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Abstract

To fix network congestion resulting from the increase in high volume traffic
in data-intensive science and the increase in internet traffic due to COVID-
19, there has been a necessity of traffic engineering through traffic prediction.
For this, there have been various attempts from a statistical method such as
ARIMA to machine learning including LSTM and GRU. This study aimed
to collect and learn KREOENT backbone and subscribers’ traffic volume
through diverse machine learning techniques (e.g., SVR, LSTM, GRU, etc.)
and predict maximum traffic on the following day.
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1 Introduction

With the emergence of COVID-19 and various data centers and data-intensive
science, Internet traffic volume has rapidly increased these days. The simplest
solution is to increase network bandwidth. However, it takes a lot of money
to keep increasing network bandwidth. For efficient network management,
therefore, it is required to increase bandwidth up to the amount needed
for circuits by predicting network traffic volume or avoid such congestion
through traffic engineering.

So far, there have been various attempts to predict network traffic.
In statistics, auto-regressive moving average(ARMA), auto-regressive inte-
grated moving average (ARIMA) [1, 2] and Holt-Winters algorithm [3]
have been commonly used. Recent studies have found that machine learn-
ing approaches such as LSTM and GRU are more accurate than ARIMA
and Holt-Winters algorithm. In a study by Nandini Krishnaswamy, 24-
hour traffic prediction using stacked LSTM improved by more than 70% in
average [4].

According to conventional traffic prediction studies, datasets were created
by collecting flows and learned, using a machine learning model. However,
There are too many flows that occur in a large-capacity network such as
an ISP, making it difficult to collect. In the case of KREONET, about 1.4
billion flows/day, 100 GB of flow is collected. Hence, this study attempted to
make datasets by collecting traffic volume every 5 minutes. In addition, the
maximum value on the following day was predicted instead of forecasting
total traffic directly, using machine learning such as SVR, LSTM and GRU.
After all, it is difficult to predict such traffic 24 hours. Even successful
prediction (90% or higher) means that the traffic was predicted fairly well
in average, not that the exact traffic volume was estimated. From a traffic
engineer’s perspective, the maximum value on the following day can be
most useful. Based on such prediction, bandwidth from the previous day
can be adjusted dynamically. Therefore, this study focused on predicting the
maximum value.

2 Related Works

In this chapter, diverse network traffic prediction methods such as SVR,
LSTM and GRU are reviewed. Furthermore, performance metrics including
root mean square error (RMES), mean absolute percentage error (MAPE)
score are stated.
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2.1 Support Vector Regression (SVR)

SVR is a regression-analysis version of the commonly used support vector
machine (SVM). This machine learning method was proposed by Vladmir N.
Vapnik, Harris Drucker, Chirs J.C. Buges et al. in 1996 [5]. The ε-insensitive
loss function was applied to the SVM regression model, enabling the
prediction of real numbers randomly [5]. First, inputs are mapped to the high-
dimensional feature space. Then, a linear function associated with the results
is found [6]. SVR uses a linear estimation function as shown in Equation (1)
below:

f(x) = wTx+ b (1)

In other words, SVR converts non-linear regression in a low-dimensional
input space (x) into linear regression in high-dimensional configuration space
(F). Lε (ε-insensitive loss function) is expressed with cost function used in
SVR as shown in Equation (2) below:

Lε(f(x), q) = max(0, |f(x)− q| − ε) = max(0, |wTx+ b− q| − ε)
(2)

Weight vector (wT ) and constant (b) in the linear estimation function
Equation (1) of SVR can be estimated by the normalized hazard function
as shown in Equation (3) below:

R(C) = C
1

n

n∑
i=1

Lεf(xi, qi) +
1

2
‖w‖2 (3)

1
2‖w‖

2 is a normalization term coordinating a balance between complexity
and accuracy. Here, ‘C’ refers to a constant used in balancing empirical risk
and normalization term. Both ‘C’ and ‘ε’ are set by a user.

In SVR, margin is maximized by keeping qi and forecast (f(x) =
wTx+b) within ‘ε’. Using slack variables, Equation (3) is converted into
Equation (4):

Min: Rreg(f) =
1

2
‖w‖2 + c

n∑
i=1

(δi + δ∅j )

s.t


(wTx+ b)− qi <= ε+ δi

qi − (wTx+ b) <= ε+ δ∅j

δiδ
∅
j >= 0

(4)
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Figure 1 The SVR using e-insensitive loss function [3].

If Lagrange multiplier and Karush-Kuhn-Tucker conditions are applied to
Equation (4), the SVR regression function can be derived as follows [5]:

f(x, v) = f(x, α, α∗) =

n∑
i=1

(αi − α∗i )K(xi, xj) + b (5)

In SVR, the inner product is done in a relatively low-dimensional input
space by adopting the kernel trick. Then, it is mapped into a high-dimensional
space, simplifying calculation. For this, the kernel function (K(xi, xj)) of
Equation (5), which refers to the multiplication of the inner product of xi and
xj , is used.

2.2 Long Short-Term Memory (LSTM)

As a part of RNN, LSTM was proposed to fix long-term dependencies. It was
introduced by Hochreiter and Schmidhuber (1997) [7] and has been upgraded
since then. It has taken good care of issues from various fields, and it is still
commonly used.

The first step is to decide what information would be thrown away from
the cell state, and such decision is made by a sigmoid layer. Therefore, this
step is called, ‘forget-gate layer’ and can be expressed as Equation (6). In this
step, the value between ‘0’ and ‘1’ is sent to ‘Ct−1’ after getting ht−1 and xt.
If it is ‘1’, all data are preserved. If ‘0’, they are all given up.

ft = σ(Wf · [ht−1, xt] + bf ) (6)

In the next step, it is decided what would be stored in the cell state among
new data. First, what would be updated by the input gate layer ‘sigmoid layer’
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Figure 2 LSTM cell state [8, 9].

as shown in Equation (7). Then, a vector called ‘C̃t’ is created by the tanh
layer, and things are prepared for an addition to the cell state. After combining
the data resulting from the above two steps, the materials used to update the
state are produced. After that, the past state ‘Ct−1’ is updated to make the
new cell state ‘Ct’. For this, those which were supposed to be forgotten in
the first step are actually forgotten by multiplying the previous state by ‘ft’.
Then, ‘it ∗ C̃t’ is added.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC) (7)

Lastly, what would be sent to the output is decided. This output will be the
value filtered based on the cell state. As shown in Equation (8), what part of
the cell state would be sent to the output by loading input data on the sigmoid
layer is decided. After that, the value between ‘−1’ and ‘1’ is acquired by
adding the cell state to the tanh layer. Then, it is multiplied by the output
of the sigmoid gate. After all, the part which was supposed to be sent to the
output can be handled.

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct) (8)

2.3 Gated Recurrent Unit (GRU)

GRU is a simplified model of the conventional LSTM structure, which
was mentioned by Kyunghyun Cho (2014) [10]. While LSTM offers three
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Figure 3 GRU cell state [10, 11].

different gates (forget gate, input gate, output gate), GRU uses two gates
(reset gate, update gate) only. Furthermore, cell and hidden states are
combined into a single hidden state.

It is Equation (9) which is needed to calculate a reset gate. In this
equation, the previous hidden state and current ‘x’ were calculated with the
activation function ‘sigmoid’. The results would range from ‘0’ to ‘1’ and can
be interpreted as how much the previous hidden state would be used. Instead
of using the value from the reset gate as it is, Equation (10) is applied. In this
equation, the previous hidden state is multiplied by a reset gate.

The update gate is similar to LSTM’s input and forget gates in terms of
role. It is key to calculate the ratio of past and current data to be reflected.
With the result ‘zt’ acquired through Equation (11), how much current data
would be used is decided. Furthermore, how much past data would be used
is decided with ‘(1 − zt)’. Therefore, each role can be viewed as LSTM’s
input/forget gate. Lastly, a current hidden state can be estimated through
Equation (12):

rt = σ(Wr · [ht−1, xt]) (9)

h̃t = tanh(W · [rt ∗ ht−1, xt]) (10)

zt = σ(Wz · [ht−1, xt]) (11)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (12)

Compared to conventional LSTM, GRU is further simpler. In terms
of performances, it is not better than LSTM. However, GRU has fewer
parameters to learn.
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2.4 Performance Metrics

In this study, room mean square error (RMES) [12] and mean absolute
percentage error (MAPE) [12] are used to assess the accuracy of model
prediction more precisely.

RMSE is commonly used to handle a difference between model predic-
tions and observations, and the results are acquired as shown in Equation (13)
below:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (13)

MAPE is an index which represents the percentage of a difference
between actual values and predictions to actual ones, and it can be calculated
as shown in Equation (14). A model with smaller error mean is deemed good.
In RMSE, unless data are normalized, there is a problem in the outlier. In
MAPE, on the contrary, performances are reflected on the outlier.

In terms of the disadvantages of the MAPE, if the actual value is (or is
close to) ‘0’, an error becomes infinite at a particular instance, increasing an
error scale dramatically.

MAPE =

√√√√100

n

n∑
i=1

|yi − ŷi|
yi

(14)

3 Experiments

3.1 Data Description and Experiment Design

The data used in this study were collected from 26 different circuits among
the backbone and subscribers of Korea Research Environment Open Network
(KREONET) [13]. Here, KREONET refers to a research network that sup-
ports the development of science and technology in Korea. Specifically, a
total of 2,762,734 data records collected every 5 minutes from July 8, 2020
to July 11, 2021 were used. Since data in each circuit revealed their own
patterns, datasets were made by connecting such 26 circuits to learn data in
diverse patterns. The attributes and definitions are the collected data were
shown in Figure 4. Because almost no data were lost during collection, the
lost ones were estimated, using pre-data with the closest time.

For processing the inputs of a machine-learning model, data for the past
seven days were defined with a single instance. A single instance is defined
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Figure 4 Data definition and sample.

in 8,064 dimensions, including ‘12 (No. of data records collected per hour)×
24 (hours) × 4 (No. of attributes) × 7 (days)’. Each instance was processed
to get Max In, Max Out, Max%In and Max%Out attributes by calculating
maximum daily traffic.

For learning and verification, original data were split in a 7:3 ratio, and
6,578 learning datasets were divided into 2,834 verification datasets.

In a machine-learning model, SVR, LSTM and GRU were used. For
model optimization, experiments were performed multiple times. At first, to
see the trend, the learning rate was set to 0.0001, epoch 1000, and hidden size
1000, and the experiment was conducted by changing the sliding window to
1, 3, 5, 7, 14. The experiment was performed by fixing the sliding Windows
7 with the best performance, changing the learning rate to 0.1, 0.01, 0.001,
0.0001, 0.0001, and the epoch to 100, 500, 1000, and 2000. Then, the exper-
iment was conducted by fixing the sliding Windows 7, learning rate 0.0001,
epoch 1000, and changing the hidden size to 500, 1000, 2000, 3000, 4000,
and 5000. As a result, sliding window size, learning rate, hidden state size
and epoch were set to ‘7 days’, ‘0.0001’, ‘3,000’ and ‘1,000’ respectively.

3.2 Experimental Results

The results obtained through RMSE after learning total data with three dif-
ferent models (SVR, LSTM, GRU) were stated on Table 1. The table reveals
that except for ‘OUT’, LSTM showed the best performances. ‘IN’ and ‘OUT’

Table 1 SVR, LSTM, GRU model evaluation result in total data set
SVR LSTM GRU

IN 0.4281 G 0.2690 G 0.2936 G
OUT 0.4918 G 0.4159 G 0.4077 G
%IN 4.9357 % 4.1990 % 4.2725 %
%OUT 5.5082 % 5.2485 % 5.3289 %
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Figure 5 Prediction and evaluation result (backbone circuit A(Daejeon-Seoul)).

Figure 6 Distribution of predicted and actual values (Seoul-Daejeon Circuit).

revealed ‘95% or higher’ and ‘94% or higher’ respectively. A prediction error
(200–400 Mbps) is found at 10 Gbps in general due to a backbone section.
Therefore, it appears that no particular issue would occur when actual traffic
engineering is applied. However, it is ‘the Catch in Average’ which should
be considered. In average, a prediction error remains at around 5% against
bandwidth, but it could get worse. This issue would be handled later.

Figure 5 is the results of the prediction of the backbone circuit
A(Daejeon-Seoul) traffic, using LSTM which showed the best learning
results. In terms of the results of Figure 5, RMSE was 0.0991 at IN traffic in
the backbone circuit A(Daejeon-Seoul), showing about 100 Mbps mean error.
In addition, MAPE which represents a prediction error ratio was 0.0981,
revealing about 10% error against actual traffic. Similar results were observed
even at OUT traffic. Since a backbone section is an area where traffic from
multiple subscribers is combined, good results with a constant pattern are
expected.

In Figure 6, a ‘y = x’ linear function graph was added to the distribution
of predictions and actual values. As red dots got closer to the blue line,
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Figure 7 Prediction and evaluation result (Kyungbuk University Circuit).

prediction was more accurate. When ‘the Catch in Average’ was mentioned,
red dots off from the blue line were observed in Figure 6 below. Since such
dots have small numbers, the results might look good. As shown in red dots at
the left bottom, it is able to create congestion in the backbone through traffic
engineering with incorrect predictions

Figure 7 shows the results of the circuit of Kyungbuk National University,
one of KREONET subscribers. According to IN traffic RMSE, a 0.0655
(approx. 65 Mbps) mean error can be confirmed. In addition, MAPE was
0.2254, predicting about 22% error in average. While RMSE is low, MAPE
would be higher because of small bandwidth. The subscriber’s traffic against
backbone, an error can be large due to significant variation per each agency’s
characteristics.

Based on the above experiments, this study predicted maximum traffic
on the following day through a percentage of traffic to traffic volume and
bandwidth. In a backbone zone, an error of nearly 10% or less was obtained.
In addition, it is difficult to collect flow data on an Internet service provider
(ISP)-scale network. However, it is relatively simple to collect traffic vol-
ume [14, 15]. Hence, it might be fairly easy to apply the discussed prediction
methods to actual fields. It is anticipated that this study would help network
operators handle traffic engineering by predicting maximum traffic on the
following day.

4 Conclusion

This study used a traffic volume-based prediction method to maximize the
efficiency of network operation through the creation of easy datasets and
traffic prediction. In terms of a more practical plan, this study predicted,
using traffic volume for easy data collection. To enhance utilization in traffic
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engineering, this study predicted maximum traffic on the following day,
showing a nearly 10% error on a backbone zone.

Previous studies had problems with increasing accuracy by predicting
traffic in the short future, or low accuracy when predicting the future for 24
hours. In this study, the accuracy could be improved because one value was
predicted by predicting the maximum value of traffic for 24 hours.

There might be further studies on how to improve accuracy by collect-
ing and learning circuits with high similarities by clustering each circuit
according to characteristics. In terms of further studies, each circuit would
be clustered through clustering techniques such as K-means [16]. Then, there
have been studies to enhance accuracy by collecting and learning circuits
with great similarities, helping clusters learn from each other. It is anticipated
that there would be continued studies on a KREONET backbone through
connection with more accurate KREOENT-S’ virtually dedicated network
(VDN) [17] in connection with the technology to dynamically allocate
circuits.
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