A Unified Model Representation of Machine
Learning Knowledge

J.G. Enriquez"”, A. Martinez-Rojas', D. Lizcano? and A.
Jiménez-Ramirez!

I Computer Languages and Systems Department. Escuela Técnica Superior de
Ingenieria Informdtica, Avenida Reina Mercedes, s/n, 41012, Sevilla. Spain.

2 Universidad a distancia de Madrid. Carretera de La Corufia, KM.38,500, via de
Servicio, n° 15, 28400, Collado Villalba, Madrid. Spain.

* Corresponding author

E-mail: jgenriquez@us.es

Abstract

Nowadays, Machine Learning (ML) algorithms are being widely applied in
virtually all possible scenarios. However, developing a ML project entails the
effort of many ML experts who have to select and configure the appropriate
algorithm to process the data to learn from, between other things. Since there
exist thousands of algorithms, it becomes a time-consuming and challeng-
ing task. To this end, recently, AutoML emerged to provide mechanisms
to automate parts of this process. However, most of the efforts focus on
applying brute force procedures to try different algorithms or configuration
and select the one which gives better results. To make a smarter and more
efficient selection, a repository of knowledge is necessary. To this end, this
paper proposes (1) an approach towards a common language to consolidate
the current distributed knowledge sources related the algorithm selection in
ML, and (2) a method to join the knowledge gathered through this language
in a unified store that can be exploited later on, and (3) a traceability links
maintenance. The preliminary evaluations of this approach allow to create a
unified store collecting the knowledge of 13 different sources and to identify
a bunch of research lines to conduct.

River Journal, 1-19.
(© 2024 River Publishers. All rights reserved.

2 J.G. Enriquez et al.

“ Problem
)' characteristics
o'

? Selection
c © criteria
. Machine learning
Heterogeneous Consolidated algorithms
Knowledge Sources knowledge

Figure 1 Problem motivation

Keywords: Machine Learning, Automated Machine Learning, Knowledge
Representation, Model-Driven Engineering.

1 INTRODUCTION

Machine Learning (ML) entails the study of algorithms that automatically
improve through experience [18]. This kind of algorithms has been suc-
cessfully and broadly applied in the past [19] and nowadays is receiving
increasing attention due to the affordable access to bigger computation power
of machines.

A ML project requires selecting an appropriate algorithm to process the
data to learn from, which is typically named creating the data model. How-
ever, there are thousands of algorithms under the paradigm of ML, each of
them tailored to some specific tasks or contexts. In addition, many of these
algorithms offer a different set of parameters to be configured (e.g., selecting
the number of layers in a neural network).

Many existing approaches focus on the latter task, i.e., supporting the
user after the algorithm selection is done, and few of them recommend an
algorithm always after the user has provided the dataset. As an example, the
recent research area of AutoML [28] aims to automate the different steps of
ML projects. Nonetheless, such approaches neglect the early stages of the
project. Many of them just provide a brute force mechanism that runs several
algorithms in later stages of the project, i.e., when the dataset is ready. Thus,
little effort has been done to support the user in the algorithm selection in an
efficient manner (i.e., without applying brute force) and based on the problem
characteristics (i.e., the early information).

The algorithm selection is specifically challenging since the existing
knowledge regarding this task is distributed across different sources and each

A Unified Model Representation of Machine Learning Knowledge 3

Common language for Unified information
machine learning decisions store

Figure 2 Overall proposal

of them is specified in a non-standard manner, thus, making it difficult to con-
solidate information from different sources, i.e., the name of the algorithms
—or family of algorithms—, the selection criteria, and the characteristics of
the problem that affect the selection are heterogeneous (cf. Figure 1).

To reduce the risk of taking inaccurate decisions due to a lack of informa-
tion, a central repository of the ML Knowledge which stores the information
in a structured way is required. In order to address this problem, this paper
proposes (cf. Figure 2), on the one hand, a unified language for representing
the knowledge related to the algorithm selection in ML projects. On the other
hand, the paper describes a method to transform the knowledge gathered
using this language to a unified knowledge store that can be exploited later
on.

The unified language is presented as a metamodel that allows a graphical
representation of the knowledge related to:

o The characteristics that affect the decisions, e.g., the amount of data that
is available or the type of problem.

e The algorithms that can be recommended, e.g., Bayesian network or
Support Vector Machine.

e The criteria for recommending an algorithm based on some of the char-
acteristics, e.g., if the project aims to detect anomalies and the number of
columns of the dataset is greater than 100, the Support Vector Machine
algorithm is an excellent candidate.

e The source of knowledge from which recommendation criteria, algo-
rithms, and characteristics are drawn, with their corresponding weight-
ing, e.g. Scikit-learn with a weight of 90 percent.

Thereafter, the recommendations which are written using this language
can be transferred to the proposed unified stored. This store allows reducing
the ambiguity on (1) the name of the characteristics, e.g., the number of

4 J.G. Enriguez et al.

columns is often used as number of variables or features in some information
sources, and (2) the name of the algorithms to recommend, e.g., Bayesian
network can be found as Bayes model too.

This approach has been validated in a real industrial project using several
publicly available information sources related to ML. Some of them represent
the information as a picture summarizing the knowledge (e.g., [17,27]) while
some others are expressed in text form (e.g., [7]). After considering an ini-
tial set of 13 different information sources, our approach successfully stored
150 recommendations of more than 80 algorithms considering more than 20
characteristics.

Although it remains out of the scope of this paper, this unified knowledge
can be used to create a recommendation system that helps the user to decide
which is the best algorithm for her new project.

This paper is an extension of a previous work [15] incorporating: (1) a
new process, called term mappings, to improve the traceability between the
original knowledge sources and the unified one, (2) the definition of a new
concept called representative terms, (3) a new attribute to manage different
versions of the knowledge source, (4) a new attribute to consider the weight
of the knowledge sources according to their relevance, soundness, or reliabil-
ity, to optimize the search for the right algorithm, and (5) a new motivating
example that helps understanding the problem.

The rest of the paper is organized as follows: section 2 illustrates a
motivating example on which the rest of the sections of this paper will be
based, section 3 put in context the problem treated in this research, detailing
a background related to the Machine Learning and Model-Driven Engineer-
ing. Section 4 presents the contributions of the paper, which is divided into
three main elements: (1) a common language for recommendations of ML
algorithms, (2) an early approach to reach a unified knowledge store, and
(3) a plan to improve traceability of the term mappings. Finally, section 5
summarizes the conclusions and states a set of future work.

2 Motivating Example

With the aim of showing an example of the problems that this paper tries to
solve, the following is an example of knowledge provided by two different
sources, Microsoft Azure [17] and Dataiku [7]. Azure expresses the knowl-
edge about machine learning in graph form with textual explanations. Unlike
Azure, Dataiku expresses everything in text format.

A Unified Model Representation of Machine Learning Knowledge 5

What do you
want to do?
v

Predict between
two categories

!

Two-Class Classification

Answers simple two-choice questions,
like yes or no, true or false
Answers questions like: Is this A or B?

Two-Class Boosted Accurate, fast training,
Decision Tree < large memory footprint

<— Accurate, fast training

.« Fast training, linear model

Figure 3 Example knowledge source Microsoft Azure [17]

Table 1 Rule generation

Source Classes Objective Accuracy Complexity Algorithm

Dataiku yes/no - all possible Simple Decision Tree
outcomes

Microsoft two predict accurate - Decision Forest

Azure category

This list shows an extract of Dataiku knowledge source. It contrasts with
the example of Microsoft Azure, whose representation is much more visual:

e Logistic regression: The adaptation of a linear model to problems of
classification. Based on an equation that spits out the prediction right
after entering the variables. There is a tendency for the model to “overfit”
and they tend to have trouble predicting more complex behaviors when
the input variables are not independent.

e Decision tree: A series of yes/no rules based on the features, forming
a tree, to match all possible outcomes of a decision. Not too powerful
enough for complex data.

For instance, given a problem which is characterized by simple data,
whose objective is to predict a category given by a binary variable, and con-
sidering the necessity of being precise, the above heterogeneous knowledge
sources will trigger the rules showed in Table 1. To determine these rules,
the characteristics referred to each of the sources have been split and then,
compared with the value that this characteristic takes in the example problem.

6 J.G. Enriquez et al.

This highlights the need to determine the equivalence between the terms
of the different sources and whether they really refer to the same concept.
Thus, it can be determined that “yes/no” and “two-class” represent the same
concept and unify it in a single term. But it may not be trivial to determine
whether “Decision Tree” and “Decision Forest” can be grouped in the same
algorithm.

This example raises questions such as: Are they talking about the same
algorithms? Are both sources equally relevant? Are the same characteristics
taken into consideration? or, are they different?

Throughout this paper, it will be exposed a proposal of a standard lan-
guage for knowledge representation and how to unify the knowledge of both
sources in only one.

3 Background

This paper deals with two main concepts: ML (cf. Section 3.1) and Model-
Driven Engineering (cf. Section 3.2).

3.1 Machine Learning

Machine learning emerges as a set of tools under a broader paradigm called
artificial intelligence [18]. A ML project typically follows a life-cycle com-
prising many activities, e.g., the understanding of the problem, selecting the
appropriate algorithm, parametrizing the algorithm, or creating and testing
the model. All these steps involve tedious manual work which motivating the
arising of AutoML [11,28], a research line that pursues the automation of the
ML life-cycle steps.

So far, AutoML has been applied in several domains, like health [24],
chemistry [9] or software engineering [1]. Most of the effort has been applied
to automatically generate the ML model, e.g., to look for the algorithm’s pa-
rameters which allow the most accurate model for a given dataset. However,
the majority of these studies applied brute force to look for these parameters
and only a few approaches [21, 24] include smarter solutions to reduce the
search space.

In the industry field, there exist some commercial tools that support Au-
toML, e.g., BigML [4] or DataRobot [8]. Similarly to the academic field,
these tools mainly apply brute force to find the appropriate algorithm.

A Unified Model Representation of Machine Learning Knowledge 7

classification
approximation NoT

sV R
Ensemble |
Classifiers |
WoRING =

regression

)

) — " ples ElasticNet
prdicinga
v || category SVR(kernel="rbf)
T e p EnsembleRegressors
or ﬁr&uv\e " 1
wwwwwww labeled o e m :
> No) _1\,3,23‘(& should be (&

important

s

s @ : RidgeRegression
iber of anti SVR
. ’ known NV’
o % ? —
NO . just ectral
o
m WP R\ = xo dimensionality
tough g predicing approximation .
@ ‘@ reduction

Figure 4 Example knowledge source. source:scikit-learn.com

Nonetheless, there are some tools such as TPOT [22] or H20 [14],
which implement more sophisticated solutions, in which artificial intelligence
techniques are used to choose the algorithm.

A common aspect that identifies these proposals is that they focus on find-
ing the model with the best results. For this purpose, they only use their own
experience, and do not give the possibility of including external knowledge
within their solutions.

At a glance, selecting the appropriate algorithm is a non-deterministic
and time-consuming task that depends on many problems and data charac-
teristics. For this, the empirical knowledge is commonly shared in different
Internet sources. Beyond the research papers, organizations used to share
their experiences with the aim of guiding practitioners to use some software
products.

Example 1 Scikit-learn [25] (cf. Figure 4) and Microsoft Azure [17] share
a cheat sheet which tries to explain which algorithm better fits according
to a set of problem characteristics while Dataiku [7] contains technical
documents with the same objective.

The current work aims to gather all this distributed knowledge to enable
a smarter way of AutoML. That is, modelling existing knowledge and recon-
ciling it with the existing in the AutoML tool, building a unified knowledge
that allows to automate more efficiently the choice of the algorithm.

8 J.G. Enriquez et al.

3.2 Model-Based Engineering

The Model-Based Engineering (MBE) paradigm raises the use of models as
a mechanism to reach the concrete from the abstract [12].

MBE incorporates the elements: concepts, notations, processes, rules and
support tools [6], to provide advantages such as: having a common way of
representing processes, facilitating compatibility with other formalisms, en-
abling the reuse of models or creating specific solutions of domain among
others [20].

One of the main principles of this paradigm is that everything can be
expressed as a model [3]. The term “metamodeling” is known as the action
of modeling a model or modeling a modeling language. A metamodel is an
abstraction of a model itself, which defines the properties of that model, the
structure and restrictions for a family of models [16].

MBE is probably one of the best known paradigms in software engi-
neering for modeling and it is considered a key component of the overall
development process [5] .

This paradigm has numerous success stories in different domains such as:
aeronautical [10], cloud [2] , business process management [13] or software
testing [29], among others.

Modeling languages are the mechanisms that allow designers to specify
the models of their processes or systems. They establish the way in which
the concrete representation of a conceptual model is defined and can be com-
posed of graphical representations, textual representations, or even both. In
any case, modeling languages are formally defined and oblige designers to
use their syntax when creating models [6]. There are two major groups of
modeling languages.

e Domain-Specific Languages (DSLs), which are designed specifically for
a certain domain.

e General-Purpose Modeling Languages (GPMLs), which can be used for
any application domain.

The Meta Object Facility (MOF) language [23], proposed by the refer-
ence body in this field, the Object Management Group (OMG), is one of
the best-known languages for the definition of metamodels. In this language,
metainformation is specified that makes data understandable by a computer
[26].

Considering the background presented, it is possible to assume that MBE
can be used to standardize the way in which the ML Knowledge is created.

A Unified Model Representation of Machine Learning Knowledge 9

4 Contribution

This section describes the main contributions of this paper. First, a common
language is suggested to enable a consolidated way of representing the ML
Knowledge (cf. Section 4.1), Since many decisions have to be made while
joining the knowledge of different sources, a way to maintain the traceabil-
ity related to the unification decisions is proposed (cf. Section 4.2). Finally,
a process is described which incorporates such heterogeneous information
sources into a unified knowledge store (cf. Definition 1) using the previous
language (cf. Section 4.3).

Definition 1 A Unified knowledge store UKS= (KnowlSources, AlgTerms,
ReprAlgs, CharTerms, ReprChars, Rules) consists of

o KnowlSources: a set of tuples (source;q, SOUTCename, SOUT Cepeight)

which contains a unique id in the UK S, the name of the knowledge
source, and a weight associated to the confidence that this knowledge
source holds.
Since the knowledge of each source might have different nature and be
constructed using different methods (e.g., scientific knowledge tends to
be less biased than opinion blogs), this weight is intended to subjectively
asses the relevance, soundness, reliability or importance that should be
given to the recommendations of a knowledge source. It consists of a
percentage value which enables the comparison between sources.

Example 2 Let be a context where Dataiku recommends Logistic Re-
gression and Microsoft recommends Decision Forest. In case that
Microsoft was weighted with a higher value that Dataiku, it would
mean that Decision Forest will be recommended before than Logistic
Regression.

o AlgTerms: a set of tuples (alg;q, algname, source;q, reprAlg;q,) which
contains a unique id in the UKS, the name of the algorithm which
is given in the knowledge source, an id of a knowledge source in
KnowlSources which this algorithm comes from, and an id of a rep-
resentative algorithm in Repr Algs. The aim of the latter attribute is to
keep a synonymous relationship.

e ReprAlgs: a set of tuples (reprAlg;q, repr Algname) which contains a
unique id in the UK S and a name of the representative algorithm, i.e.,
a categorical representative of similar algorithms.

10 J.G. Enriquez et al.

Example 3 The algorithm in AlgTerms related to the ”Boosted Deci-
sion Tree”, from Azure, and ”Decision Tree”, from Dataiku, can share
a common representative in Repr Algs with a name ”D.Tree”.

o CharTerms: similarly to AlgTerms, is a set of tuples
(chariq, charpame, source;q, reprChar;q,) which contains a unique id
in the U K S, the name of the characteristic, an id of a knowledge source
in KnowlSources which it comes from, and an id of a representative
characteristic in ReprChars.

e ReprChars: similarly to ReprAlgs, is a set of tuples
(reprChar;q, reprCharpgme) which contains a unique id in the
UK S and a name of the representative characteristic.

e Rules: a set of tuples (rule;q, antecedents, consequences, source;q)
which contains a unique id in the U K S, the reference of the knowledge
source which describes this rule, and the rule itself, i.e., the antecedents
which fire the consequences. On the one hand, antecedents is a set of
pairs (reprChar;q, value) stating that this rule is fired if the charac-
teristics have the given values. On the other hand, consequences is a
set repr Alg;q which indicates that these algorithms are recommended if
the rule is fired.

4.1 A common language for recommendations of ML algorithms

This paper proposes a formal language to abstract from the different lan-
guages which are used to represent the knowledge. More precisely, in the
context of recommendations for the usage of a ML algorithm, sources of
knowledge can be found in research papers, Web forums, cheat sheets of
organizations, etc. Referring to the same algorithms and characteristics with
different terms. Nonetheless, if these sources are analyzed and the non-
relevant information is wiped out, the knowledge that they contain shares
a similar and simple format: some algorithms are recommended if a set of
problem characteristics have some specific values (e.g., the problem is to
predict between two categories, and the result must be accurate so it is
recommended logistic regression).

Herein, we propose an abstract syntax or metamodel (cf. Figure 5) that
allows: (1) standardizing the way in which knowledge is gathered and (2)
being interpreted by a computer program.

A Unified Model Representation of Machine Learning Knowledge 11

<<metaclass>>
MLKnowledge
1 1
- knowlISource: String <<metaclass>>
- version: String Start
<<metaclass>> <<metaclass>>
Decision Node <<metaclass>>
G Algorithm
expression: String * >

- - name: String
- source: Node
- target: Node <<metaclass>>

Characteristic

Figure 5 MLKnowledge Metamodel

The objective of this modeling is to allow the representation of the
knowledge of any single source in a common language .

The proposed metamodel is composed of six metaclasses.

The “MLKnowledge” metaclass, defined by the attribute “knowlSource”
and “version”, allows the content of the knowledge source to be represented
in the format of the target knowledge source and to have a record of their
updates. This representation format is composed of Decision and Nodes.

The “Node” metaclass, defined by the attribute “name”, allows to repre-
sent each origin points of the different branches of the knowledge source.
This metaclass can be represented as three different ways:

e Start: it represents the initial node.

e Characteristic: it represents the antecedents that are considered for
making a decision i.e. generating a consequence.

e Algorithm: it represents a consequence, i.e., an algorithm resulting from
the recommendation based on some antecedents.

The “Decision” metaclass allows to represent the antecedents of the
knowledge source, i.e., a set of characteristics that affects the decisions and
the criteria for recommending an algorithm based on them. These criteria
are represented through the “expression” attribute of “Decision” metaclass.
Moreover, this metaclass connects instances of the metaclass “Node” through
the “source” and “target” attributes.

In addition to the abstract syntax, a concrete syntax that allows to create
models based on the ML Knowledge Language was defined. This concrete
syntax is a DSL composed of a set of specific symbols (cf. Figure 6) that let
the software engineer instantiate each of the metaclasses of the metamodel.

! Note that the metamodel which is suggested in this paper is not intended to represent sets
of knowledge source but a single one.

12 J.G. Enriquez et al.

Metaclass Description Symbol

Start Node It represents the initial node

Characteristic It represents a feature of the

0@

Node knowledge source
Algorithm .
Node It represents an algorithm

It represents the decision based on expression

Decision LT L
certain criteria and characteristics

|

Figure 6 Concrete syntax definition

A small example of the use of the DSL is illustrated in Figure 7. This
figure is based on an extract of the Microsoft’s knowledge source (cf. Figure
3) which is modeled with the DSL described above.

As evidenced in Figure 7, the model begins with “What do you want to
do?” so it is identified as the initial node (i.e., Start Node). Next, the “Predict
between two categories” node filters by two characteristics, the Prediction
objective and the Number of categories. Thereafter, two nodes are obtained
in the DSL, one for each characteristic filter. For the sake of simplicity, Fig-
ure 3 is just an extract from the knowledge source and, thus, the complete
graph cannot be represented. Therefor, from Prediction objective two deci-
sions come out, Values and Categories. But Figure 7 only connects a new
node, Number of categories, by the Category decision, leaving open the other
branch.

For modeling the rest of the extract, the relevance of the characteristics
which are associated with each algorithm are taken according to their order,
i.e., the first characteristic is the most important and so on.

Example 4 For example, this part of Figure 3 is interpreted in the following
way: Two-Class Decision Forest is the most accurate and Two-Class Logistic
regression is the fastest. In addition, three other characteristics are extracted:
training speed, accuracy importance and whether it has a large memory
capacity.

First, Training speed corresponds to a characteristic that is the decision
target of the previous node, i.e., Number of categories with the expression
2. The characteristic Training speed is connected by a decision with the
expression Fast, to the Accuracy importance characteristic.

A Unified Model Representation of Machine Learning Knowledge 13

Tree

Values Prediction

objective

Categories

Number of
categories

Irrelevant Training

speed

Accuracy
importance

Logistic

Large memory
Regression

capacity

Boosted
Decision
Tree

Decision
Forest

Figure 7 Example of DSL use

Second, Accuracy importance characteristic is connected to a two
“Nodes”: the Two-Class Logistic regression algorithm —if Accuracy im-
portance takes the expression Yes—, and the “Large memory capacity”
characteristic —if Accuracy importance takes the expression N ot—.

Finally, “Large memory capacity” is connected to a pair of algorithm
nodes called “Two-Class Boosted Decision Tree” and “Two-Class Decision
Forest” by Yes or No respectively. It means, if the decision source expres-
sion “large memory capacity” takes value yes, the consequence value will be

“Two-Class Boosted Decision Tree”, otherwise, the consequence value will
be “Two-Class Decision Forest”.

14 J.G. Enriquez et al.

(A Unified
. knowledge
.' g

store

F—
 AlgTerm1 CharTerm3

Model O Map FRepresentative charrerms 4 Translate

—) — \ —)

CharTerm2

Knowledge in the
New knowledge Knowledge in AlgTerm2 CharTerm3 common language and

source common language Reconciliation unified terminology

Terms AlgTerml

Figure 8 Consolidate terms of knowledge source

4.2 Terms mappings

In a general view, as seen in Figure 2, this approach is divided into two
major stages. This section describes the first one, where each knowledge
source is expressed using the suggested language (cf. Figure 8), i.e., the
knowledge source is manually modeled using the previous language and,
thus, the different relations between the problem characteristics and the rec-
ommended algorithms are written in a formal way. In order to deal with
the ambiguity and similarities between knowledge sources, this stage in-
cludes a reconcilitation phase where the terms of a knowledge source (i.e.,
characteristics and algorithms) are mapped to terms in the UKS, i.e., the ter-
minology of the considered knowledge source is unified with the terminology
that is already used.

First, the UKS is updated by including the new KnowlSource with a
new source;q including the weight which is given for the recommendations
of this source (cf. Definition 1). Second, the characteristics and algorithms are
included in CharTerms and AlgTerms respectively. In case that no syn-
onym can be found in the UKS for the new characteristic or algorithm, a new
categorical representative is also included in the ReprChars or ReprAlg
respectively. In addition, the new term is associated with the latter represen-
tative. However, in case that a term already exists with equivalent meaning,
the new term is associated with the same categorical representative as the
equivalent one has.

Finally, the model of the knowledge source is updated by substituting
each term by the categorical representative which has been associated in the
UKS, thus resulting in a knowledge source which is expressed in the common
language with a unified terminology.

Example 5 Figure 6 uses the common language to represent the knowledge
which is extracted from the Microsoft Azure knowledge source. Herein, the

A Unified Model Representation of Machine Learning Knowledge 15

nodes Prediction objective, Number of categories, Training speed, Accuracy
importance, Logistic Regression, Boosted Decision Tree, Large memory ca-
pacity and Decision Forest are found (ignoring the Start, which is always in-
cluded). These nodes of algorithms and characteristics are automatically in-
cluded as terms (i.e., AlgorithmT erms and CharacteristicTerms respec-
tively) in the UKS, and associated with its corresponding KnowlSource, in
this case, Microsoft. After this, a categorical representative must be asso-
ciated to each new term. Considering that the term Large memory capacity
has not a similar term in the UKS, it is included as a CharTerm and as
a ReprChar node. However, in the case of Accuracy importance, assuming
that there is already a ReprChar with the name Importance of precision, the
Accuracy importance term is included and associated with this ReprChar
node, since they have an equivalent meaning.

Term reconciliation is a crucial task for both (1) getting value from the
aggregated knowledge in the UKS, and (2) maintaining a traceability mecha-
nism to reduce the impact of future changes. On the one hand, the knowledge
sources are not only associated with the terms, but also to the decisions. So,
given a decision between two nodes, it is possible to determine the knowledge
source from which it comes, and therefore the weight that is given to that
decision (i.e., the same weight of the knowledge source). On the other hand,
in case that a change has to be made in the terms of the UKS (e.g., divide a
general term in two more concrete ones), tracing the impact of the knowledge
source that has to be revised is straight forward since the source is stored on
each synonym and they are linked.

4.3 Towards a unified knowledge store

This section described the second stage of the proposal where the knowledge
source is processed to extract the individual recommendation rules and store
them in the unified knowledge store (cf. Figure 9). For this, since the model
present a tree-like structure, it is divided into the different paths that exist
from the root (i.e., the start node) to any algorithm node.

Each path is composed of (1) a “Start Node, (2) a set of “Characteristic
Nodes together with a labeled outgoing edge where the label indicates the
value that takes the characteristic, and (3) one or various “Algorithm Nodes.
Therefore, the paths are processed to extract the rules of the knowledge
source. These rules have a similar shape to the unified knowledge store.
Each one keeps a set of antecedents (i.e., the names and the values of the

16 J.G. Enriquez et al.

Antecedents Consequences
.]! Sp|lt o—s—e—o Extract <char, val>, <char, val>, ... - alg, alg, ... Add to
h, I>, <ch: I alg, alg, store
A _ _ <char, val>, <char, val>, ... - , Alg, ... _
- alg,alg, ..
<char, val>, <char, val>, ... alg, alg,
Knowledge source Graph paths Rules Unified knowledge store

Figure 9 Add knowledge to the unified knowledge store

characteristics that appear in the path) and a set of consequences (i.e., the
names of the algorithms that appear in the path).

For this, each characteristic name (and algorithm name) that exists in
the antecedents (and consequences) are substituted by the reprChar;q; (and
the reprAlg;q). Finally, these intermediate rules are incorporated in the
unified knowledge store. That is, a new rule;; is obtained and the tuple
(rule;q, antecedents, consequences, source;q) is stored in the Rules set
of the unified knowledge store.

For example, Figure 3 depicts how the different rules can be extracted
from the model of Figure 7.

The algorithm selection process will change each time that a new knowl-
edge source is included in the UKS, as a new source generates new knowledge
into the UKS, i.e., new rules and new possibly representative terms or mod-
ifications to existing ones. In this sense, the use of the UKS is based on a
comparison of the characteristics of the ML problem with the representative
characteristics of the UKS. This results in the recommendation of representa-
tive algorithms which are obtained from the rules that meet the characteristics
of the ML problem. It is important to emphasize that the UKS knowledge un-
dergoes a regular update process to check for new content from each source.
Therefore, each content update will be reflected in the version of the knowl-
edge source. In this way, the end user of this proposal will always be using
the latest updated version of the UKS.

5 Conclusions and Future Work

This paper presents an approach to deal with the distributed knowledge of
ML. Specifically, it aims to create a repository with rules that help to decide
which ML algorithms are suitable to solve a given problem. For this, a com-
mon language for modeling this knowledge is proposed. Such a language
is stated in form of a metamodel that a computer program can process. In
addition, a procedure to transfer these models to a unified knowledge store

A Unified Model Representation of Machine Learning Knowledge 17

is described. This store will enable exploiting the knowledge of the dis-
tributed sources to make decisions with less risk and will make it possible
to maintain the traceability of terms mappings to their knowledge source.
So that relationships between terms and representative terms can be changed
if an inconsistency is subsequently detected. Furthermore, each knowledge
source is weighted, which will allow establishing differences between the
recommendations according to their origin.

This results in a unified knowledge store, which allows an external user
to obtain an algorithm recommendation depending on the specific char-
acteristics of her ML problem. For this, she compares the representative
characteristics with those of her problem and, according to its values, some of
the rules are fired with a weight associated to the knowledge source. Although
all these rules may recommend an algorithm, only the one that takes greater
weight is selected.

However, this work considers some assumptions that limit its applica-
tion. First, the suggested unified knowledge store keeps simple rules lacking
more complex syntax like OR or NOT expressions. Second, it considers
that knowledge sources do not evolve, so no versioning or dating of terms
is stored. And finally, using this proposal requires manual work to model
the knowledge source through the provided language which may entail a
considerable effort depending on the number of sources. Nonetheless, this
effort will be leveraged not only by a single ML project but by the future
ones too.

As further future work, we plan (1) to exploit the unified knowledge
store in order to generate a decision support tool, (2) to extend the trace-
ability scope to keep track of every decision which is made from the early
stage of translating the knowledge source into the common language, (3)
to extend the proposed MLKnowledge language capabilities since complex
expressions, such as disjunctions and negations, occasionally appear within
the antecedents of knowledge sources, and (4) to introduce the concept of
intensity of recommendation with the aim of expressing the degree of ac-
ceptance of the recommendations, since some knowledge sources express a
distinction between the value of different recommendations (e.g., excellent
vs acceptable recommendations)

18 J.G. Enriquez et al.

ACKNOWLEDGEMENTS

This research has been supported by the Pololas project (TIN2016-76956-
C3-2-R) of the Spanish Ministry of Economy and Competitiveness, and
the PROMETEO (P009-18/EQ09) project of the Centro para el Desarrollo
Tecnoldgico Industrial (CDTI) of Spain.

References

[1] Hadil Abukwaik, Andreas Burger, Berima Kweku Andam, and Thorsten Berger. Semi-
automated feature traceability with embedded annotations. 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 529-533, 2018.

[2] Danilo Ardagna, Elisabetta Di Nitto, Parastoo Mohagheghi, Sébastien Mosser, Cyril
Ballagny, Francesco D’Andria, Giuliano Casale, Peter Matthews, Cosmin-Septimiu
Nechifor, Dana Petcu, et al. Modaclouds: A model-driven approach for the design and
execution of applications on multiple clouds. In 2012 4th International Workshop on
Modeling in Software Engineering (MISE), pages 50-56. IEEE, 2012.

[3] Jean Bézivin. On the unification power of models. Software & Systems Modeling,
4(2):171-188, 2005.

[4] BigML. Bigml. Available at: https://bigml.com/, 2019. Last accessed: July 2019.

[5] Francis Bordeleau and Edgard Fiallos. Model-based engineering: A new era based on
papyrus and open source tooling. In OSS4MDE@ MoDELS, pages 2-8. Citeseer, 2014.

[6] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineering
in practice. Synthesis Lectures on Software Engineering, 1(1):1-182, 2012.

[7] Dataiku. Dataiku blog. Available at: https://blog.dataiku.com/, 2019. Last
accessed: July 2019.

[8] DataRobot. Datarobot. Available at: https://www.datarobot.com/, 2019. Last

accessed: July 2019.

Steven L. Dixon, Jianxin Duan, E. Drybrough Smith, Christopher D Von Bargen, Woody

Sherman, and Matthew P. Repasky. Autogsar: an automated machine learning tool

for best-practice quantitative structure-activity relationship modeling. Future medicinal

chemistry, 8 15:1825-1839, 2016.

[10] Maria José Escalona, Julian Alberto Garcia-Garcia, Fernando Mas, Manuel Oliva, and
Carmelo Del Valle. Applying model-driven paradigm: Calipsoneo experience. In CAiSE
Industrial Track, pages 25-32. Citeseer, 2013.

[11] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. Efficient and robust automated machine learning. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 2962-2970. Curran Associates, Inc., 2015.

[12] Frédéric Fondement and Raul Silaghi. Defining model driven engineering processes. In
Third International Workshop in Software Model Engineering (WiSME), held at the 7th
International Conference on the Unified Modeling Language (UML), 2004.

[13] Julidn Alberto Garcia-Garcia, Laura Garcia-Borgofién, Maria José Escalona, and Manuel
Mejias. A model-based solution for process modeling in practice environments: Plm4bs.
Journal of Software: Evolution and Process, 30(12):e1982, 2018.

[9

—

A Unified Model Representation of Machine Learning Knowledge 19

[14] H20. Automl: Automatic machine learning. Available at: http://docs.h20.ai/h20/

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

latest-stable/h2o-docs/automl.html, 2019. Last accessed: September 2019.
Antonio Martinez-Rojas., Andrés Jiménez-Ramirez., and Jose G. Enriquez. Towards
a unified model representation of machine learning knowledge. In Proceedings of the
15th International Conference on Web Information Systems and Technologies - Volume
1: APMDWE,, pages 470—476. INSTICC, SciTePress, 2019.

Stephen J Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA distilled: principles of
model-driven architecture. Addison-Wesley Professional, 2004.

Microsoft. Machine learning algorithm cheat sheet for azure machine learning studio.
Available at: https://docs.microsoft.com/en-us/azure/machine-learning/
studio/algorithm-cheat-sheet, 2019. Last accessed: July 2019.

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1
edition, 1997.

Tom Michael Mitchell. The discipline of machine learning, volume 9. Carnegie Mellon
University, School of Computer Science, Machine Learning ..., 2006.

Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, and Miguel A Fernandez. An
empirical study of the state of the practice and acceptance of model-driven engineering
in four industrial cases. Empirical Software Engineering, 18(1):89-116, 2013.

Felix Mohr, Marcel Wever, and Eyke Hiillermeier. Ml-plan: Automated machine learning
via hierarchical planning. Machine Learning, 107(8):1495-1515, Sep 2018.

Randal S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H Moore. Evaluation
of a tree-based pipeline optimization tool for automating data science. In Proceedings of
the Genetic and Evolutionary Computation Conference 2016, pages 485-492, 2016.
OMG. Meta object facility (MOF) 2.5 core specification. Version 2.5.1. Available at:
https://www.omg.org/spec/MOF/2.5.1/PDF, 2016. Last accessed: July 2019.
Maria S. Panagopoulou, Makrina Karaglani, Ioanna Balgkouranidou, Eirini Biziota,
Triantafillia Koukaki, Evaggelos Karamitrousis, Evangelia Nena, Ioannis Tsamardinos,
George Kolios, Evi S Lianidou, Stylianos Souglakos John Kakolyris, and Ekaterini
Chatzaki. Circulating cell-free dna in breast cancer: size profiling, levels, and methy-
lation patterns lead to prognostic and predictive classifiers. Oncogene, 38:3387-3401,
2018.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning
research, 12(Oct):2825-2830, 2011.

Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER
SOCIETY-, 39(2):25, 2006.

Sckit-learn. sckikit-learn algorithm cheat-sheet. Available at: https://
scikit-learn.org/stable/tutorial/machine_learning_map/index.html,
2019. Last accessed: July 2019.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka:
Automated selection and hyper-parameter optimization of classification algorithms.
CoRR, abs/1208.3719, 2012.

Emilia Villani, Rodrigo Pastl Pontes, Guilherme Kisselofl Coracini, and Ana Maria
Ambrésio. Integrating model checking and model based testing for industrial software
development. Computers in Industry, 104:88-102, 2019.

