
Privacy-Preserving Reengineering
of Model-View-Controller Application

Architectures Using Linked Data

Juan Manuel Dodero∗, Mercedes Rodriguez-Garcia, Iván Ruiz-Rube
and Manuel Palomo-Duarte

School of Engineering, University of Cadiz, Av. de la Universidad 10, 11519 Puerto
Real, Cádiz, Spain
E-mail: juanma.dodero@uca.es, mercedes.rodriguez@uca.es, ivan.ruiz@uca.es,
manuel.palomo@uca.es
∗Corresponding Author

Received 18 March 2019; Accepted 22 November 2019;
Publication 03 December 2019

Abstract

When a legacy system’s software architecture cannot be redesigned, imple-
menting additional privacy requirements is often complex, unreliable and
costly to maintain. This paper presents a privacy-by-design approach to
reengineer web applications as linked data-enabled and implement access
control and privacy preservation properties. The method is based on the
knowledge of the application architecture, which for the Web of data is
commonly designed on the basis of a model-view-controller pattern. Whereas
wrapping techniques commonly used to link data of web applications dupli-
cate the security source code, the new approach allows for the controlled
disclosure of an application’s data, while preserving non-functional prop-
erties such as privacy preservation. The solution has been implemented
and compared with existing linked data frameworks in terms of reliability,
maintainability and complexity.

Keywords: Privacy by design, Web of data, Software architecture, Model-
View-Controller.

Journal of Web Engineering, Vol. 18_7, 695–728.
doi: 10.13052/jwe1540-9589.1875
© 2019 River Publishers

696 J. M. Dodero et al.

1 Introduction

In the realm of a software system, confidentiality and privacy are non-
functional properties aimed at protecting the system’s information resources.
Such properties are especially relevant in the Web of data, largely concerned
with procuring web applications that can publicly display their data and
information, such that entities from heterogeneous information systems can
be connected [20]. Reengineering an existing application for the Web of data
must consider how to fulfil privacy preservation properties.

The challenge concerns Privacy by Design (PbD) principles, which con-
sider privacy as an essential property to be considered during the design phase
and throughout the entire engineering lifecycle [22]. Engineers have to go
beyond functional requirements and be especially responsive to PbD aspects
when engineering software artefacts that deal with personal data [4]. Since
confidentiality concerns ethical and legal aspects that are beyond the scope
of this paper, in the following we focus on the technical aspects related with
data privacy preservation of software systems.

Adding non-functional properties, such as privacy preservation, to an
already built software system is generally more expensive than taking proper
measures while designing its architecture [49]. How expensive it is to take
security measures on an existing software system depends on a number of
factors, such as: the number, type and scope of security properties; the size
and complexity of the information system architecture; and the affordances
and constraints of the methods and software technologies used to engineer
the reconstruction. Regarding the latter, existing methods to reengineer a
legacy application for the Web of data are based on the thorough analysis
of the documented specifications, design diagrams and software manuals that
describe its architecture [53]. They overlook, however, a first-class element
of software architecture and design, which is the source code.

Source code can be used to gain valuable insights about the design and
architecture of a legacy web application. The hypothesis of this work is that
reengineering for privacy a web application architecture at the level of source
code can provide an advantage in terms of reliability and maintainability
when obtaining an extended version of the application that considers PbD
properties, which might have been overlooked in the original version.

Source code-level interventions to improve an application’s security and
privacy are inspired by and framed in the Security by Design (SbD) and
PbD principles, which have significant expressions in Role-Based Access

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 697

Control (RBAC) and Privacy-Preserving Data Publishing (PPDP), among
other techniques [15].

When it comes to adding PbD protections, it is difficult to imagine a
broad-spectrum solution to tame the size, complexity and architectural diver-
sity of web applications. Nonetheless, the large number of web applications
based on the Model-View-Controller (MVC) pattern architecture and its
derivatives [8] is a Pareto argument in favor of limiting the scope. Therefore,
it is reasonable to focus on MVC-based applications in the Web of data as the
target application architectures that can be hopefully reengineered.

The realm of such applications has to be focused in software technologies
that have been successfully used to publish data and information resources in
the Web of data. In this vein, Linked Data (LD) methods have proven as useful
to prepare web applications with standard vocabularies and schemata in order
to publish and link the application data and resources [23]. Best practices for
publishing linked data define how data can be published and linked by means
of standard technologies such as RDF and JSON-LD. Providing an existing
application with such capabilities encompasses to define a metadata schema,
to compile and link the application data, and to provide an Application Pro-
gramming Interface (API) that enable third parties to browse the application
resources based on public metadata [18]. Numerous semantic methods and
software frameworks have been used to engineer LD-enabled versions of
web applications and information systems [53]. Recently, PbD and privacy
preservation are prevalent concerns in the LD research field [27].

Our contribution is a new PbD approach based on LD technologies, used
to reengineer MVC-based web applications that improve reliability and main-
tainability as relevant quality features in the reengineered application, after
incorporating the confidentiality and data privacy preservation requirements.

To investigate the former hypothesis, we have followed a design-and-
creation information systems research methodology [35]. It involves the
steps of awareness, suggestion, development, evaluation and conclusion [52],
which constitute the structure of the rest of the paper. After PbD issues are
described in Section 2 as part of the awareness step, Section 3 analyzes the
existing LD architectures and frameworks in order to suggest the reengi-
neering for privacy PbD strategy. At the end of the suggestion step, we
propose a first contribution, consisting in an original classification of current
LD reengineering strategies. Section 4 develops, as the main contribution,
a general linked data reengineering framework, named EasyData, which is
applied to provide legacy MVC-based web applications with privacy preser-
vation properties. Section 5 includes the evaluation of EasyData against other

698 J. M. Dodero et al.

comparable frameworks, along with a discussion of the research results and
their limitations. Finally, Section 6 presents some conclusions and future lines
of research.

2 Data Privacy by Design

When data about individuals are involved, special care must be taken to
avoid privacy violations. Data privacy by design [6] implies that sanitiza-
tion approaches, based on removing identifiers, are not enough to preserve
individuals’ privacy, because certain combinations of non-identifying per-
sonal data, known as quasi-identifiers (QI) [9], may be linked with other
information sources to re-identify them [44]. Nowadays, the amount of avail-
able information and data sources along with the increasing computational
power facilitate to conduct such re-identifications. Because re-identification
constitutes a real privacy threat and the protection of individuals’ privacy
is a fundamental right, legal regulations [14, 51] have set out the need for
adequately protecting personally identifiable information (PII) [34], which
is any information about an individual that can be used to distinguish or
trace her identity (e.g., name or birth date) and any other information that
is linked or linkable to her identity (e.g., medical, educational, financial and
employment data).

To secure PII confidentiality, PPDP techniques are used that generate a
transformed version of data that changes the PII it contains, while at the same
time offering data that is valid for statistical analysis [21]. In order to address
the current obligations for PII protection and, thus, offer ex ante privacy
guarantees against identity disclosure, the design of a web application that
publishes individuals’ data (e.g. a healthcare company web application used
by their clients) must consider the diversity of PbD methods and techniques
as a first-class requirement. Data privacy preservation can be implemented
in legacy web applications when transforming their architecture to a LD-
enabled one. This usually involves extending the legacy application with
added middleware components [19], which have to duplicate the implementa-
tion of diverse non-functional properties like security. A lot of LD techniques
and software tools exist to map relational data sources [48], interlinking
datasets [54] and exposing LD APIs as middleware [17]. As for the general
software systems, these approaches have proven costly and not absent of
significant risk [27, 53].

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 699

2.1 A Motivating Example

Despite the policies that legally regulate the use of web data sources [6], and
in spite of the fact that data items must be anonymized before publishing
an application’s data, one cannot impede someone from knowing sensitive
information [40]. This is especially worrisome in the light of linked data
applications.

For instance, let’s suppose DS1 is the dataset of a tax registry web
source, having the attributes address, birthdate, sex, postcode, name
and taxes; and DS2 is the dataset from another web source to consult
energy consumption, containing the attributes birthdate, sex, postcode,
electricityConsumption and gasConsumption. Even removing explicit
identifiers, an individual’s name in DS1 can be linked with another record
in DS2 through the combination of postcode, birthdate and sex attributes.
Each attribute value does not uniquely identify a record owner, but linking
data from both applications forms a QI that might point to a unique or small
number of records. The attacker can thus notice that one house at a certain
address might be unoccupied because its electricity and gas consumption
are almost nil. This can pose a threat about burglary, but it can be also a tool
for tax agencies to investigate occupied rental houses that might have unpaid
taxes from the lessor.

Even anonymizing the combination of datasets by means of general-
ization techniques on the QIs, there is a possibility that QIs are split in
two datasets after linking them for a given analysis. For instance, let the
DS1 schema be (userId, sex, postalAddress, defaultRisk), and let DS2

schema be (userId, occupation, defaultRisk, electricityConsumption,
gasConsumption), as shown in Table 1. Assuming that a data analyst needs
to combine DS1 and DS2 to predict, let’s say, the risk of finance default,
then DS1 and DS2 can be linked and merged by matching the userId field
in a new dataset DS that is then anonymized. Then the sex and occupation
attributes form a new QI, which was not included in each dataset separately,
so a linking attack is still possible on such fields of DS. After integrat-
ing the tables of both datasets, the (Female, Carpenter) individual on
the (sex, occupation) attribute pair becomes unique and vulnerable to link
sensitive information, such as postalAddress and energyConsumption.

Because the ultimate motivation of data releasing is to conduct data-
driven analyses, sanitizing and anonymization should be done in a way that
the protected data still retain as much analytical utility as possible; that is, the
conclusions extracted from the analysis of the anonymized dataset should be

700 J. M. Dodero et al.

Table 1 Linked data items of an example linking the datasets from a tax registry application
and an energy consumption application

∈ DS1 ∩DS2 ∈ DS1\DS2 ∈ DS2\DS1

default postal electricity gas
userId Risk sex Address occupation Consumption Consumption
1–3 0y3n M A1 Sales 18 17
4–7 0y4n M A2 Ceramist 24 8
8–12 2y3n M A3 Plumber 25 10
13–16 3y1n F A4 Webmaster 20 17
17–22 4y2n F A5 Animator 31 11
23–25 3y0n F A6 Animator 34 10
26–28 3y0n M A7 Carver 32 12
29–31 3y0n F A8 Carver 30 14
32–33 2y0n M A9 Carpenter 33 11
34 1y0n F A10 Carpenter 29 15

similar to those of the original dataset. With the goal of balancing privacy and
utility preservation, PPDP methods [15] have been used to sanitize published
datasets by modifying the original QI attributes while preserving certain
statistical features.

2.2 Reengineering for Privacy Preservation

Different privacy models can be considered to define the sanitizing condi-
tions. One of the most widely used anonymization models is k-anonymity
[21]. The idea underlying k-anonymity [45] is to homogenize the QI attributes
to make them indistinguishable in groups of at least k records, thus limiting to
1/k the probability of re-identification. Two distortion methods can be used to
enforce k-anonymity, i.e. generalization and microaggregation. The general-
ization method [45] homogenizes the quasi-identifiers with the most specific
superclass of the k-record group, while the microaggregation method [32]
homogenizes the quasi-identifiers with the average of the k-record group. In
previous works, PPDP methods have been improved to exploit the semantics
of nominal values and replace them by concepts in an ontology [41, 42].

All these are semantic privacy-preserving techniques that, usefully im-
plemented into a linked data application, facilitate the fulfillment of privacy
properties. The issue here is how to engineer privacy properties into an exist-
ing web application, i.e. reengineering for privacy preservation. For instance,
let’s consider for the first example of the previous section the development of
a privacy-preserving version that follows a layered security architecture [50].
The security controls are usually implemented on top of the data model to

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 701

provide linked versions of user identifiers and other PII, potentially QIs, such
as postcode, birthdate and sex. Implementing a new controller operation to
link a user ID with its PII, however, might impose a restriction related with
data privacy. The logic for the k-anonymity privacy preservation model, for
instance, is normally implemented in the controller component. To be fair, it
should be duplicated in the database mapping code as well as in the database
stored procedures. Code duplication in different architectural layers overly
reduces the reusability and maintainability of an application. Implementing
the privacy restrictions only at one layer can pose a design-level impediment,
since third party applications (e.g. a mobile app) do not necessarily access to
the same controller components. Therefore, some browsers might overlook
the data privacy-preserving controls. In general, duplicating the controller
logic to implement changeable security properties is not a good practice.

3 Reengineering MVC-based Applications

The redesign of a web application to include SbD or PbD properties is more
expensive than considering such requirements from scratch, but often it is
unavoidable. Regular web applications’ architecture can be tackled at any of
the three layers of the MVC pattern, namely the data binding model, the web
view and the controller logic. Interventions at the view level, known as web
scraping or harvesting, consist in directly accessing the application HTTP
interface to extract the data that is published as HTML. It usually requires
some type of license agreement with the application owner, but the discussion
on this is out of scope of our research. Therefore, we constrain the discussion
to the controller and data binding layers of the MVC architecture.

Confidentiality requirements, such as access authorization or privacy
preservation, are often implemented as part of the application business logic.
Web applications are not usually designed to implement their business logic
in the data layer (for instance, as stored procedures of the database), but in
intermediate controller components instead. The controller and data binding
components of an existing MVC application have been largely explored
as alternative points where to provide data access [5, 10, 17]. Security re-
quirements can be implemented in the controller layer, as some frameworks
do—e.g. Spring Security1 maps permissions and access authorizations to
each controller function. On the other hand, we can grant RBAC permissions
over an application’s data at the data binding or the database level. Then,

1https://spring.io/projects/spring-security

702 J. M. Dodero et al.

new controller operations that need to access and render model data will
not be protected against unauthorized access. For instance, consider that
mobile apps usually include a separate controller layer implementation in
the overall architecture. Access control code has to be duplicated in the
potentially multiple implementations of controllers, as well as in the data
binding layer or even in the database logic. For layered security requirements,
RBAC grants and permissioned stored procedures should be implemented
also in the database, which might be a source of code duplication. In sum,
SbD and PbD are concerns that involve the overall MVC architecture of the
application.

3.1 Analysis of Linked Data Architectures and Frameworks

The architecture of linked data applications or Linked Data Application
Architecture (LDAA) is a means to structure the components a LD software
system comprises [19]. An extension to the LDAA has been implemented
upon a linked data API layer [17] on top of a data access layer (see Figure 1)
to mediate between consumer applications and the data sources. As described
in [19], the most widespread LDAA is the crawling pattern, which is suitable
for implementing linked data applications over a growing set of resources that
are crawled and discovered. On the top layer, the crawling architecture has a
pipeline of modules, i.e. web access, vocabulary mapping, identity resolution
and quality evaluation. An RDF API or SPARQL endpoint is served by such
modules, which form the data access, integration and storage layer.

Pipelining all the functional modules of the data access and integration
layer eventually leads to the integrated database, which feeds the SPARQL
endpoint or API mediator module. In the bottom, the publication layer usually
implements wrapper modules that, either by web scraping [38] or enriching
[26], add semantics to existing resources and data. Setting up a middleware
module is a common strategy to reengineer existing sources, which can range
from HTML pages to structured data to web APIs [36]. Other approaches
harvest semi-structured HTML content and automatically convert it into
structured linked data instances [29]. Scraping and data wrapping techniques
either convert data to linked data or provide an API to access data [23].

Thanks to an LD framework, reengineering of a legacy application can be
implemented at the data binding model, the web view or the controller layers
of its MVC architecture. Next, we analyze where in the MVC layers each
framework operates.

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 703

Figure 1 Extension to the original LDAA [19] with additional functions for the data,
integration and storage layers [17].

• Apache Stanbol, KIM and SDArch [26] are examples of semantic
enriching procedures that operate at the view level.

• The D2Rq server [5], Triplify [3] and Virtuoso RDF Views [12] are use-
ful approaches to build wrappers at the data binding level. ActiveRDF
can be used to align an application Object-Relational Mapping (ORM)
component with a given RDF schema [37].

• Middleware implementations, such as Virtuoso sponger [13] and Pubby,
work at the controller level. Hydra [28] is a middleware implementation
that also provides clients with JSON-LD descriptions of a new vocab-
ulary, able to express common concepts of Web APIs. Other solutions,

704 J. M. Dodero et al.

such as the Datalift platform [46] rely upon existing tools such as Silk
[24] to provide interlinked RDF datasets.

3.2 LDAA Reengineering Strategy

Reengineering an MVC-based application at the source code level can be an
advantage to provide a reliable and maintainable extension that incorporates
additional properties. Clearly, this approach becomes feasible as long as
the application source code is available. It has also some constraints and
limitations that will be discussed later.

Before articulating the suggestion phase of the research methodology, we
have participated in the development of linked open data systems for a num-
ber of disciplines, such as Information Science (IS) [25] and Software Process
Management (SPM) [43], in which we used the LD tools and frameworks
analyzed above. As a consequence, a number of methodological and practical
considerations for LDAA reengineering have emerged and influenced the
proposed methodology.

4 Proposed Methodology for LDAA Reengineering

We have defined a LDAA reengineering methodology that considers a num-
ber of application features, in order to decide the applicable reengineering
practices. Such features are: (i) the availability of source code, (ii) the
provision of APIs or built-in information exposure services, and (iii) the
concealment level for enclosed data. The effort required by the reengineering
practices range from a seamless API-based integration of LD-enabled appli-
cations, to costly adaptions for those that might not use machine-friendly
data formats and protocols. The reengineering methodology is graphically
summarized in Figure 2.

4.1 Reengineering Methodology

The methodological aspects have to consider the application architecture.
In this vein, the reengineering strategies have been classified as scraping,
wrapping, and extension, as depicted to Figure 3. Such strategies can be
applied either at the data level or the API level. The following classification
is considered as a first contribution of the paper, emerging from a thorough
analysis of existing LD frameworks and the prior experience using them to
build LD-enabled applications.

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 705

Figure 2 Methodology to decide on LDAA reengineering.

• LDAA data scraping [26,38]: This strategy applies if the web application
source code and internal data storage are not available at all, proba-
bly because the application was not initially designed for third-party
reusing. Information retrieval, web scraping and harvesting techniques
are the practicable reengineering alternatives.

• LDAA data wrapping [3, 5, 12, 46]: Sometimes the application’s source
code is not available, but data is available in an open format. Then,
adapters or data wrappers can transform LD requests into queries to the
application data storage. Depending on the kind of storage, queries can
be issued to database systems, structured files or any other data storage
system used by the application.

• LDAA API wrapping [1, 2, 10]: This is a practical choice when the
application already provides an external API for reusing data and
information. Then a proxy, wrapper or middleware component is im-
plemented, so that LD requests are formatted for the API and issued

706 J. M. Dodero et al.

Figure 3 Reengineering strategies for MVC-based web application architectures.

forth and back. The wrapper or middleware can implement some data
transformations and adaptations on top of the original API operations.

• LDAA API extension: If the application does not provide an external API,
but its source code is available, a software add-on can be implemented
to provide the LD API. In this case, data and business models can be
discovered from source code analysis of the MVC implementation. On
one hand, if applied at the model layer, the extension strategy generates
a LD schema from the internal data model implementation. The schema
and data instances can be revealed through an external API. The local
namespace for the schema generated in this way can initially reflect the
application’s internal data model. Yet it can be aligned with standard
LD vocabularies through user-defined configurations before publishing,
as in the LDAA data wrapping case. On the other hand, if applied at
the controller level, the API extension strategy can use the existing
implementation in order to avoid code duplication. Extending the API
does not consist only in wrapping the existing controller implementation
(i.e., the internal API) to make it public as a functionally equivalent
API, because the external API requirements might not coincide with the
internal one’s.

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 707

The LDAA API extension strategy makes it easier to implement extended
features as part of an enriched API. This is an opportunity to include a set
of additional, either functional or non-functional features. For instance, the
internal API of a legacy application can implement some finder methods that
return all objects of a given type. The external API, however, may require
to define additional findBy methods that return only the objects that fulfill a
given filtering condition. The latter is simply a functional extension of the
existing API. On the other hand, different security privileges can be granted
for the find and findBy methods, or for diverse executions of the same method,
depending on the calling user’s role. Even the data output from a method call
can be sanitized after applying a custom PPDP policy. In the following we
will focus on how our LDAA extension strategy is developed to include such
privacy preservation properties.

4.2 Privacy-preserving LDAA Extension

Whereas data scraping and wrapping techniques are commonly used to add
semantics to existing web applications, we propose a new extension approach
that can be used to expose the internal structure and data model of a legacy
app as linked data in a controlled and privacy-preserving way.

EasyData is the name of a new LDAA extension approach to reengineer
legacy MVC-based web applications so as to provide them with additional
non-functional properties. It has been used to implement privacy preservation
requirements as a type of security property. The reengineering cycle consists
of a number of functional steps, which can be mapped to regular LDAA
modules [17] as explained next.

1. Revealing the underlying application data model: A linked data model
equivalent to the application ORM schema is generated and published as
RDF. In addition, upon a web application’s request, RDFa and microdata
annotations are generated and embedded into the response HTML view.
To facilitate external linking with standard vocabularies, metadata map-
pings can be configured. In this stage, the functionalities of the LDAA
web access and vocabulary mapping modules are developed.

2. Linking the application data instances: The linked datasets retrieved
from the application’s internal data storage can be processed and linked.
Internal data items can be directly linked. Afterwards, an external
interlinking module can be used to link external resources [54]. A com-
plementary study on how interlinking tools can help data publishers to
connect their resources to the Web of data can be found elsewhere [39].

708 J. M. Dodero et al.

In combination with a proper interlinking tool, this phase develops the
functionalities of the LDAA identity resolution module.

3. Controlling the target non-functional quality properties for the ap-
plication. Considering the scope of our work, security and privacy
preservation of data and information resources are such quality aspects.
In this phase, the PPDP techniques described above can be seamlessly
applied for each published data item and data type. This phase is part of
the LDAA quality evaluation.

4.3 Implementing the PbD Interventions

Two different prototypes have been implemented to illustrate and test the
EasyData LDAA extension strategy. Each prototype enables the procedure
to be applied with two different development languages and open source
frameworks, which underpin the architecture of a considerable number of
MVC-based web applications. The first is a ruby gem2 used to reengineer
ruby-on-rails web applications following the LDAA extension strategy; the
second is a python add-on3 used to deliver LDAA extensions of applications
built with the Django framework.

Next, we show how the steps of the EasyData reengineering strategy can
be performed using one of the EasyData implementation tools. The Redmine4

open source project management application is used as a frame example to
illustrate how the process can be carried out on a legacy web application.

4.3.1 Revealing the Application Data Model
The first step is to generate and publish an RDF model equivalent to the
application’s data model. A simplified schema of Redmine data is formed by
the Project, Issue, User and TimeEntry classes, as illustrated in the Rails im-
plementation of Figure 4. EasyData can render the RDF model from the web
application source code, as shown in Figure 4. The set_rdf_model_name
configuration option defines the alignment of the application data model
elements with concepts and properties of a standard RDF schema. In this
example, the Redmine Project objects are mapped to DOAP projects, the
Redmine User objects are mapped to FOAF persons, and the Redmine
TimeEntry objects are mapped to OWL-Time durations. Redmine Issue

2https://github.com/dodero/EasyData_Rails
3https://github.com/dodero/EasyData_Django
4http://www.redmine.org/

https://github.com/dodero/EasyData_Rails
https://github.com/dodero/EasyData_Django
http://www.redmine.org/

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 709

Namespace.register(
:doap, "http://usefulinc.com/ns/doap#")

Namespace.register(
:foaf, "http://xmlns.com/foaf/0.1/")

Namespace.register(
:time, "http://www.w3.org/2006/time#")

class Project < ActiveRecord::Base
has_many :issues
set_rdf_model_name "doap:Project"

end
class Issue < ActiveRecord::Base
@status = IssueStatus::OPEN
belongs_to :project
set_rdf_model_name "xmlns:Issue"

end
class TimeEntry < ActiveRecord::Base
@spent = 0
set_rdf_model_name "time:DurationDescription"

end
class ProjectTimeEntry < TimeEntry
set_rdf_property_name "xmlns:MemberFor"

end
class IssueTimeEntry < TimeEntry
set_rdf_property_name "xmlns:AssignedFor"

end
class User < ActiveRecord::Base
has_many :projects,

:through => :projectTimeEntries
has_many :issues,

:through => :issueTimeEntries
set_rdf_model_name "foaf:Person"

end

Figure 4 Specifying an application’s data model with EasyData in the Ruby implementation
of Model components.

objects are not mapped to elements from an external vocabulary, since
programmers could not find a standard vocabulary defining what a tracking
issue is.

4.3.2 Linking Application Data Instances
External linking targets can be added to the application by means of template
tags. Instead of linking to the inner application model entities revealed in the
previous step, the application view can be provided with links to other entities
discovered by an external interlinking tool. For example, an interlinking
process configured to match the Redmine data revealed by EasyData with
a DBPedia dataset can map Redmine’s Project with DBPedia’s Project

710 J. M. Dodero et al.

resource type, Issue with DBPedia’s Issue_tracking_system and User with
DBPedia’s User_(computing). EasyData template tags can be used to include
links to such DBPedia entities to configure this mapping.

4.3.3 Controlling Authorized Access
This is the first part of the controlling phase, which is applied twice: one for
security access control and another for privacy preservation. Access control
grants can be configured for data items, data types and service operations
generated in the previous steps. Figure 5 is an example of how the MVC con-
trollers are configured with the has_permission_on and filter_access_to
options. That permits access to Project and Issue resources as well as the
getIssues and getAssignedIssues operations in a Redmine instance. The
example defines access permissions for specific user roles (e.g. admin and
analyst) and operations (e.g., create, read, update and delete). Note
that this security configuration is a simple extension of the available Rails
configuration and does not need to be repeated elsewhere in external LD
wrappers, thus reducing the dispensable code smells.

4.3.4 Controlling Data Privacy Preservation
This is the second part of the controlling phase, aimed at privacy-preserving
data publishing. The datasets retrieved from the web application database
can be configured to be sanitized before release, thereby offering privacy
guarantees against identity disclosure. The guarantees are achieved in the ex-
ample by setting certain privacy requirements to yield k-anonymous datasets.
Figure 6 shows an example of how the MVC controllers are configured with
new sanitizing rules and queries. The k_anonymity symbol defined in Ruby
specifies the PPDP method that yields k-anonymous the data records from a
query, with generalize and microaggregate the available value options.
The k_arg option specifies the desired value of k, which determines the
privacy degree of the resulting data records. The higher the k, the higher the
privacy degree of the result, but the lower its analytic utility will be. Finally,
the set of QI attributes to be sanitized is defined with the quasi_id option.

The example defines a configuration to sanitize the output data records
from the getAssignedIssues5 controller function, which has also an access

5The getAssignedIssues function actually returns the results of a query that joins a set
of attributes from the Projects, Issues and User tables

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 711

controllers
class ProjectController < ApplicationController

filter_access_to :all
filter_access_to :getIssues,

:require => :read
def getIssues

@issues = Issue.find(:all)
end
def getAssignedIssues

@issues = Issue.find(:all)
end
def getProjects

@projects = Project.find(:all)
end

end
class UserController < ApplicationController

filter_access_to :all
filter_access_to :getAssignedIssues,

:require => :read
def getAssignedIssues

@issues = Issue.findByUser(:current_user)
end
def getIssues

@issues = Issue.findByUser(:all)
end
def getProjects
@projects = Project.findByUser(:all)

end
end

authorization_rules.rb
authorization do

role :admin do
has_permission_on :projects,
:to => [:create, :read, :update, :delete]

has_permission_on :issues,
:to => [:create, :read, :update, :delete]

end
role :analyst do

has_permission_on :projects,
:to => [:read]

has_permission_on :issues,
:to => [:read]

end
end

Figure 5 Integrating security access features with EasyData in the Ruby implementation of
Controller components.

712 J. M. Dodero et al.

controllers
class UserController < ApplicationController

filter_access_to :all
filter_access_to :getAssignedIssues,

:require => :read
sanitize_query :k_anonymity => :generalize

:k_arg => 4,
:quasi_id => [:project_name, :issue_name,

:organization, :start_date]
...

end

k−anonymity_rules.rb
sanitize do

#only k−anonymity algorithms
sanitize_rule :microaggregate do

#implements microaggregation mechanisms
end
sanitize_rule :generalize do

#implements generalization mechanisms
end

end

Figure 6 Integrating privacy preservation features with EasyData in the Ruby implementa-
tion of Controller components.

control filter as specified by the filter_access_to option. The output
dataset will be 4-anonymous via generalization of the QI formed by
project_name, issue_name, organization and start_date.

5 Evaluation

In this section we evaluate the validity of the EasyData PbD reengineering
method to test the hypothesis that it can provide an advantage in terms of re-
liability and maintainability over other LD solutions. Therefore, we compare
EasyData with a baseline of five LD frameworks, which were analyzed in
Section 3.1. A thorough inspection was carried out on the software libraries
implementation, in order to filter out components that do not provide an
equivalent function to our solution’s, or have nothing in common between
compared frameworks. To ensure a comparable scope and to avoid bias in
the filtering criteria, all the library components were carefully analyzed by
experts who had previously built IS [25] and SPM applications [43] using
these LD frameworks.

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 713

In order to understand and analyze the advantages, a benchmark is per-
formed on a number of static analysis metrics of reliability, maintainability
and complexity. Measures have been computed with the SonarQube6 source
code static analysis tool. The compared frameworks have been selected as
long as they implement LDAA software component modules for either data
or API wrapping approaches, they are implemented in a language that can be
statically analyzed, and the source code is openly available.

5.1 Measures

The software metrics chosen for static analysis enable to compare software
reliability and security, maintainability, and size and complexity, among
other features. Except for the size metric, the reliability, maintainability and
complexity metrics delivered by SonarQube are language-independent, so the
tools can be compared despite their implementation language. The following
are the types of metrics provided:

• Size and complexity: measurements of size and complexity of the code.

– LOC: physical Lines of Code; physical LOCs are a simple, source
code-dependent measure of the program size.

– Statements: number of statements in the source code; SonarQube
unifies this metric and make it independent of the parsed language.

– Functions: number of functions in the source code.
– CC: Cyclomatic Complexity (CC), computed based on the number

of control flow paths through the code [33]. SonarQube varies
slightly the standard calculation, depending on the implementation
language.

– CC Density (CCD): density measured as the average CC per state-
ment in the source code; it provides a program size-independent
measurement of complexity, which is demonstrated to be a useful
predictor of software maintenance productivity [16].

• Maintainability and code duplication: amount of code involved in
duplications.

– Code smells: the number of code smells, as symptoms in the source
code that may indicate a deeper problem.

– Technical debt (TD): the effort to fix all maintainability issues,
measured as hours of required work to remediate the issues, or

6https://www.sonarqube.org/

https://www.sonarqube.org/

714 J. M. Dodero et al.

the ratio between the cost to develop the software and the cost to
fix it. This ratio is computed as the remediation cost divided by the
development cost. The development cost is estimated as 0.06 days
(i.e., nearly 30 minutes) per line of code [7].

– Lines: number of duplicated lines in the target language.
– Blocks: number of duplicated blocks of lines in the target language.
– Density: a measurement of the density of code duplication (i.e.,

number of duplicated lines / overall LOC).

• Reliability and security: measurements of reliability and security of the
source code.

– Bugs: the number of bugs, as a measure of software reliability, and
a estimated amount of hours for remediation.

– Vulner: the number of known vulnerabilities found, as a mea-
sure of software security, and a estimated amount of hours for
remediation.

These metrics are not completely independent from each other. For
example, size and complexity metrics are a clear indicator of software main-
tainability [16], while code duplication is a kind of code smell known as
dispensable code, meaning a portion of unnecessary code that, if properly
removed, would make the code cleaner, more efficient or easier to understand.
Code dispensability is related with the technical debt. The reason to disclose
such metrics separately is to check the reliability and maintainability of the
different software solutions due to different causes that might be improved.

The more complex software frameworks are, the more functions they
implement. Consequently, the entire source code of software frameworks
should not be analyzed. The source code analysis should only cover the
software modules of each framework concerned with the wrapping and linked
data conversion functions that are common to the LDAA. Some frameworks
or software tools are small and only perform such functions. Therefore, the
source code of larger frameworks has been inspected in detail to filter out
modules that implement non-comparable functions. The excluded modules
have been those implementing certain functions of the data access, integration
and storage layer (e.g., Sesame SPARQL implementations and Silk interlink-
ing libraries, among others) as well as tool-specific functions that are not
related with the rest of tools (e.g., Stanbol’s semantic enrichment of contents).
The list of modules that have been included in the analysis of each tool can
be examined in the appendix.

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 715

5.2 Results

As shown in Tables 2 and 3, the EasyData implementation considerably
reduces CC and TD values. Since such measurements are dependent on the
program size, it is more accurate to observe the TD ratio and CC density to
compare different solutions. In this vein, the TD ratio and CCD are lower for
EasyData than for other solutions. The reduced TD has an influence in the
maintainability of the solution.

On the other hand, all solutions present a smaller code duplication density
than EasyData (see code duplication metrics in Table 3). Some frameworks,
such as Hydra and Triplify, also present a better reliability and security
remediation cost, measured as remediation hours required to fix bugs and
vulnerabilities. That means a need for improvement of the EasyData im-
plementation. Yet the number of vulnerabilities (see Table 4) is fewer for
EasyData and HydraBundle, mainly because they make a less intensive use
of existing libraries and components that might add security issues.

With respect to the size and complexity (see Table 2), HydraBundle,
EasyData and Triplify have lesser complex implementations than other
frameworks. Tools like D2Rq and Datalift add an extra complexity, because

Table 2 Size and complexity of NAME compared to other LD frameworks
Size & complexity metrics

Size Complexity
Tool LOC #statements #functions CC CCD
D2Rq 14,108 6,473 1,516 3,239 0.50
Stanbol 4,701 1,887 352 724 0.38
HydraBundle 2,354 1,098 187 476 0.43
Triplify 1,352 818 79 398 0.49
Datalift 16,037 7,009 1,349 3,043 0.43
NAME 3,773 2,195 133 478 0.22

Table 3 Maintainability and code duplication of NAME compared to other LD frameworks
Maintainability & code duplication metrics

TD Code duplication
Tool #code smells hours ratio #lines #blocks density
D2Rq 805 84.5 1.25% 555 31 3.93%
Stanbol 0 44.9 1.99% 229 16 4.87%
HydraBundle 107 15.2 1.35% 369 4 15.68%
Triplify 166 18.5 2.85% 0 0 0.00%
Datalift 1,028 112.3 1.46% 2382 53 14.85%
NAME 21 9.1 0.50% 687 79 18.21%

716 J. M. Dodero et al.

Table 4 Reliability and security of NAME compared to other LD frameworks
Reliability & security metrics

Remediation (h)
Tool #bugs #vulner bugs vulner Remediation effort (h)
D2Rq 19 205 17 240 445
Stanbol 28 415 22 260 675
HydraBundle 14 280 0 0 280
Triplify 5 100 1 30 130
Datalift 51 430 96 1,175 1,605
NAME 39 335 0 0 335

they make use of a lot of handful libraries that have to be properly inte-
grated and managed in the source code. This criterion is less relevant for
EasyData, since the source code of the eventually extended LD application
is automatically generated by the framework, so the need to manage code
complexity issues, which have to do with the programmers’ difficulty for
code maintenance, is less relevant.

5.3 Discussion

The EasyData LDAA extension strategy can be exploited to fulfill non-
functional features that might be defined for an existing web application. Its
aim is not to define a new technique for linking heterogeneous linked data
schemata and LD datasets (i.e. interlinking). One reason is that including an
interlinking feature in EasyData might constrain the evolution of generated
RDF models, whilst the interlinking function can be carried out through
readily available tools, as explained elsewhere [54].

As opposed to the black-box wrapping approaches for adding linked data
or converting an application’s output to linked data, the white-box extension
approach of EasyData enables to modify the application components that
are needed. When doing that, diverse non-functional requirements can be
readily implemented. Thus, this white-box strategy is essential to fulfill
security and privacy preservation requirements. Data records that may con-
stitute a publicly relevant dataset are never disclosed from the underlying
application implementation without being in the first place secured and
privacy-preserved, with considerable savings in complexity and reliability.

The EasyData reengineering method combines the LDAA data wrapping
and LDAA API extension in an integrated approach, which exposes the
application data model and generates a new LD API, providing also a hook

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 717

to implement diverse non-functional requirements. In its current implementa-
tion, EasyData can provide a unified security access control layer, similar to
other LD frameworks, additionally to privacy preservation measures, which
are not as common. Thus, external agents can be properly authorized to
browsing and accessing an application’s resources under a set of privacy
restrictions.

Although the privacy preservation rules defined in EasyData are focused
on the k-anonymity model, these can be extended to other privacy models,
such as probabilistic k-anonymity [47] or ε-differential privacy [11], without
changing the core of the application. It would only be necessary to adjust the
current set of sanitization options to a new set of PPDP methods that make
it possible to achieve the requirements of a new privacy model. For instance,
in an attempt to achieve probabilistic k-anonymity, the current sanitization
options should be extended to generalization, microaggregation and rank
swapping [42]. However, to achieve differentially private datasets, the saniti-
zation option should be replaced by noise addition [41]. On the other hand, to
provide protection against attribute disclosure (besides identity disclosure),
and thus, offer a stronger privacy guarantee, EasyData could be adapted to
combine k-anonymity with other privacy models, such as, l-diversity [31] or
t-closeness [30].

5.4 Threats to Validity and Limitations

A major concern of the EasyData white-box approach is that the described
LDAA extension strategy is deeply integrated with the internal data model
and logic of the legacy web application. This tight coupling eliminates the
separation of concerns in a separate linked data layer and implies that changes
to the inner workings of the web application may affect the EasyData plugin
implementation. In practical terms, this can make maintenance more difficult
if the original web application source code is not under the control of the
LDAA extension developer. For instance, in the Redmine example it is not
straightforward to migrate to new Redmine versions without breaking the
EasyData plugin. Black-box approaches, on the other hand, would only
require the web application to provide a stable API, which is not always easy
though. In this vein, the Hydra approach improves the decoupling of linked
data consumer and provider by means of a core vocabulary that can be used
to describe and document generic web APIs. The EasyData approach should
follow a similar approach to be more general.

718 J. M. Dodero et al.

Compared to other solutions as Datalift, EasyData does not provide a
powerful interlinking technique to map heterogeneous metadata from differ-
ent web sources. The links to external vocabularies and resources must be
discovered by means of an external interlinking tool, and then used to modify
the RDF model generated by EasyData. This flexible approach enables to
evolve the interlinking result without parsing the model again, but we must
rely on an interlinking tool to ensure completeness of the RDF model.

6 Conclusion

The EasyData approach presented in this paper makes it flexible to implement
security and privacy properties in a legacy web application using linked data
technologies. The LDAA extension approach can be practiced at diverse
layers of the architectural components of a web application. In this paper,
we have described the application to the controller layer of a regular MVC-
based architecture. The EasyData privacy by design procedure is constrained
to MVC-based web application architectures as well as the availability of
source code. The LD model of a legacy web application can be disclosed
and published with privacy preservation through any controller operation.
The overall process is not based on adding middleware components, wrap-
pers or adaptors, which can reduce the reliability and maintainability while
increasing the complexity of the overall software architecture. A number of
internal configurations can make it also possible to prepare for interlinking
and alignment of the legacy application data model with external RDF
sources. Configuring the application with external models and schemata be-
yond the legacy application data model is highly recommendable to interlink
heterogeneous entities in the Web of data. As a future work, the EasyData
implementation is planned to be augmented to connect the generated LDAA
extensions with existing interlinking tools.

Overall, our results are subject to the scope of MVC-based application
architectures, the use of linked data development frameworks and the im-
plementation of non-functional confidentiality and privacy restrictions. Other
web architectures, development technologies and intended non-functional
properties should be further evaluated, though EasyData is a promising
LDAA extension approach for other realms.

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 719

Appendix

Public Evaluation Data

The SonarQube analysis on all the tools and frameworks of this paper are pub-
licly available in sonarcloud.io7. The analysis was executed with SonarQube
scanner8. To extract the relevant metrics for this paper, the sonarcloud.io Web
API9 was used. A JSON output is obtained by means of simple scripts like
that of Figure 7. Then the JSON output is converted to CSV10 to do the
analysis on a regular spreadsheet.

All the software modules and packages that are included in the analysis
for the more complex linked data frameworks are listed in Figure 8 (Stanbol)

HASH='...'
URL='https://sonarqube.com/api/measures/component?componentKey'
COMP=$1
METRICS='cognitive_complexity,functions,sqale_index,vulnerabilities,

duplicated_lines,bugs,reliability_remediation_effort,
class_complexity,complexity,statements,ncloc,duplicated_blocks,
security_remediation_effort,function_complexity,code_smells'

while read COMPKEY; do
curl −s −u $HASH: $URL=${COMPKEY}\&pageSize=−1\&metricKeys=$METRICS|
jq '.component | { id, key, qualifier, path, measure: .measures[] }'
done < $COMP.txt

Figure 7 Script to query the sonarcloud.io Web API to obtain relevant SonarQube metrics.

apache -stanbol -data
org.apache.stanbol.commons.owl
org.apache.stanbol.commons.security.core
org.apache.stanbol.commons.security.usermanagement
org.apache.stanbol.commons.web.base
org.apache.stanbol.commons.web.base.jersey
org.apache.stanbol.commons.web.home
org.apache.stanbol.commons.web.rdfviewable.writer
org.apache.stanbol.commons.web.resources
org.apache.stanbol.commons.web.viewable
org.apache.stanbol.commons.web.viewable.writer

Figure 8 Stanbol modules included in the source code analysis

7https://sonarcloud.io/organizations/dodero-github/projects
8https://docs.sonarqube.org/display/SCAN/Analyzing+Source+Code
9https://sonarcloud.io/web_api/

10https://konklone.io/json/

720 J. M. Dodero et al.

allegrograph -connector/src/java/org/datalift/allegrograph
core/src/java/org/datalift/core
core/src/java/org/datalift/core/i18n/jersey
core/src/java/org/datalift/core/i18n/web
core/src/java/org/datalift/core/rdf
core/src/java/org/datalift/core/security
core/src/java/org/datalift/core/security/shiro
core/src/java/org/datalift/core/util
core/src/java/org/datalift/core/util/web
data2ontology/src/java/org/datalift/owl
data2ontology/src/java/org/datalift/owl/mapper
database -directmapper/src/java/net/antidot/semantic/rdf/model/tools
database -directmapper/src/java/net/antidot/semantic/rdf/rdb2rdf/

commons
database -directmapper/src/java/net/antidot/semantic/rdf/rdb2rdf/dm/

core
database -directmapper/src/java/net/antidot/semantic/rdf/rdb2rdf/main
database -directmapper/src/java/net/antidot/semantic/xmls/xsd
database -directmapper/src/java/net/antidot/sql/model/core
database -directmapper/src/java/net/antidot/sql/model/db
database -directmapper/src/java/net/antidot/sql/model/tools
database -directmapper/src/java/net/antidot/sql/model/type
database -directmapper/src/java/org/datalift/converter/dbdirectmapper
framework/src/java/org/datalift/fwk
framework/src/java/org/datalift/fwk/rdf
framework/src/java/org/datalift/fwk/rdf/json
framework/src/java/org/datalift/fwk/rdf/rio/rdfxml
framework/src/java/org/datalift/fwk/security
framework/src/java/org/datalift/fwk/util
framework/src/java/org/datalift/fwk/util/io
framework/src/java/org/datalift/fwk/util/web
framework/src/java/org/datalift/fwk/view
framework/tests/src/java/org/datalift/fwk/util
s4ac/src/java/org/datalift/s4ac
s4ac/src/java/org/datalift/s4ac/services
s4ac/src/java/org/datalift/s4ac/utils
stringtouri/src/java/org/datalift/stringtouri

Figure 9 Datalift modules included in the source code analysis

and Figure 9 (Datalift). As for the simpler tools, such as Triplify, HydraBun-
dle and EasyData, all modules were included in the analysis. In the D2Rq
case, all modules were included except src/de/fuberlin/wiwiss/d2rq/server.

Acknowledgements

This work was supported by the Spanish Ministry of Economy, Industry
and Competitiveness under grants with ref. TIN2017-85797-R (VISAIGLE
project) and TIN2016-80250-R (Sec-MCloud project).

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 721

List of Abbreviations
API Application Programming Interface
CC Cyclomatic Complexity
CCD Cyclomatic Complexity Density
IS Information Science
LD Linked Data
LDAA Linked Data Application Architecture
LOC Lines Of Code
LOD Linked Open Data
MVC Model-View-Controller
ORM Object-Relational Mapping
PII Personally Identifiable Information
PbD Privacy by Design
PPDP Privacy-Preserving Data Publishing
QI Quasi-Identifier
RBAC Role-Based Access Control
SbD Security by Design
SPM Software Process Management
TD Technical Debt

References

[1] A. Aksac, O. Ozturk, and E. Dogdu. A novel semantic web browser
for user centric information retrieval: PERSON. Expert Systems with
Applications, 39(15):12001–12013, 2012.

[2] M. Amundsen. APIs to affordances: A new paradigm for services on the
web. In C. Pautasso, E. Wilde, and R. Alarcon, editors, REST: Advanced
Research Topics and Practical Applications, pages 91–106. Springer,
2014.

[3] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumueller.
Triplify: Light-weight linked data publication from relational databases.
In Proc. of the 18th Int. Conf. on World Wide Web, pages 621–630, 2009.

[4] K. Bednar, S. Spiekermann, and M. Langheinrich. Engineering privacy
by design: Are engineers ready to live up to the challenge? The
Information Society, 35(3):122–142, 2019.

[5] C. Bizer and R. Cyganiak. D2R Server – Publishing Relational
Databases on the Semantic Web. In Proc. of the 5th International
Semantic Web Conference, Athens, Georgia, USA, 2006.

722 J. M. Dodero et al.

[6] M. E. Bonfanti. Enhancing cybersecurity by safeguarding information
privacy: The European Union and the implementation of the “data
protection by design” approach. In Proc. of the 13th International
Conference on Availability, Reliability and Security, pages 64:1–64:6,
2018.

[7] F. P. Brooks. The Mythical Man-Month: Essays on Software Engi-
neering, 20th Anniversary Edition. Addison-Wesley Professional, 1995.

[8] R. D. Caytiles and S. Lee. A review of MVC framework based software
development. Int. Journal of Software Engineering and its Applications,
8(10):213–220, 2014.

[9] V. Ciriani, S. de Capitani di Vimercati, S. Foresti, and P. Samarati.
Microdata protection. In T. Yu and S. Jajodia, editors, Secure Data Man-
agement in Decentralized Systems, pages 291–321. Springer-Verlag,
2007.

[10] F. Dotsika. Semantic APIs: Scaling up towards the Semantic Web. Int.
Journal of Information Management, 30(4):335–342, August 2010.

[11] C. Dwork. Differential privacy. In Proc. of the 33rd Int. Conf. on
Automata, Languages and Programming – Volume Part II, pages 1–12,
Berlin, Heidelberg, 2006. Springer-Verlag.

[12] O. Erling. Declaring RDF views of SQL data. In W3C Workshop on
RDF Access to Relational Databases, 2007.

[13] O. Erling and I. Mikhailov. RDF support in the Virtuoso DBMS.
In T. Pellegrini, S. Auer, K. Tochtermann, and S. Schaffert, editors,
Networked Knowledge – Networked Media, volume 221 of Studies in
Computational Intelligence, pages 8–24. Springer, 2009.

[14] EU. Regulation (EU) 2016/679 of the European Parliament and of
the Council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing directive 95/46/EC (General Data Protection
Regulation), 2016.

[15] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data
publishing: A survey of recent developments. ACM Computing Surveys,
42(4):14:1–14:53, 2010.

[16] G. K. Gill and C. F. Kemerer. Cyclomatic complexity density and
software maintenance productivity. IEEE Transactions on Software
Engineering, 17(12):1284–1288, 1991.

[17] P. Groth, A. Loizou, A. J. G. Gray, C. Goble, L. Harland, and S. Pettifer.
API-centric Linked Data integration: The OpenPHACTS Discovery

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 723

Platform case study. Web Semantics: Science, Services and Agents on
the World Wide Web, 29:12–18, 2014.

[18] M. Hausenblas. Exploiting Linked Data to Build Web Applications.
IEEE Internet Computing, 13(4):68–73, 2009.

[19] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global
Data Space. Morgan & Claypool, 2011.

[20] J. Hendler, N. Shadbolt, W. Hall, T. Berners-Lee, and D. Weitzner.
Web Science: an interdisciplinary approach to understanding the Web.
Communications of the ACM, 51(7):60–69, 2008.

[21] A. Hundepool, J. Domingo-Ferrer, L. Franconi, S. Giessing, E. S. Nord-
holt, K. Spicer, and P. de Wolf. Statistical Disclosure Control. Wiley,
2012.

[22] P. Hustinx. Privacy by design: delivering the promises. Identity in the
Information Society, 3(2):253–255, 2010.

[23] B. Hyland, G. Atemezing, and B. Villazón-Terrazas. Best practices for
publishing linked data. Technical Report TR/LDP, W3C, January 2014.

[24] A. Jentzsch, R. Isele, and C. Bizer. Silk – generating RDF links while
publishing or consuming linked data. In Proc. of the ISWC, Posters &
Demonstrations Track, volume 658, pages 53–56, 2010.

[25] B. Jöerg, I. Ruiz-Rube, M.A. Sicilia, J. Dvořák, K. Jeffery, T. Hoellrigl,
H. S. Rasmussen, A. Engfer, T. Vestdam, and E. García-Barriocanal.
Connecting closed world research information systems through the
linked open data web. International Journal of Software Engineering
and Knowledge Engineering, 22(3):345–364, 2012.

[26] S. Joksimovic, J. Jovanovic, D. Gasevic, A. Zouaq, and Z. Jeremic. An
empirical evaluation of ontology-based semantic annotators. In Proc. of
the 7th Int. Conf. on Knowledge Capture, pages 109–112. ACM, 2013.

[27] S. Kirrane, S. Villata, and M. d’Aquin. Privacy, security and policies:
A review of problems and solutions with semantic web technologies.
Semantic Web, 9(2):153–161, 2018.

[28] M. Lanthaler. Creating 3rd Generation Web APIs with Hydra. In Proc.
of the 22nd Int. Conf. on World Wide Web, pages 35–38, 2013.

[29] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer.
DBpedia – A Large-scale, Multilingual Knowledge Base Extracted from
Wikipedia. Semantic Web – Interoperability, Usability, Applicability,
6(2):167–195, 2015.

724 J. M. Dodero et al.

[30] N. Li, T. Li, and S. Venkatasubramanian. t-Closeness: Privacy Beyond
k-Anonymity and l-Diversity. In 23rd Int. Conf. on Data Engineering,
pages 106–115. IEEE, 2007.

[31] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-
niam. L-diversity: Privacy beyond k-anonymity. ACM Transactions
on Knowledge Discovery from Data, 1(1), March 2007.

[32] S. Martínez, D. Sánchez, and A. Valls. A semantic framework to protect
the privacy of electronic health records with non-numerical attributes.
Journal of Biomedical Informatics, 46(2):294–303, 2013.

[33] T. J. McCabe and C. W. Butler. Design complexity measurement and
testing. Communications of the ACM, 32(12):1415–1425, 1989.

[34] E. McCallister, T. Grance, and K. A. Scarfone. Guide to protecting the
confidentiality of Personally Identifiable Information (PII). Technical
Report SP 800-122, NIST, 2010.

[35] B. J. Oates. Researching Information Systems and Computing. Sage,
2005.

[36] E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, and G. Tum-
marello. Sindice.com: a document-oriented lookup index for open
linked data. Int. Journal of Metadata, Semantics and Ontologies,
3(1):37–52, 2008.

[37] E. Oren, B. Heitmann, and S. Decker. ActiveRDF: Embedding semantic
web data into object-oriented languages. Web Semantics: Science,
Services and Agents on the World Wide Web, pages 191–202, 2008.

[38] K. Pol, N. Patil, S. Patankar, and C. Das. A survey on web content min-
ing and extraction of structured and semistructured data. In Emerging
Trends in Engineering and Technology, pages 543–546, 2008.

[39] E. Rajabi, M. A. Sicilia, and S. Sanchez-Alonso. An empirical study
on the evaluation of interlinking tools on the web of data. Journal of
Information Science, 40(5):637–648, 2014.

[40] L. Rocher, J. M. Hendrickx, and Y. de Montjoye. Estimating the success
of re-identifications in incomplete datasets using generative models.
Nature Communications, 10(3069), 2019.

[41] M. Rodriguez-Garcia, M. Batet, and D. Sánchez. A semantic frame-
work for noise addition with nominal data. Knowledge-Based Systems,
122:103–118, 2017.

[42] M. Rodriguez-Garcia, M. Batet, and D. Sánchez. Utility-preserving
privacy protection of nominal data sets via semantic rank swapping.
Information Fusion, 45:282–295, 2019.

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 725

[43] I. Ruiz-Rube, J. M. Dodero, and R. Colomo-Palacios. A framework for
software process deployment and evaluation. Information and Software
Technology, 59(3):205–221, 2015.

[44] P. Samarati. Protecting respondents’ identities in microdata release.
IEEE Transactions on Knowledge and Data Engineering, 13(6):1010–
1027, November 2001.

[45] P. Samarati and L. Sweeney. Protecting privacy when disclosing in-
formation: k-anonymity and its enforcement through generalization and
suppression. Technical Report SRI-CSL-98-04, SRI International, 1998.

[46] F. Scharffe, G. Atemezing, R. Troncy, F. Gandon, S. Villata, B. Bucher,
F. Hamdi, L. Bihanic, G. Képéklian, F. Cotton, J. Euzenat, Z. Fan, P.-Y.
Vandenbussche, and B. Vatant. Enabling linked data publication with
the Datalift platform. In AAAI Workshop on the 26th Conference on
Artificial Intelligence, pages 25–30. AAAI Publications, 2012.

[47] J. Soria-Comas and J. Domingo-Ferrer. Probabilistic k-anonymity
through microaggregation and data swapping. In IEEE International
Conference on Fuzzy Systems, 2012.

[48] D.-E. Spanos, P. Stavrou, and N. Mitrou. Bringing relational databases
into the semantic web: A survey. Semantic Web – Interoperability,
Usability, Applicability, 3(2):169–209, 2010.

[49] R. N. Taylor, N. Medvidović, and E. M. Dashofy. Software Architecture.
Foundations, Theory, and Practice. John Wiley & Sons, 2010.

[50] H. Tillwick and M. S. Olivier. A layered security architecture blueprint.
In Proc. of the 4th Annual Information Security South Africa Confer-
ence, 2004.

[51] US. HIPAA. Health Insurance Portability and Accountability Act, 2002.
[52] V. K Vaishnavi and W. Kuechler. Design Science Research Methods and

Patterns. CRC Press, 2nd edition, 2015.
[53] H. H. Wang, D. Damljanovic, T. Payne, N. Gibbins, and K. Bontcheva.

Transition of Legacy Systems to Semantic Enabled Application: TAO
Method and Tools. Semantic Web – Interoperability, Usability, Applica-
bility, 3(2):157–168, 2012.

[54] S. Wölger, K. Siorpaes, T. Bürger, E. Simperl, S. Thaler, and C. Hofer.
A survey on data interlinking methods. Technical Report 2011-03-31,
Semantic Technology Institute, march 2011.

726 J. M. Dodero et al.

Biographies

Juan Manuel Dodero obtained the BSc and MSc degrees in computer
science from the Polytechnic University of Madrid, and a PhD in computer
science and engineering from the Carlos III University of Madrid. He has
been a Research & Development Engineer in a number of ICT companies.
He is currently a Full Professor with the Department of Informatics and
Engineering of the University of Cádiz, Spain. His current research inter-
ests are related with creative computing, technology-enhanced learning and
computational thinking.

Mercedes Rodriguez-Garcia received a BSc degree in computer science
from the University of Cádiz, Spain, a MSc degree in ICT security from the
Open University of Catalonia, Spain, and a PhD degree in computer science
and mathematics of security from the Rovira i Virgili University, Tarragona,
Spain. She is currently an Assistant Lecturer with the Department of Automa-
tion Engineering, Electronics and Computer Architecture of the University
of Cádiz, Spain. Her research and teaching interests include data privacy,
computer network security, and reverse engineering and secure architectures.

Privacy-Preserving Reengineering of MVC Application Architectures Using LD 727

Iván Ruiz-Rube received his MSc degree in software engineering from
the University of Seville and a PhD degree in computer science from the
University of Cádiz. He has been a Development Engineer with Everis and
Sadiel ICT consulting companies. He is currently an assistant lecturer with
the University of Cádiz, Spain. His fields of research are software process
improvement, linked open data and technology-enhanced learning.

Manuel Palomo-Duarte received the MSc degree in computer science from
the University of Seville, Spain and the PhD degree from the University of
Cádiz, Spain. Since 2005 he works as a lecturer in the University of Cádiz.
He is the author of three book chapters, 20 papers published in indexed jour-
nals and more than 30 contributions to international academic conferences.
His main research interests are learning technologies and collaborative web.
He was a board member in Wikimedia Spain from 2012 to 2016.

	Introduction
	Data Privacy by Design
	A Motivating Example
	Reengineering for Privacy Preservation

	Reengineering MVC-based Applications
	Analysis of Linked Data Architectures and Frameworks
	LDAA Reengineering Strategy

	Proposed Methodology for LDAA Reengineering
	Reengineering Methodology
	Privacy-preserving LDAA Extension
	Implementing the PbD Interventions
	Revealing the Application Data Model
	Linking Application Data Instances
	Controlling Authorized Access
	Controlling Data Privacy Preservation

	Evaluation
	Measures
	Results
	Discussion
	Threats to Validity and Limitations

	Conclusion

