model, it should be
obtained using inferring approaches like [23].

Note that the output of the bottom-up is the same as the input of the top-
down. Therefore, we can combine these two use cases to systematically
ensure the data integrity after a modification of data in the logical model.
Note that these last modifications already ensure the logical integrity
so the top-down use case does not trigger the bottom-up use case,
avoiding the production of an infinite loop. The combination between
these processes is illustrated in Figure 2:

Conceptual model (normalized)

Mapping

Logical model (not normalized)

Bo�om-up a�er a
modifica�on in

the logical model

Top-down a�er a
modifica�on in the
conceptual model

Figure 2 Top-down and bottom-up use cases combined.

The scope of this work is to provide a solution for the top-down
use case through a method that is detailed in the following subsection.
Then, in Subsections 3.2 and 3.3 we detail two examples where we
apply this method. As Cassandra excels in its performance when
reading and writing data (insertions) [3], in this work we focus on
the insertions of data.

3.1 Ensure Logical Data Integrity Given an Insertion
of a Tuple

In order to provide a solution for the top-down use case, we have
developed a method that identifies which tables of the database are
affected by the insertion of the tuple in the conceptual model and
also determines the CQL statements needed to ensure the logical data
integrity. The input of this method is a tuple with assigned values

Leveraging Conceptual Data Models to Ensure the Integrity 265

to attributes of entities and relationships. Depending on where it is
inserted, it contains the following values:

• Entity: values assigned to attributes of an entity. The primary key
of the entity must have an assigned value.

• Relationship: values assigned to attributes of both entities and
attributes of the relationship. The primary keys of both entities
must have assigned values.

Our method is composed of the following steps:

1. Identify in the logical model the columns mapped to the attributes
with assigned values in the tuple by means of the attribute-column
mapping.

2. Collect the tables that need insertions of values in the insert-list
(list of tables to insert the tuple). Each table of the logical model is
analyzed and, depending on where the tuple is inserted, the table
is collected if it meets the following criteria:

• Inserted in an entity: the primary key of the table must only
contain columns mapped to attributes of the entity.

• Inserted in a relationship: the table must contain columns
mapped to attributes of at least one of the related entities.
The primary key must be compound of columns mapped to
attributes of these related entities.

3. For each table in the insert-list, generate an INSERT statement
with a placeholder for the value of each column. This placeholder
will be replaced by a value extracted either from the tuple to be
inserted or from the database. First, through the attribute-column
mapping, each column of the table is checked in order to assign
a value from the tuple, whenever it is possible. If no value can
be assigned from the tuple, the column is added to the extract-
list (list of columns whose value to insert must be obtained from
the database). For each column contained in the extract-list, the
following subprocess is undertaken:

3.1 Define the lookup-query to extract the value to assign to the
column. The criterion of this query must be a column that
uniquely identifies the value to extract. Depending on the

266 P. Suárez-Otero et al.

attribute that is mapped to the column in the extract-list the
criterion is:

• Mapped to non-key attribute: the criterion must be a
column mapped to the primary key of the entity and the
value assigned to this primary key in the tuple.

• Mapped to key attribute: the criteria must be the
columns mapped to attributes of the entity with assigned
values from the tuple. More than one value can be
extracted by the lookup-query.

3.2 Find in the logical model a table where the lookup-query can
be executed. This table must have as primary key the columns
that compose the criteria of the lookup-query as well as the
column that should store the value to be extracted. We follow
a first-fit algorithm in this search, so the first table that fits
the lookup-query is used to execute it.

3.3 Execute the lookup-query against the database. The place-
holder for this column is replaced by the value obtained in
this execution.

4. When all the INSERT statements are completed (all the columns
have an assigned value), execute them.

The time complexity of our method is O(n) as it only depends on the
number of tables and the statements to execute in each table. Figure 3
depicts graphically this method.

Figure 3 Process of the method to maintain data integrity.

Leveraging Conceptual Data Models to Ensure the Integrity 267

3.2 Example of the Insertion of a Tuple in
the Conceptual Model

In this section we detail an example where we apply our method to the
insertion of a tuple in a conceptual model. The conceptual model of this
example, displayed in Figure 4, is composed of the entities “Author”
and “Book”, with a relationship one to many between them. Primary
key attributes are labelled ‘PK’. The logical model is that displayed in
the introduction of this work in Figure 1. In this example we insert a
tuple in the relationship ‘Writes’ containing the values assigned to the
attributes “Id” and “Title” of a Book and the “Id” of the Author who
wrote it.

Author
Id
Name

Book
Id
Title

PK PKWrites1 n

Figure 4 Conceptual Model used for the examples.

First (step 1), we map the attributes with assigned values from the
tuple (attributes Id of Author and Id and Title of Book) to their columns
of the logical model (columns Author Id, Book Id and Book name).
Then (step 2), we collect the tables “Books by Author” and “Books”
as they contain these mapped columns. For each collected table (step 3),
one INSERT statement is generated with a placeholder ($) per column.
Then, the tuple is checked, through the attribute-column mapping, in
order to replace the placeholders with values from the tuple. In this
example, all the placeholders are replaced with values from the tuple
so these CQL statements are finally executed (step 4). This process is
illustrated in Figure 5.

3.3 Example of the Insertion of a Tuple Requiring
Lookup Queries

In this example we detail an insertion of a tuple where lookup-queries
are required in order to ensure the data integrity. The conceptual model
and the tuple to be inserted are the same as in the previous example. The
logical model has two more tables: one created to search for authors
by their id (“Author”) and another created to search for the books that

268 P. Suárez-Otero et al.

Conceptual
Model

Logical
model

(Cassandra)

Author
Id
Name

Book
Id
Title

Books
Book_Id
Book_Title

Books_by_Author
Author_Id
Book_Id

Mapping
A�ribute/

Column

PK PK

A�ribute Column
Book.Id
Book.Title

Book_Id
Book_Title

Author.Id
Author.name

A�ribute Column
Author_Id
Author_name

1

2

EXECUTE DATABASE STAMENTS

4

3 3

Writes1 n

1

2

INSERT INTO Books_by_Author (Author_Id, Book_Id) VALUES (AU001, BOK01);
INSERT INTO Books (Book_Id, Book_Title) VALUES (BOK01, TI001);

INSERT TUPLE

Tuple to insert:
Author.Id=’AU001',
Book.Id=’BOK001',
Book.Title=’TI001'

INSERT INTO Books_by_Author
(Author_Id, Book_Id) VALUES ($, $);
INSERT INTO Books (Book_Id,
Book_Title) VALUES ($, $);

A�er placeholders are replaced

REPLACE
PLAHOLDERS

K
C

K

Figure 5 Process of ensuring the logical integrity of data given an insertion of a
relationship Writes between a book and an author.

Books

Book_Id
Book_Title

K

Books_by_Author

Author_Id
Book_Id

K
C

Authors

Author_Id
Author_Name

K

Books_by_Author_Name

Author_Name
Book_Id

K
C

Figure 6 Logical model of example from Section 3.3.

an author has written by their name (“Books by author name”). This
model is illustrated in Figure 6.

Step 1 is the same as in the example from the previous sub-
section but in Step 2 table “Books by Author Name” is collected as
it contains attributes mapped to both entities Author and Book. In
Step 3, the INSERT statements generated for both tables ‘Books’ and
‘Books by Author’ are also the same as in the previous example. In
the case of the new collected table “Books by Author Name”, the

Leveraging Conceptual Data Models to Ensure the Integrity 269

placeholder for column ‘Author Name’ cannot be replaced with a
value from the tuple as there is no value assigned to attribute ‘Name’
of ‘Author’ in it. Therefore, the placeholder of this column must
be replaced through a lookup-query with a value extracted from the
database.

In the first sub-step (3.1) the lookup-query is defined. As column
‘Author name’ is mapped to the non-key attribute ‘Name’ from entity
‘Author’, the criterion of this query must be a column mapped to the
primary key of this entity which is column ‘Author Id’. Then, a table
to execute this query is searched for (Step 3.2), so it must meet the
following requirements: its primary key must be column ‘Author Id’
and it must also store column ‘Author name’. The table that fulfils these
requirements is “Authors”. In the next sub-step (3.3), the lookup-query
is executed (Q1 in Figure 7) against the database (Step 3.3) to extract
the value that replaces the placeholder in the INSERT statement. These
steps are illustrated in Figure 7.

Books_by_Author_name
Author_name
Book_Id

PK
CK

Books
Book_Id
Book_Title

Books_by_Author
Author_Id
Book_Id

Author
Author_Id
Author_name

PK

PK
CK

PK

3.1

Q1 = SELECT Author_name FROM Lookup-
table where Author_Id = ‘AU001’; 3.2

Lookup-table is
Author

Q1 = SELECT Author_name From Author where Author_Id = ‘AU001’;

INSERT INTO Books_by_Author (Author_Id, Book_Id) VALUES (‘AU001’, ‘BOK001’);
INSERT INTO Books (Book_Id, Book_Title) VALUES (‘BOK001’, ‘TI001’);
INSERT INTO Books_by_Author_name (Author_name, Book_Id) VALUES (Q1.Author_name, ‘BOK001’);

Tuple to insert:
Author.Id=’AU001',
Book.Id=’BOK001',
Book.Title=’TI001'

INSERT INTO Books_by_Author (Author_Id, Book_Id) VALUES (‘AU001’, ‘BOK001’);
INSERT INTO Books (Book_Id, Book_Title) VALUES (‘BOK001’, ‘TI001’);
INSERT INTO Books_by_Author_name (Author_name, Book_Id) VALUES ($, ‘BOK001’);

Lookup in the database
for value to replace
Author_name.value

Find
Lookup-table

3.3

INSERT INTO Books_by_Author (Author_Id, Book_Id) VALUES ($, $);
INSERT INTO Books (Book_Id, Book_Title) VALUES ($, $);
INSERT INTO Books_by_Author_name (Author_name, Book_Id) VALUES ($, $);

A�er placeholders are replaced with values from the tuple

A�er placeholders are replaced with values from the lookup-query

Figure 7 Process of querying information required to maintain the logical integrity.

270 P. Suárez-Otero et al.

4 Evaluation

In this section we detail and explain the results of applying our method
to ensure the data integrity of the data for multiple insertion of tuples
in entities and relationships of a case study [22]. This case study is
about a data library portal with a conceptual model, illustrated in
Figure 8, that contains 4 entities and 5 relationships. Its logical model is
composed of 9 tables and it is illustrated in Figure 9. Counter columns

Figure 8 Conceptual model of the case study.

Venue_name
Venue_year
Ar�fact_id
Ar�fact_�tle
Ar�fact_authors
Ar�fact_keywords

Ar�fact_authors
Venue_year
Ar�fact_id
Ar�fact_�tle
Ar�fact_keywords
Venue_name

Ar�fact_id
User_id
User_name
User_email
User_areas_of_exper�se

Ar�fact_id
User_areas_of_exper�se
User_id
User_name
User_email

User_id
Review_ra�ng
Review_id
Review_body
Ar�fact_id
Review_�tle

Ar�fact_id
Ar�fact_�tle
Ar�fact_authors
Ar�fact_keywords
Venue_name
Venue_year

K
K
C

K
C
C

K
C
C

K
C

K

K
C
C

Ar�fact_id
Num_ra�ngs
Sum_ra�ngs

K
++
++

User_id
Venue_year
Ar�fact_id
Ar�fact_�tle
Ar�fact_authors
Venue_name
Ar�fact_keyword

K
C
C

User_id
Venue_name
Venue_year
Venue_country
Venue_homepage
Venue_topics

K
C
C

Figure 9 Logical model of the case study.

Leveraging Conceptual Data Models to Ensure the Integrity 271

are labelled as ++. In the following subsections we detail how we have
systematically created the tuples to insert, the analysis of the results for
the tuples inserted in entities and relationship and an overall discussion
of the results.

4.1 Selection of Tuples to Insert

In this section we describe the systematic selection of tuples to be
inserted in the entities and relationships of the conceptual model of this
case study. Depending on the number of attributes of an entity with
assigned value in a tuple we have made the following classification:

• Complete (C): every attribute has an assigned value.
• Partial (P1 or P2): the primary key and some of the non-key

attributes have assigned values. The number concatenated to the
letter ‘P’represents the number of non-key attributes with assigned
value. There are only Partial 1 and Partial 2 tuples because every
entity of this case study has 3 non-key attributes.

• Incomplete (I): only the primary key has an assigned value.

We have made an exhaustive combination of tuples to be inserted in
each entity, generating a total of 8 tuples for each: 1 complete tuple, 1
incomplete tuple, 3 partial tuples with 2 attributes with assigned values
and 3 partial tuples with one attribute with an assigned value.

In the case of the relationship we have followed a similar approach,
combining the different combinations of the two related entities. As the
number of possible tuples for an entity is 8, the number of tuples we
have inserted per relationship is 64 (8 multiplied by 8).

4.2 Insertions in Entities

Table 1 displays the results of applying our method to determine the
CQL statements that are needed to insert the values in the database
while maintaining the logical integrity of data over 32 insertions of
tuples in entities.

In the column Entity we display both in which entity the tuple is
inserted and a tag to display the number of attributes with assigned
values: Complete (C), Partial 1 (P1), Partial 2 (P2), Incomplete (I) or

272 P. Suárez-Otero et al.

Table 1 Evaluated Insertions in Entities
Entity Insertions Represented INSERT UPDATE SELECT Total

Venue (ALL) 8 0 0 0 0
User (ALL) 8 0 0 0 0

Review (ALL) 8 0 0 0 0
Artifact (C) 1 1 2 0 3
Artifact (P2) 3 1 2 1 4
Artifact (P1) 3 1 2 2 5
Artifact (I) 1 1 2 3 6

ALL. These tags also indicate the number of insertions that each row
represents:

• C and I: these rows display the information of an insertion of a
tuple (complete or incomplete)

• P1 and P2: these rows display the information of three insertions
of tuples (three Partial 1 or three Partial 2). We have comprised
the results of all insertions of Partial 1 tuples in a single row as
all of them returned the same results. This also happens with the
insertions of Partial 2 tuples.

• ALL: These rows display the information of eight tuple insertions.
These are the cases where the 8 insertions of tuples in an entity
return the same result.

The number of insertions of tuples that the row represent are displayed
in column Insertions represented. The outputs are displayed in the
columns INSERT, UPDATE and SELECT, with the number of state-
ments for each of these operations and in column Total with the sum
of all of these operations.

In these insertions, we observe how only the tuples inserted in
Artifact have CQL statements in their input, as these values can be
inserted in the tables “Artifacts” and “Ratings by Artifacts”. On the
other hand, the tuples that are inserted in the entities Venue, User or
Review have an empty output (0 CQL statements) as they cannot be
inserted in any table. This is because none of the tables of the logical
model has as primary key columns mapped to attributes of these entities
(Step 2 in our method to ensure the data integrity). If a developer wants
to specifically insert data of just these entities the logical model should

Leveraging Conceptual Data Models to Ensure the Integrity 273

be modified by adding tables that contain information on only these
entities. With the current state of the logical model, the data related
to these entities is not queried alone, only when they are related with
data from other entities. Therefore, there are no tables where the data
pertaining to only one of these entities can be inserted.

We also observe an inverse relation between the number of attributes
with assigned value and the lookup-queries created (SELECT state-
ments). The more attributes with assigned values the tuple has, the less
lookup-queries are needed. This is because in Step 3 of our method, the
more attributes with assigned value the tuple has, the more placeholders
can be replaced with these values. For example, for tuples inserted
in Artifact, when the tuple is complete there is no need for lookup-
queries (0 SELECT statements) but for incomplete tuples 3 lookup-
queries were needed (3 SELECT statements). This is illustrated in
Figure 10.

Tuple to insert :
Ar�fact.Id=’AR01',

Ar�fact.Title=’TI01';
Ar�fact_authors=’AU01',

Ar�fact_keywords=’KE01' ,

Ar�fact_id
Ar�fact_�tle
Ar�fact_authors
Ar�fact_keywords
Venue_name
Venue_year

K

Ar�fact_id
Num_ra�ngs
Sum_ra�ngs

K
++
++

CONCEPTUAL
MODEL

Tuple to insert :
Ar�fact.Id=’AR01'

Other tables...

INSERT INTO Ar�fact (Ar�fact_id,
Ar�fact_�tle, Ar�fact_authors,
Ar�fact_keywords) VALUES ($, $, $, $);
UPDATE ar�facts_by_id SET aggr_ra�ng =
aggr_ra�ng + 0 WHERE ar�fact_id = $;
UPDATE ar�facts_by_id SET num_reviews =
num_reviews + 0 WHERE ar�fact_id = $;

1

2
Collect
tables

INSERT INTO Ar�fact (Ar�fact_id, Ar�fact_�tle,
Ar�fact_authors, Ar�fact_keywords) VALUES ($,
$, $, $);
UPDATE ar�facts_by_id SET aggr_ra�ng =
aggr_ra�ng + 0 WHERE ar�fact_id = $;
UPDATE ar�facts_by_id SET num_reviews =
num_reviews + 0 WHERE ar�fact_id = $;

Replace
placeholders

A�er placeholders are replaced

INSERT INTO Ar�fact (Ar�fact_id, Ar�fact_�tle,
Ar�fact_authors, Ar�fact_keywords) VALUES
(‘AR01’, ’TI01', ’AU01', ’KE01');
UPDATE ar�facts_by_id SET aggr_ra�ng =
aggr_ra�ng + 0 WHERE ar�fact_id = ‘AR01’;
UPDATE ar�facts_by_id SET num_reviews =
num_reviews + 0 WHERE ar�fact_id = ‘AR01’;

1

2

3

INSERT INTO Ar�fact (Ar�fact_id, Ar�fact_�tle,
Ar�fact_authors, Ar�fact_keywords) VALUES
(AR01’, $, $, $);
UPDATE ar�facts_by_id SET aggr_ra�ng =
aggr_ra�ng + 0 WHERE ar�fact_id = AR01’;
UPDATE ar�facts_by_id SET num_reviews =
num_reviews + 0 WHERE ar�fact_id = AR01’;

Replace
placeholders

A�er placeholders are replaced

All the queries are completed to be executed
Placeholders for Ar�fact_�tle, Ar�fact_authors and

Ar�fact_keywords must be replaced using lookup-queries

3

Collected tables:
Ar�facts and

Ra�ngs_by_ar�fact

Collected tables:
Ar�facts and

Ra�ngs_by_ar�fact

Figure 10 Comparison between complete tuple and incomplete tuple of Artifact.

274 P. Suárez-Otero et al.

4.3 Insertions in Relationships

Table 2 displays the results of applying our method to determine
the CQL statements needed to maintain the data integrity over 320
insertions of tuples in relationships.

The inputs for the relationships are displayed in the following
columns:

• Relationship: relationship where the tuple is inserted.
• Entity I and Entity II: entities related with a tag to display the

number of attributes with assigned values for that entity in the
tuple (C, P2, P1, I and ALL). Rows with tags P1 or P2 display
the output of any combination that compounds a partial tuple
of their type, similarly as in the insertions in entity where they
return the same results regardless of which attributes have assigned
values. In the rows where the tag is ALL it means that it displays
the output for all the combinations of tuples inserted, as it is the
same output regardless of the number of attributes with an assigned
value (C, P1, P2, I).

• Relationship Master: if any related entities are a detail of other
entities whose attributes were not initially in the tuple (many to
one relationship), we include these relationships in the tuple by
assigning values to the primary keys of the master entities. These
relationships are displayed in this column.

The outputs are displayed in the columns INSERT, UPDATE and
SELECT with the number of statements for each of them and in the
column Total with the sum of all of them.

The rows represent the different number of insertions depending
on the tags in columns Entity I and Entity II. As in these insertions
there are attributes of two entities, the number of insertions that a row
represents is the multiplication of the different possible combinations
from the two entities. For example, if the tag in Entity I is ‘P1’ (there
are 3 ‘Partial 1’ combinations) and the tag for Entity II is ‘ALL’ (all 8
combinations for an entity) then the row represents 24 rows. These
numbers are displayed in column Insertions represented.

These results show again the inverse relation between the number
of attributes with assigned value and the creation of lookup-queries.

Leveraging Conceptual Data Models to Ensure the Integrity 275
Ta

bl
e

2
In

se
rt

io
n

of
tu

pl
es

in
re

la
tio

ns
hi

ps
R

el
at

io
ns

hi
p

E
nt

ity
I

E
nt

ity
II

R
el

at
io

ns
hi

p
M

as
te

rs
In

se
rt

io
ns

re
pr

es
en

te
d

IN
SE

R
T

U
PD

A
T

E
SE

L
E

C
T

To
ta

l
Fe

at
ur

es
V

en
ue

(A
L

L
)

A
rt

if
ac

t(
C

)
–

8
3

2
0

5
Fe

at
ur

es
V

en
ue

(A
L

L
)

A
rt

if
ac

t(
P2

)
–

24
3

2
3

8
Fe

at
ur

es
V

en
ue

(A
L

L
)

A
rt

if
ac

t(
P1

)
–

24
3

2
6

11
Fe

at
ur

es
V

en
ue

(A
L

L
)

A
rt

if
ac

t(
I)

–
8

3
2

9
14

Po
st

s
R

ev
ie

w
(C

)
U

se
r

(A
L

L
)

R
at

es
8

1
2

0
3

Po
st

s
R

ev
ie

w
(P

2)
U

se
r

(A
L

L
)

R
at

es
24

1
2

1
4

Po
st

s
R

ev
ie

w
(P

1)
U

se
r

(A
L

L
)

R
at

es
24

1
2

2
5

Po
st

s
R

ev
ie

w
(I

)
U

se
r

(A
L

L
)

R
at

es
8

1
2

3
6

R
at

es
R

ev
ie

w
(C

)
A

rt
if

ac
t(

C
)

Po
st

s
&

Fe
at

ur
es

1
4

2
0

6
R

at
es

R
ev

ie
w

(C
)

A
rt

if
ac

t(
P2

)
Po

st
s

&
Fe

at
ur

es
3

4
2

3
9

R
at

es
R

ev
ie

w
(C

)
A

rt
if

ac
t(

P1
)

Po
st

s
&

Fe
at

ur
es

3
4

2
6

12
R

at
es

R
ev

ie
w

(C
)

A
rt

if
ac

t(
I)

Po
st

s
&

Fe
at

ur
es

1
4

2
9

15
R

at
es

R
ev

ie
w

(P
2)

A
rt

if
ac

t(
C

)
Po

st
s

&
Fe

at
ur

es
3

4
2

1
7

R
at

es
R

ev
ie

w
(P

2)
A

rt
if

ac
t(

P2
)

Po
st

s
&

Fe
at

ur
es

9
4

2
4

10
R

at
es

R
ev

ie
w

(P
2)

A
rt

if
ac

t(
P1

)
Po

st
s

&
Fe

at
ur

es
9

4
2

7
13

R
at

es
R

ev
ie

w
(P

2)
A

rt
if

ac
t(

I)
Po

st
s

&
Fe

at
ur

es
3

4
2

10
16

R
at

es
R

ev
ie

w
(P

1)
A

rt
if

ac
t(

C
)

Po
st

s
&

Fe
at

ur
es

3
4

2
2

8
R

at
es

R
ev

ie
w

(P
1)

A
rt

if
ac

t(
P2

)
Po

st
s

&
Fe

at
ur

es
9

4
2

5
11

R
at

es
R

ev
ie

w
(P

1)
A

rt
if

ac
t(

P1
)

Po
st

s
&

Fe
at

ur
es

9
4

2
8

14
R

at
es

R
ev

ie
w

(P
1)

A
rt

if
ac

t(
I)

Po
st

s
&

Fe
at

ur
es

3
4

2
11

17
R

at
es

R
ev

ie
w

(I
)

A
rt

if
ac

t(
C

)
Po

st
s

&
Fe

at
ur

es
1

4
2

3
9

R
at

es
R

ev
ie

w
(I

)
A

rt
if

ac
t(

P2
)

Po
st

s
&

Fe
at

ur
es

3
4

2
6

12
R

at
es

R
ev

ie
w

(I
)

A
rt

if
ac

t(
P1

)
Po

st
s

&
Fe

at
ur

es
3

4
2

9
15

R
at

es
R

ev
ie

w
(I

)
A

rt
if

ac
t(

I)
Po

st
s

&
Fe

at
ur

es
1

4
2

12
18

(C
on

ti
nu

ed
)

276 P. Suárez-Otero et al.

Ta
bl

e
2

C
on

tin
ue

d
R

el
at

io
ns

hi
p

E
nt

ity
I

E
nt

ity
II

R
el

at
io

ns
hi

p
M

as
te

rs
In

se
rt

io
ns

re
pr

es
en

te
d

IN
SE

R
T

U
PD

A
T

E
SE

L
E

C
T

To
ta

l
L

ik
es

A
A

rt
if

ac
t(

C
)

U
se

r
(C

)
Fe

at
ur

es
1

6
2

0
8

L
ik

es
V

U
se

r
(A

L
L

)
V

en
ue

(C
)

–
8

1
0

0
1

L
ik

es
V

U
se

r
(A

L
L

V
en

ue
(P

2)
–

24
1

0
1

2
L

ik
es

V
U

se
r

(A
L

L
)

V
en

ue
(P

1)
–

24
1

0
2

3
L

ik
es

V
U

se
r

(A
L

L
)

V
en

ue
(I

)
–

8
1

0
3

4
L

ik
es

A
A

rt
if

ac
t(

C
)

U
se

r
(P

2)
Fe

at
ur

es
3

6
2

2
10

L
ik

es
A

A
rt

if
ac

t(
C

)
U

se
r

(P
1)

Fe
at

ur
es

3
6

2
4

12
L

ik
es

A
A

rt
if

ac
t(

C
)

U
se

r
(I

)
Fe

at
ur

es
1

6
2

6
14

L
ik

es
A

A
rt

if
ac

t(
P2

)
U

se
r

(C
)

Fe
at

ur
es

3
6

2
8

16
L

ik
es

A
A

rt
if

ac
t(

P2
)

U
se

r
(P

2)
Fe

at
ur

es
9

6
2

10
18

L
ik

es
A

A
rt

if
ac

t(
P2

)
U

se
r

(P
1)

Fe
at

ur
es

9
6

2
12

20
L

ik
es

A
A

rt
if

ac
t(

P2
)

U
se

r
(I

)
Fe

at
ur

es
3

6
2

14
22

L
ik

es
A

A
rt

if
ac

t(
P1

)
U

se
r

(C
)

Fe
at

ur
es

3
6

2
16

24
L

ik
es

A
A

rt
if

ac
t(

P1
)

U
se

r
(P

2)
Fe

at
ur

es
9

6
2

10
18

L
ik

es
A

A
rt

if
ac

t(
P1

)
U

se
r

(P
1)

Fe
at

ur
es

9
6

2
12

20
L

ik
es

A
A

rt
if

ac
t(

P1
)

U
se

r
(I

)
Fe

at
ur

es
3

6
2

14
22

L
ik

es
A

A
rt

if
ac

t(
I)

U
se

r
(C

)
Fe

at
ur

es
1

6
2

16
24

L
ik

es
A

A
rt

if
ac

t(
I)

U
se

r
(P

2)
Fe

at
ur

es
3

6
2

18
26

L
ik

es
A

A
rt

if
ac

t(
I)

U
se

r
(P

1)
Fe

at
ur

es
3

6
2

20
28

L
ik

es
A

A
rt

if
ac

t(
I)

U
se

r
(I

)
Fe

at
ur

es
1

6
2

22
30

Leveraging Conceptual Data Models to Ensure the Integrity 277

User_id
Review_ra�ng
Review_id
Review_body
Ar�fact_id
Review_�tle

K
C
C

Ar�fact_id
Num_ra�ngs
Sum_ra�ngs

K
++
++

CONCEPTUAL
MODEL

Other tables...

Tuple : Review.Id=’RE01',
Review.ra�ng=’RA01',
Review_�tle=’TI01',

Review_body=’BO01' ;

Tuple to insert : Review.Id=’RE01',
Review.ra�ng=’RA01',
Review_�tle=’TI01',

Review_body=’BO01',
User_Id=’US01', Ar�fact_Id=’AR01';

Insert in
Review

1

2
Collect tables

3No table has as primary
columns mapped to
a�ributes of Review:

NO TABLE
COLLECTED

1

2

Reviews_by_user has columns mapped to
a�ributes of both User and Ar�fact.

Ra�ngs_by_ar�fact has columns mapped
to a�ributes of both ar�fact and review

REVIEWS_BY_USER &
RATINGS_BY_ARTIFACT ARE

COLLECTED

Collect tables

Insert in
Posts

3

Figure 11 Difference of tables collected depending on attributes with assigned value
in the tuple.

In all insertions of tuples that do not have the information of both
entities complete (all attributes with assigned values), lookup-queries
are needed. This shows how it is common to look up values in the
database in order to ensure the data integrity.

In the previous section, it was shown how it was not possible to
insert values of attributes of different entities in the database, such as
those of the entity Review. However, in this section we have observed
how these values are inserted in the database when they are contained
in the tuple along with the values to establish the relationships Post
& Rates. This is observed in tuples inserted in the relationship Posts
(Rows 5 to 8 of Table 2) where there is 1 INSERT statement and
2 UPDATE statements in each one of them. We compare these insertions
in the entity Review and in the relationship Post in Figure 11. In this
illustration both tuples contain the complete information of a Review
and the tuple inserted in Posts also contains values assigned to the
primary keys of User and Artifact in order to establish the relationships
Post and Features (Review is detail of Artifact). For the tuple inserted
in Review (Step 1 on the left), no table is collected (Step 2 on the
left) because no table has as primary key columns mapped to attributes
from only Review. However, in this same step 2 for the tuple inserted in
Post (on the right side), two tables are collected: Reviews by User and
Ratings by artifact. Although Reviews by User contains two columns

278 P. Suárez-Otero et al.

mapped to attributes from the entity Review, it also contains another
mapped to an attribute of User, explaining why it was not collected for
the tuple inserted in Review.

4.4 Overall Discussion of the Results

We have seen in both types of insertions that usually several statements
are needed to insert the tuple while ensuring the data integrity due to
the denormalized model. A summary of these insertions is displayed
in Table 3: the number of tuples inserted, and Total, Average and
Maximum number of operations INSERT, UPDATE and SELECT
operations needed to ensure the data integrity.

The results displayed in Table 3 show that, in general, a denormal-
ized logical model requires several database statements to ensure the
logical integrity of the data in order to insert the values of a tuple in
the Cassandra tables. For 352 insertions in the conceptual model, we
needed 968 INSERT statements, 528 UPDATE statements and 1623
SELECT statements to ensure the logical integrity in the Cassandra
database.As previously explained, there is an empty output (no database
statements) in the particular cases of the insertions of tuples that only
contain values assigned to attributes of entities Venue, Review or User.
This is because no table has as primary key, a column mapped to only
attributes of these entities. The information of a Venue, Review or a
User must be inserted alongside the information of relationships such
as LikesV, Posts or LikesA, respectively.

In 75% of the insertions carried out, data needed to be inserted in
more than one table. This shows how a denormalized model such as the
logical model contrasts with a normalized model like the conceptual
model. An insertion of a single tuple in the conceptual model can mean
several insertions in different tables of the logical model. The SELECT
statements (lookup-queries) are also quite common in order to ensure
the data integrity, there being at least one in 93.45% of the insertions.

We have also detected an inverse relation between the number of
SELECT statements and the number of attributes with an assigned value
in the tuple. The tuples inserted in entities can contain up to 3 non-key
attributes with assigned values while those inserted in relationships

Leveraging Conceptual Data Models to Ensure the Integrity 279

Ta
bl

e
3

Su
m

m
ar

y
of

th
e

re
su

lts
fo

r
en

su
ri

ng
th

e
da

ta
in

te
gr

ity
fo

r
th

e
in

se
rt

ed
tu

pl
es

O
pe

ra
tio

n
IN

SE
R

T
O

pe
ra

tio
n

U
PD

A
T

E
O

pe
ra

tio
n

SE
L

E
C

T
E

nt
ity

/
N

um
be

r
of

R
el

at
io

ns
hi

ps
In

se
rt

ed
T

up
le

s
To

ta
l

A
ve

ra
ge

M
ax

im
um

To
ta

l
A

ve
ra

ge
M

ax
im

um
To

ta
l

A
ve

ra
ge

M
ax

im
um

A
rt

if
ac

t
8

8
1

1
16

2
2

24
4.

5
9

R
ev

ie
w

8
0

0
0

0
0

0
0

0
0

U
se

r
8

0
0

0
0

0
0

0
0

0
V

en
ue

8
0

0
0

0
0

0
0

0
0

Fe
at

ur
es

64
19

2
3

3
12

8
2

2
28

5
4.

45
9

L
ik

es
A

64
38

4
6

6
12

8
2

2
72

8
11

.3
7

22
L

ik
es

V
64

64
1

1
0

0
0

96
1.

5
3

Po
st

s
64

64
1

1
12

8
2

2
96

1.
5

3
R

at
es

64
25

6
4

4
12

8
2

2
38

4
6

12
To

ta
l

35
2

96
8

2.
75

6
52

8
1.

5
2

16
23

4.
61

22

280 P. Suárez-Otero et al.

Figure 12 Inverse relationship between SELECT operations and the number of
attributes with assigned value.

contain up to 6 non-key attributes with assigned values (the combination
of the 3 attributes of each entity of the relationship). This inverse
relationship is shown in Figure 12 where each bar represents the average
of SELECT operations needed for the number of attributes with an
assigned value in the tuple. We observe how the average of SELECT
operations decreases as the number of attributes with assigned value
increases.

4.5 Threats to Validity

The main threats to validity to this work are related to the optimization of
our algorithm and the confirmation that the CQL statements determined
by it ensure data integrity. For the first threat, currently our method
always obtains a single value when executing a query in step 3.2. This
process can be quite inefficient as multiple queries with the same criteria
can be executed against the same table. To optimize this process, we
want in the future to modify this process in step 3.2. The method will be
designed to minimize the number of queries by maximizing the number
of columns in each query.

Regarding the second threat, we have inspected very carefully
the statements that our method generates in order to ensure that they
maintain the data integrity in Cassandra. However, in an ongoing work
we are developing an oracle that is able to automatically determine

Leveraging Conceptual Data Models to Ensure the Integrity 281

that the database statements generated by our method to insert a certain
tuple maintain the data integrity.

5 Conclusions

Nowadays, the use of NoSQL databases for web systems like cloud
environments is increasing due to the performance advantages they
provide processing big data. Despite the improved performance, there
are further problems such as how to ensure the data integrity in these
databases. In this work we have proposed a method that given an
insertion in conceptual model it detects the tables that are affected by
this insertion and the CQLstatements needed to ensure the data integrity
of the database. Without a method like this, developers need to manually
determine these statements very carefully in order to not implement
statements that incur in the production of inconsistencies of the data.
We have also evaluated our method in a case study where we inserted
several tuples in both entities and relationships, successfully ensuring
the data integrity. We have observed that in most cases it was necessary
to insert data in more than one table due to the denormalization of the
data in several tables. This denormalization means that an insertion
of a tuple in a normalized model implies several insertions in the
denormalized model.Another observation was that it is very common to
need to query data from the database through the execution of queries
in these insertions of tuples. Both the insertions and the querying of
data show how complex it can be to ensure the data integrity as several
statements are required in order for it to be achieved. This complexity
also increases when more tables with the same repeated information
are in the logical model.

We conclude that our method helps developers to ensure data
integrity in client applications as web services that may work with
databases composed of dozens or even hundreds of tables. Using the
proposed method, data integrity is always ensured regardless of the
number of tables that need maintenance. This saves time and money as
the developer does not need to manually determine these statements.
This method is also able to ensure data integrity in a Cassandra database
regardless of what tables compose the database. This is an improvement

282 P. Suárez-Otero et al.

from other approaches like the Materialized Views which need specific
restrictions to be met in order to use them. However, we consider that
it is also possible to combine our method with the Materialized Views
by creating tables as Materialized Views whenever it is possible and
using our method for the remaining tables.

As future work we want to delve deeper into the bottom-up use case
by proposing a method for integrating it with the method proposed in
this work for the top-down use case in order to provide a full solution
when there is a modification of data in the logical model. Regarding the
optimization of our method we want to reduce the number of queries as
we have detailed in the threats to validation.Another future research line
is how to create conceptual models based solely on the logical model so
that the systems that were not created with a conceptual model can also
use our method. Finally, the whole approach may leverage the Model-
Driven engineering paradigm. As the inputs of the top-down approach
are a conceptual model and the queries issued against it, the CQL query
generation could be integrated in an MDE framework as an extension
of its code generation capabilities.

Acknowledgments

This work was supported by the TESTEAMOS project (MINECO-
17-TIN2016-76956-C3-1-R) and the PERTEST project (MINECO-
13-TIN2013-46928-C3-1-R) of the Ministry of Economy and
Competitiveness, Spain. It has also been supported by the project
GRUPIN14-007 of the Principality of Asturias and by the ERDF.

References

[1] Moniruzzaman, A. B. M, Hossain and Syed Akhter (2013).
Nosql database: New era of databases for big data analytics-
classification, characteristics and comparison. arXiv preprint
arXiv:1307.0191.

[2] Leavitt, Neal. (2010). Will NoSQL databases live up to their
promise? Computer, Vol 43, No 2, pp 12–14.

Leveraging Conceptual Data Models to Ensure the Integrity 283

[3] Li, Yishan, and Manoharan, Sathiamoorthy. (2013). A perfor-
mance comparison of SQL and NoSQL databases. In Commu-
nications, computers and signal processing, pp 15–19

[4] Cattell, Rick. (2011). Scalable SQL and NoSQL data stores. Acm
Sigmod Record, Vol 39, No 4, pp 12–27

[5] Tauro, Clarence. JM, Aravindh, Shreeharsha and Shreeharsha, A.
B. (2012). Comparative study of the new generation, agile, scal-
able, high performance NOSQL databases. International Journal
of Computer Applications, Vol 48, No 20, pp. 1–4.

[6] Bhogal, Jagdev and Choksi, Imran (2015). Handling big data using
NoSQL. In IEEE 29th International Conference on Advanced
Information Networking and Applications Workshops (WAINA),
pp. 393–398

[7] Pokorny, Jaroslav (2013). NoSQL databases: a step to database
scalability in web environment. International Journal of Web
Information Systems, Vol 9 No 1, pp 69–82.

[8] MongoDB Inc (2019). Who uses MongoDB https://www.mon
godb.com/ who-uses-mongodb Accesed: 2019-03-13

[9] Datastax (2019). Case Studies, https://www.datastax.com/
resources/casestudies Accessed: 2019-03-13

[10] Apache Software Foundation. (2016). Apache Cassandra,
http://cassandra.apache.org/ Accessed: 2019-03-13

[11] Han, Jing et al (2011). Survey on NoSQL database. In 6th inter-
national conference on Pervasive computing and applications
(ICPCA), 2011 pp. 363–366

[12] Datastax (2015). Basic Rules of Cassandra Data Modeling,
https://www.datastax.com/dev/blog/basic-rules-of-cassandra-
data-modeling Accessed 2019-03-13

[13] Rajanarayanan Thottuvaikkatumana. (2015). Cassandra Design
Patterns, second edition, ed. Packt Publishing Ltd

[14] Suárez-Otero, Pablo, Suárez-Cabal, Marı́a José and Tuya, Javier
(2018). Leveraging Conceptual Data Models for Keeping Cassan-
dra Database Integrity. In WEBIST 2018, pp 398–403

[15] Apache Software Foundation (2016). The Cassandra Query
Language (CQL) http://cassandra.apache. org/doc/latest/cql/
Accessed 2019-03-13

284 P. Suárez-Otero et al.

[16] Ghazizadeh, Puya, Mukkamala, Ravi and Olariu, Stephan (2013).
Data Integrity Evaluation in CloudDatabase-as-a-Service. In IEEE
Ninth World Congress on Services pp 280–285

[17] Aniello, Leonard et al (2017). Blockchain-based Database to
Ensure Data Integrityin Cloud Computing Environments. In
13th European Dependable Computing Conference (EDCC),
pp. 151–154

[18] Olmsted, Aspen and Santhanakrishnan, Gayathri (2016). Cloud
Data Denormalization of Anonymous Transactions. In Cloud
Computing Seventh International Conference on Cloud Comput-
ing, GRIDs, and Virtualization, pp 42–46.

[19] Datastax. (2017). How are consistent read and write operations
handled? : https://docs.datastax.com/en/cassandra/3.0/cassandra/
dml/dmlAboutDataConsistency.html Accessed 2019-03-13

[20] Datastax (2015). New in Cassandra: Materialized Views: https://
www.datastax.com/dev/blog/new-in-cassandra-3-0-materialized-
views Accessed 2019-03-13

[21] Christian Peter. (2015). Supporting the Join Operation in a NoSQL
System. Master’s thesis. Norwegian university of Science and
Technology, Norway

[22] Chebotko, Artem; Kashlev, Andrey and Lu, Shiyong (2015). A
Big Data Modeling Methodology for Apache Cassandra. In IEEE
International Congress on Big Data (BigData’15), pp. 238–245

[23] Sevilla Ruiz, Diego, Morales Feliciano, Severino and Garcı́a
Molina, Jesús (2015). Inferring versioned schemas from NoSQL
databases and its applications. In International Conference on
Conceptual Modeling (ER 2015), pp. 467–480

[24] Datastax (2019). Creating a table: https://docs.datastax.com/en/
dse/5.1/cql/cql/cql using/useCreateTable.html Accessed 2019-
05-20

Leveraging Conceptual Data Models to Ensure the Integrity 285

Biographies

Pablo Suárez-Otero received his B.Sc. degree in Computer Engineer-
ing in 2015 and M.Sc. in Computer Engineering in 2017 from the
University of Oviedo. He is currently a PhD candidate at the University
of Oviedo. He is also anAssistant Professor at the University of Oviedo.
He is a member of the Software Engineering Research Group. His
research interests include software testing, NoSQL databases and data
modelling.

Marı́a José Suárez-Cabal is an assistant professor at the University of
Oviedo, Spain, and is a member of the Software Engineering Research
Group (GIIS, giis.uniovi.es). She obtained her PhD in Computing from
the University of Oviedo in 2006. Her research focusses on software
testing, and more specifically on testing database applications.

286 P. Suárez-Otero et al.

Javier Tuya is Professor in the Computing Department at the Uni-
versity of Oviedo, Spain. His current research interests in the field
of Software Testing include database driven applications, data engi-
neering, testing techniques and automation. He has been the manager
in many research and technology transfer projects and published in
different international conferences and journals. He held the position
of CIO of the University of Oviedo and currently he is Director of the
Indra-Uniovi Chair, member of the ISO working group that works in
the development of the new software testing standard ISO/IEC/IEEE
29119, and convenor of the UNE national body workgroup on software
testing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

